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Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types
and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target
genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advan-
tages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems
have become the most widely used genome editing technology in molecular biology laboratories all
around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including
the innovations, the applications in human disease research and gene therapy, as well as the challenges
and opportunities that will be faced in the practical application of CRISPR-Cas systems.
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1. Introduction

Genome editing is the modification of genomic DNA at a specific
target site in a wide variety of cell types and organisms, including
insertion, deletion and replacement of DNA, resulting in inactiva-
tion of target genes, acquisition of novel genetic traits and correc-
tion of pathogenic gene mutations [1–3]. In recent years, with the
rapid development of life sciences, genome editing technology has
become the most efficient method to study gene function, explore
the pathogenesis of hereditary diseases, develop novel targets for
gene therapy, breed crop varieties, and so on [4–7].

At present, there are three mainstream genome editing tools in
the world, zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs) and the RNA-guided CRISPR (clustered
regularly interspaced short palindromic repeats)-Cas (CRISPR-
associated) nucleases systems [8–10]. Due to the advantages of
simple design, low cost, high efficiency, good repeatability and
short-cycle, CRISPR-Cas systems have become the most widely
used genome editing technology in molecular biology laboratories
all around the world [11,12]. In this review, an overview of the
CRISPR-Cas systems will be introduced, including the innovations
and applications in human disease research and gene therapy, as
well as the challenges and opportunities that will be faced in the
practical application of CRISPR-Cas systems.

2. Overview of CRISPR-Cas systems

CRISPR-Cas is an adaptive immune system existing in most bac-
teria and archaea, preventing them from being infected by phages,
viruses and other foreign genetic elements [13,14]. It is composed
of CRISPR repeat-spacer arrays, which can be further transcribed
into CRISPR RNA (crRNA) and trans-activating CRISPR RNA
(tracrRNA), and a set of CRISPR-associated (cas) genes which
encode Cas proteins with endonuclease activity [15]. When the
prokaryotes are invaded by foreign genetic elements, the foreign
DNA can be cut into short fragments by Cas proteins, then the
DNA fragments will be integrated into the CRISPR array as new
spacers [16]. Once the same invader invades again, crRNA will
quickly recognize and pair with the foreign DNA, which guides
able 1
mmary of CRISPR-Cas systems.

Class Type Subtype Effector Target

1 (multi-Cas proteins) Ⅰ A, B, C, D, E, F, U Cascade dsDNA
1 III A, B, C, D Cascade ssRNA
1 Ⅳ A, B Cascade dsDNA
2 (single-Cas protein) Ⅱ A SpCas9 dsDNA
2 Ⅱ A SaCas9 dsDNA
2 Ⅱ B FnCas9 dsDNA/ssRNA
2 Ⅱ C NmCas9 dsDNA
2 Ⅴ A Cas12a (Cpf1) dsDNA
2 Ⅴ B Cas12b (C2c1) dsDNA
2 Ⅴ C Cas12c (C2c3) dsDNA
2 VI A Cas13a (C2c2) ssRNA
2 VI B Cas13b (C2c4) ssRNA
2 VI C Cas13c (C2c7) ssRNA
2 VI D Cas13d ssRNA
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Cas protein to cleave target sequences of foreign DNA, thereby pro-
tecting the host [16].

CRISPR-Cas systems can be classified into 2 classes (Class 1 and
Class 2), 6 types (I to VI) and several subtypes, with multi-Cas pro-
tein effector complexes in Class 1 systems (Type I, III, and IV) and a
single effector protein in Class 2 systems (Type II, V, and VI)
[17,18]. The classification, representative members, and typical
characteristics of each CRISPR-Cas system are summarized in
Table 1 [10,12,15–18].

Type II CRISPR-Cas9 system derived from Streptococcus pyo-
genes (SpCas9) is one of the best characterized andmost commonly
used category in numerous CRISPR-Cas systems [18,19]. The main
components of CRISPR-Cas9 system are RNA-guided Cas9 endonu-
clease and a single-guide RNA (sgRNA) [20]. The Cas9 protein pos-
sesses two nuclease domains, named HNH and RuvC, and each
cleaves one strand of the target double-stranded DNA [21]. A
single-guide RNA (sgRNA) is a simplified combination of crRNA
and tracrRNA [22]. The Cas9 nuclease and sgRNA form a Cas9
ribonucleoprotein (RNP), which can bind and cleave the specific
DNA target [23]. Furthermore, a protospacer adjacent motif
(PAM) sequence is required for Cas9 protein’s binding to the target
DNA [20].

During genome editing process, sgRNA recruits Cas9 endonucle-
ase to a specific site in the genome to generate a double-stranded
break (DSB), which can be repaired by two endogenous self-repair
mechanisms, the error-prone non-homologous end joining (NHEJ)
pathway or the homology-directed repair (HDR) pathway [24].
Under most conditions, NHEJ is more efficient than HDR, for it is
active in about 90% of the cell cycle and not dependent on nearby
homology donor [25]. NHEJ can introduce random insertions or
deletions (indels) into the cleavage sites, leading to the generation
of frameshift mutations or premature stop codons within the open
reading frame (ORF) of the target genes, finally inactivating the tar-
get genes [26,27]. Alternatively, HDR can introduce precise geno-
mic modifications at the target site by using a homologous DNA
repair template [28,29] (Fig. 1). Furthermore, large fragment dele-
tions and simultaneous knockout of multiple genes could be
achieved by using multiple sgRNAs targeting one single gene or
more [30,31].
Nuclease domains TracrRNA requirement PAM/PFS

HD fused to Cas3 No –
HD fused to Cas10 No –
unknown No –
RuvC, HNH Yes NGG
RuvC, HNH Yes NNGRRT
RuvC, HNH Yes NGG
RuvC, HNH Yes NNNNGATT
RuvC, Nuc No 50 AT-rich PAM
RuvC Yes 50 AT-rich PAM
RuvC Yes 50 AT-rich PAM
2xHEPN No 30PFS: non-G
2xHEPN No 50PFS: non-C; 30PFS:NAN/NNA
2xHEPN No –
2xHEPN No –



Fig. 1. Mechanism of genome editing. Double-strand break (DSB) induced by nucleases can be repaired by non-homologous end joining (NHEJ) or homology-directed repair
(HDR) pathways. NHEJ can introduce random insertions or deletions (indels) of varying length at the site of the DSB. Alternatively, HDR can introduce precise genomic
modifications at the target site by using a homologous DNA donor template.

Y. Xu, Z. Li Computational and Structural Biotechnology Journal 18 (2020) 2401–2415
3. Innovations of CRISPR-Cas systems

CRISPR-Cas systems have become the most favorite genome
editing tool in the molecular biology laboratory since they were
confirmed to have genome editing capabilities in 2012 [23]. They
have made numerous achievements in the field of correcting
pathogenic mutations, searching for essential genes for cancer
immunotherapy, and solving key problems in organ xenotrans-
plantation [5,32,33]. Unfortunately, there are still some limitations
which need to solve in CRISPR-Cas systems, such as potential off-
target effects, limited genome-targeting scope restricted by PAM
sequences, and low efficiency and specificity [34,35]. Therefore,
many research teams have been trying to improve this tool.

3.1. Dead-Cas9 system

By introducing two point mutations, H840A and D10A, into
HNH and RuvC nuclease domain, researchers have obtained a
nuclease dead Cas9 (dCas9) [36]. The dCas9 lacks DNA cleavage
activity, but DNA binding activity is not affected. Then, by fusing
transcriptional activators or repressors to dCas9, the CRISPR-
dCas9 system can be used to activate (CRISPRa) or inhibit (CRISPRi)
transcription of target genes [37,38]. Additionally, dCas9 can be
fused to various effector domains, which enables sequence-
specific recruitment of fluorescent proteins for genome imaging
and epigenetic modifiers for epigenetic modification [39,40]. Fur-
thermore, this system is easy to operate and allows simultaneous
manipulation of multiple genes within a cell [38].

3.2. Base editing system

In order to improve the efficiency of site-directed mutagenesis,
base editing systems containing dCas9 coupledwith cytosine deam-
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inase (cytidine base editor, CBE) or adenosine deaminase (adenine
base editor, ABE) have been developed [41,42]. It can introduce
C�G to T�A or A�T to G�C point mutations into the editing window of
the sgRNA target sites without double-stranded DNA cleavage
[41,42]. Since base editing systems avoid the generation of random
insertions or deletions to a great extent, the results of genemutation
are more predictive. However, owing to the restriction of base edit-
ing window, base editing systems are not suitable for any target
sequence in the genome. Accordingly, C-rich sequences, for exam-
ple, would produce a lot of off-target mutations [43]. Therefore,
researchers have always been trying to develop and optimize novel
base editing systems to overcome this drawback [44]. At present,
base editing systems have been widely used in various cell lines,
human embryos, bacteria, plants and animals for efficient site-
directed mutagenesis, which may have broad application prospects
in basic research, biotechnology and gene therapy [45–47]. In the-
ory, 3956 gene variants existing in Clin var database could be
repaired by base substitution of C-T or G-A [42,48].
3.3. Cas9 variant system

An NGG PAM at the 30 end of the target DNA site is essential for
the recognization and cleavage of the target gene by Cas9 protein
[20]. Besides classical NGG PAM sites, other PAM sites such as
NGA and NAG also exist, but their efficiency of genome editing is
not high [49]. However, such PAM sites only exist in about one-
sixteenth of the human genome, thereby largely restricting the tar-
getable genomic loci. For this purpose, several Cas9 variants have
been developed to expand PAM compatibility.

In 2018, David Liu et al. [50] developed xCas9 by phage-assisted
continuous evolution (PACE), which can recognize multiple PAMs
(NG, GAA, GAT, etc.). In the latter half of the same year, Nishimasu
et al. developed SpCas9-NG, which can recognize relaxed NG PAMs
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[51]. In 2020, Miller et al. developed three new SpCas9 variants rec-
ognizing non-G PAMs, such as NRRH, NRCH and NRTH PAMs [52].
Later in the same year, Walton et al. developed a SpCas9 variant
named SpG, which is capable of targeting an expanded set of
NGN PAMs [53]. Subsequently, they optimized the SpG system
and developed a near-PAMless variant named SpRY, which is cap-
able of editing nearly all PAMs (NRN and NYN PAMs) [53].

By using these Cas9 variants, researchers have repaired some
previously inaccessible disease-relevant genetic variants [51–53].
However, there are still some drawbacks in these variants, such as
low efficiency and cleavage activity [50,51]. Therefore, they should
be further improved by molecular engineering in order to expand
the applications of SpCas9 in disease-relevant genome editing.

3.4. RNA editing system

In addition to editing DNA, CRISPR-Cas systems can also edit
RNA. Class 2 Type VI CRISPR-Cas13 systems contain a single
RNA-guided Cas13 protein with ribonuclease activity, which can
bind to target single-stranded RNA (ssRNA) and specifically cleave
the target [54]. To date, four Cas13 proteins have been identified:
Cas13a (also known as C2c2), Cas13b, Cas13c and Cas13d [55].
They have successfully been applied in RNA knockdown, transcript
labeling, splicing regulation and virus detection [56–58]. Later,
Feng Zhang et al. developed two RNA base edting systems (REPAIR
system, enables A-to-I (G) replacement; RESCUE system, enables C-
to-U replacement) by fusing catalytically inactivated Cas13
(dCas13) with the adenine/cytidine deaminase domain of ADAR2
(adenosine deaminase acting on RNA type 2) [59,60].

Compared with DNA editing, RNA editing has the advantages of
high efficiency and high specificity. Furthermore, it can make tem-
porary, reversible genetic edits to the genome, avoiding the poten-
tial risks and ethical issues caused by permanent genome editing
[61,62]. At present, RNA editing has been widely used for pre-
clinical studies of various diseases, which opens a new era for
RNA level research, diagnosis and treatment.

3.5. Prime editing system

Recently, Anzalone et al. developed a novel genome editing
technology, named prime editing, which can mediate targeted
insertions, deletions and all 12 types of base substitutions without
double-strand breaks or donor DNA templates [63]. This system
contains a catalytically impaired Cas9 fused to a reverse transcrip-
tase and a prime editing guide RNA (pegRNA) with functions of
specifying the target site and encoding the desired edit [63]. After
Cas9 cleaves the target site, the reverse transcriptase uses pegRNA
as a template for reverse transcription, and then, new genetic
information can be written into the target site [63]. Prime editing
can effectively improve the efficiency and accuracy of genome edit-
ing, and significantly expand the scope of genome editing in bio-
logical and therapeutic research. In theory, it is possible to
correct up to 89% known disease-causing gene mutations [63].
Nevertheless, as a novel genome editing technique, more research
is still needed to further understand and improve prime editing
system.
4. Applications of CRISPR-Cas systems in human disease
research

4.1. Applications of CRISPR-Cas systems in establishing animal and cell
models of human diseases

So far, as a rapid and efficient genome editing tool, CRISPR-Cas
systems have been extensively used in a variety of species, includ-
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ing bacteria, yeast, tobacco, Arabidopsis, sorghum, rice, Caenorhab-
ditis elegans, Drosophila, zebrafish, Xenopus laevis, mouse, rat,
rabbit, dog, sheep, pig and monkey [64–78], as well as various
human cell lines, such as tumor cells, adult cells and stem cells
[79,80]. In medical field, the most important application of
CRISPR-Cas systems is to establish genetically modified animal
and cell models of many human diseases, including gene knockout
models, exogenous gene knock-in models, and site directed muta-
genesis models [80,81].

(1) Establishing animal models of human diseases
Animal models are crucial tools for understanding gene
function, exploring pathogenesis of human diseases and
developing new drugs. However, traditional methods for
generating animal models are complex, costly and time-
consuming, which severely limit the application of animal
models in basic medical research and preclinical studies
[82]. Since the discovery of CRISPR-Cas systems, a series of
genetically modified animal models have successfully been
generated in a highly efficient manner [72–78].

Among numerous model animals, mice are widely used for sci-
entific studies and recognized as the most important model ani-
mals in human disease research [83]. So far, researchers have
successfully generated many genetically modified mouse models,
such as cancer, cardiovascular disease, cardiomyopathy, Hunting-
ton’s disease, albino, deafness, hemophilia B, obesity, urea cycle
disorder and muscular dystrophy [84–93]. Nevertheless, owing to
the great species differences between humans and rodents, they
can’t provide effective assessment and long-term follow-up for
research and treatment of human diseases [94]. Therefore, the
application of larger model animals, such as rabbits, pigs and
non-human primates, is becoming more and more widespread
[74,77,78]. With the development of CRISPR-Cas systems, generat-
ing larger animal models for human diseases has become a reality,
which greatly enriches the disease model resource bank.

Our research focuses on the generation of genetically modified
rabbit models using CRISPR-Cas systems. Compared with mice,
rabbits are closer to humans in physiology, anatomy and evolution
[95]. In addition, rabbits have a short gestation period and less
breeding cost. All these make them suitable for studies of the car-
diovascular, pulmonary and metabolism diseases [95,96]. Nowa-
days, we have generated a series of rabbit models for simulating
human diseases, including congenital cataracts, duchenne muscu-
lar dystrophy (DMD), X-linked hypophosphatemia (XLH), etc (sum-
marized in Table 2) [97–114]. Take the generation of PAX4 gene
knockout rabbits as an example, the procedure we used to estab-
lish genetically modified rabbit models is summarized in Fig. 2
and Table 3.

In addition, the pig is an important model animal extensively
used in biomedical research. Compared with mice, their body/or-
gan size, lifespan, anatomy, physiology, metabolic profile and
immune characteristics are more similar to those of humans,
which makes the pig an ideal model for studying human cardiovas-
cular diseases and xenotransplantation [115]. At present, several
genetically modified pig models have been successfully generated,
including neurodegenerative diseases, cardiovascular diseases,
cancer, immunodeficiency and xenotransplantation model [116–
122].

To date, non-human primates are recognized as the best human
disease models. Their advantage is that their genome has 98%
homology with the human genome; also, they are highly similar
to humans in tissue structure, immunity, physiology and metabo-
lism [123]. What’s more, they can be infected by human specific
viruses, which makes them very important models in infectious
disease research [124]. Nowadays, researchers have generated



Table 2
CRISPR-Cas system mediated rabbit models of human diseases.

Rabbit models Targeted genes Method References

1 Congenital Cataracts CRYAA, Exon 2; GJA8, Exon 1 CRISPR-Cas9, knockout [97,98]
2 Muscle hypertrophy MSTN, Exon 1; MSTN, Exon 1 CRISPR-Cas9, knockout; BE3, point mutation [99,113]
3 X-linked hypophosphatemia (XLH) PHEX, Exon 1 CRISPR-Cas9, knockout [100]
4 X chromosome inactivation XIST, D-repeat in Exon 1 CRISPR-Cas9, knockout [101]
5 Sex reversal SRY, Sp1 CRISPR-Cas9, knockout [102]
6 Albinism Tyr, 30UTR; Tyr, upstream and 50UTR (dual

sgRNA); Tyr, Exon 1
CRISPR-Cas9, knockout; CRISPR-Cas9, knockout;
BE3, point mutation

[103,104,113]

7 Diabetes mellitus PAX4, Exon 3–5 CRISPR-Cas9, knockout [105]
8 Marfanoid-progeroid-lipodystrophy (MPL)

syndrome
FBN1, Exon 65 CRISPR-Cas9, knockout [106]

9 Pure hair and nail ectodermal dysplasia 9
(ECTD-9)

HOXC13, Exon 1 CRISPR-Cas9, knockout [107]

10 Duchenne muscular dystrophy (DMD) DMD, Exon 51 CRISPR-Cas9, knockout [108]
11 Muscular dystrophy ANO5, Exon 12–13 CRISPR-Cas9, knockout [109]
12 Premature Aging Syndrome LMNA, Exon 3 CRISPR-Cas9, knockout [110]
13 Autosomal recessive form of

hypophosphatemic rickets (ARHR)
DMP1, Exon 1–2 CRISPR-Cas9, knockout [111]

14 Cleft lip GADD45G, Exon 2–3 CRISPR-Cas9, knockout [112]
15 Hutchinson-Gilford progeria syndrome

(HGPS)
LMNA, Exon 11 BE3, point mutation [113]

16 X-linked dilated cardiomyopathy (XLCM) DMD, Exon 9 ABE7.10, point mutation [113]
17 Multiple homologous genes knockout FUT1, FUT2, SEC1, homologous region CRISPR-Cas9, knockout [114]

Fig. 2. Generation of PAX4 gene knockout (KO) rabbits using CRISPR-Cas9 system. (A) Schematic diagram of the sgRNA target sites located in the rabbit PAX4 locus. PAX4
exons are indicated by yellow rectangles; target sites of the two sgRNA sequences, sgRNA1 and sgRNA2, are highlighted in green; protospacer-adjacent motif (PAM) sequence
is highlighted in red. Primers F and R are used for mutation detection in pups. (B) Microinjection and embryo transfer. First a mixture of Cas9 mRNA and sgRNA is
microinjected into the cytoplasm of the zygote at the pronuclear stage. Then the injected embryos are transferred into the oviduct of recipient rabbits. After 30 days gestation,
PAX4 KO rabbits are born. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Summary of the PAX4 KO rabbits generated by CRISPR-Cas9 system.

Recipients sgRNA/Cas9 mRNA
(ng/ll)

Embryos
transferred

Pregnancy Pups obtained (%
transferred)

Pups with mutations
(% pups)

Bi-allelic modified
(% pups)

Pups with hyperglycemia
(% pups)

1 40/200 56 YES 8 (14.2%) 8 (100%) 8 (100%) 8 (100%)
2 40/200 52 YES 6 (11.5%) 6 (100%) 6 (100%) 6 (100%)
3 20/200 52 YES 7 (13.5%) 4 (57.1%) 1 (25%) 1 (25%)
4 20/200 50 YES 1 (2%) 1 (100%) 0 0
Total 210 100% 22 (13.9%) 19 (86.4%) 15 (68.2%) 15 (68.2%)
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many genetically modified monkey models, such as cancer, muscu-
lar dystrophy, developmental retardation, adrenal hypoplasia con-
genita and Oct4-hrGFP knockin monkeys [125–129].

(2) Establishing cell models of human diseases
It was found that the efficiency of CRISPR-Cas mediated gen-
ome editing is higher in vitro than in vivo, thus the use of
genetically modified cell models can greatly shorten the
research time in medical research [130]. Until now,
researchers have used CRISPR-Cas systems to perform
genetic manipulations on various cell lines, such as tumor
cells, adult cells and stem cells, in order to simulate a variety
of human diseases [79–80].

Fuchs et al. generated the RPS25-deficient Hela cell line by
knocking out ribosomal protein eS25 (RPS25) gene using CRISPR-
Cas9 system [131]. Drost et al. edited four common colorectal
cancer-related genes (APC, P53, KRAS and SMAD4) in human
intestinal stem cells (hISCs) by CRISPR-Cas9 technology [132].
The genetically modified hISCs with 4 gene mutations possessed
the biological characteristics of intestinal tumors and could simu-
late the occurrence of human colorectal cancer [132]. Jiang et al.
induced site-specific chromosome translocation in mouse embry-
onic stem cells by CRISPR-Cas9, in order to establish a cell and ani-
mal model for subsequent research on congenital genetic diseases,
infertility, and cancer related to chromosomal translocation [133].

In addition, induced pluripotent stem cells (iPSCs) have shown
great application prospect in disease model establishment, drug
discovery and patient-specific cellular therapy development
[134]. iPSCs have the ability of self-renewal and multiple differen-
tiation potential, which are of great significance in disease model
establishment and regenerative medicine research [135]. In recent
years, by combining CRISPR-Cas systems with iPSC technology,
researchers have generated numerous novel and reliable disease
models with isogenic backgrounds and provided new solutions
for cell replacement therapy and precise therapy in a variety of
human diseases, including neurodegenerative diseases, acquired
immunodeficiency syndrome (AIDS), b-thalassemia, etc [134–136].

4.2. Applications of CRISPR-Cas systems in disease diagnosis

With the development of CRISPR-Cas systems and the discovery
of novel Cas enzymes (Cas12, Cas13, etc.), CRISPR-based molecular
diagnostic technology is rapidly developing and has been selected
as one of the world’s top ten science and technology advancements
in 2018 [137].

Unlike Cas9, Cas13 enzymes possess a ‘collateral cleavage’
activity, which can induce cleavage of nearby non-target RNAs
after cleavage of target sequence [54]. Based on the ‘collateral
cleavage’ activity of Cas13, Feng Zhang et al. [138] developed a
Cas13a-based in vitro nucleic acid detection platform, named
SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCK-
ing). It is composed of Cas13a, sgRNA targeting specific RNA
sequences and fluorescent RNA reporters. After Cas13a protein rec-
ognizes and cleaves the target RNA, it will cut the report RNA and
release the detectable fluorescence signal, so as to achieve the pur-
pose of diagnosis [138]. Researchers have used this method to
detect viruses, distinguish pathogenic bacteria, genotype human
DNA and identify tumor DNA mutations [137,138]. Later, Feng
Zhang et al. improved SHERLOCK system and renamed it as SHER-
LOCKv2, which can detect four virus at the same time [139].

In addition to Cas13, Cas12 enzymes are also found to possess
collateral cleavage activity [140]. Doudna et al. [141] developed a
nucleic acid detection system based on Cas12a (also known as
Cpf1), named DETECTR (DNA endonuclease-targeted CRISPR trans
reporter). DETECTR has been used to detect cervical cancer associ-
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ated HPV subtypes (HPV16 and HPV18) in either virus-infected
human cell lines or clinical patient samples [141]. Furthermore,
Doudna et al. are trying to use the newly discovered Cas14 and
CasX proteins in molecular diagnosis, which may further enrich
the relevant techniques of CRISPR-based molecular diagnosis
[142,143].

CRISPR-based molecular diagnostic technology has incompara-
ble advantages over traditional molecular diagnostic methods,
such as high sensitivity and single-base specificity, which is suit-
able for early screening of cancer, detection of cancer susceptibility
genes and pathogenic genes [137,144]. Meanwhile, CRISPR diag-
nostics is inexpensive, simple, fast, without special instrument,
and is suitable for field quick detection and detection in less-
developed areas [137,144]. At present, many companies are trying
to develop CRISPR diagnostic kits for family use, to detect HIV,
rabies, Toxoplasma gondi, etc.

4.3. Applications of CRISPR-Cas systems in genome-scale screening

CRISPR-Cas9 system enables genome-wide high-throughput
screening, making it a powerful tool for functional genomic screen-
ing [145]. The high efficiency of genome editing with CRISPR-Cas9
system makes it possible to edit multiple targets in parallel, thus a
mixed cell population with gene mutation can be produced, and
the relationship between genotypes and phenotypes could be con-
firmed by these mutant cells [146]. CRISPR-Cas9 library screening
can be divided into two categories: positive selection and negative
selection [147]. It has been utilized to identify genes associated
with cancer cell survival, drug resistance and virus infection in var-
ious models [148–150]. Compared with RNAi-based screening,
high-throughput CRISPR-Cas9 library screening has the advantages
of higher transfection efficiency, minimal off-target effects and
higher data reproducibility [151]. At present, scientists have con-
structed human and mouse genome-wide sgRNA libraries, and
they have been increasingly improved according to different
requirements [152,153]. In the future, CRISPR-Cas9-based high-
throughput screening technology will definitely get unprecedented
development and application.

4.4. Applications of CRISPR-Cas systems in gene therapy

Gene therapy refers to the introduction of foreign genes into
target cells to treat specific diseases caused by mutated or defec-
tive genes [154]. Target cells of gene therapy are mainly divided
into two categories: somatic cells and germ line cells. However,
since germ line gene therapy is complicated in technique as well
as involves ethical and security issues, today gene therapy is lim-
ited to somatic cell gene therapy [155]. Traditional gene therapy
is usually carried out by homologous recombination or lentiviral
delivery. Nevertheless, the efficiency of homologous recombina-
tion is low, and lentiviral vectors are randomly inserted into the
recipient genome, which may bring potential security risks to clin-
ical applications [156]. Currently, with the rapid development of
CRISPR-Cas systems, they have been widely applied in gene ther-
apy for treating various of human diseases, monogenic diseases,
infectious diseases, cancer, etc [155–157]. Furthermore, some
CRISPR-mediated genome-editing therapies have already reached
the stage of clinical testing. Table 4 briefly summarizes the ongoing
clinical trials of gene therapy using genome-editing technology,
including ZFN, TALEN and CRISPR-Cas systems.

(1) Monogenic diseases
Monogenic diseases refer to the genetic diseases caused by
mutations of a single allele or a pair of alleles on a pair of
homologous chromosomes [158]. There are more than
6600 known monogenic diseases around the world, b-



Table 4
Summary of clinical trials of gene therapy using genome-editing technology.

Number Disease Intervention/treatment Nuclease Company/institute Country Year Clinicaltrials.
gov ID

1 HIV/HIV Infections Biological: ZFN modified T cells ZFN Sangamo Therapeutics USA 2009 NCT00842634
2 HIV Genetic: SB-728mR-HSPC Infusion 3 days

following busulfan conditioning
ZFN Sangamo Therapeutics USA 2015 NCT02500849

3 HIV Drug: ZFN Modified CD4 + T Cells ZFN National Institute of Allergy and
Infectious Diseases (NIAID)

USA 2015 NCT02388594

4 Human Papillomavirus-
Related Malignant
Neoplasm

Biological: ZFN-603 and ZFN-758 ZFN Huazhong University of Science
and Technology

China 2016 NCT02800369

5 Hemophilia B Biological: SB-FIX ZFN Sangamo Therapeutics USA 2016 NCT02695160
6 Mucopolysaccharidosis I Biological: SB-318 ZFN Sangamo Therapeutics USA 2016 NCT02702115
7 Mucopolysaccharidosis II Biological: SB-913 ZFN Sangamo Therapeutics USA 2017 NCT03041324
8 HIV Biological: CD4 CAR+CCR5 ZFN T-cells ZFN University of Pennsylvania USA 2018 NCT03617198
9 Transfusion Dependent

Beta-thalassemia
Genetic: ST-400 Investigational product ZFN Sangamo Therapeutics/ USA 2018 NCT03432364

10 Acute Myeloid Leukemia Biological: UCART123 TALEN Cellectis S.A. USA 2017 NCT03190278
11 Human Papillomavirus-

Related Malignant
Neoplasm

Biological: TALEN
Biological: CRISPR/Cas

TALEN First Affiliated Hospital, Sun
Yat-Sen University

China 2017 NCT03057912

12 Multiple Myeloma Biological: UCARTCS1A TALEN Cellectis S.A. USA 2019 NCT04142619
13 B-cell Acute

Lymphoblastic Leukemia
Biological: UCART22 TALEN Cellectis S.A. USA 2019 NCT04150497

14 Acute Myeloid Leukaemia Biological: UCART123 TALEN Cellectis S.A UK 2019 NCT04106076
15 Metastatic Non-small Cell

Lung Cancer
Other: PD-1 Knockout T Cells CRISPR-

Cas9
Chengdu MedGenCell, Co., Ltd. China 2016 NCT02793856

16 HIV-1-infection Genetic: CCR5 gene modification CRISPR-
Cas9

Affiliated Hospital of Academy
to Military Medical Sciences

China 2017 NCT03164135

17 B Cell Leukemia/B Cell
Lymphoma

Biological: UCART019 CRISPR-
Cas9

Chinese PLA General Hospital China 2017 NCT03166878

18 EBV positive advanced
stage malignancies

PD-1 knockout-T cells from autologous
origin

CRISPR-
Cas9

The Affiliated Nanjing Drum
Tower Hospital of Nanjing
University Medical School

China 2017 NCT03044743

19 Esophageal Cancer Other: PD-1 Knockout T Cells CRISPR-
Cas9

Anhui Kedgene Biotechnology
Co.,Ltd

China 2017 NCT03081715

20 T cell malignancy Genetic: CD7.CAR/28zeta CAR T cells CRISPR-
Cas9

Baylor College of Medicine USA 2018 NCT03690011

21 Sickle Cell Disease Biological: CTX001 CRISPR-
Cas9

CRISPR Therapeutics USA 2018 NCT03745287

22 Thalassemia Biological: iHSCs treatment CRISPR-
Cas9

Allife Medical Science and
Technology

USA 2018 NCT03728322

23 b-Thalassemia Biological: CTX001 CRISPR-
Cas9

CRISPR Therapeutics USA 2018 NCT03655678

24 Solid Tumor Biological: Mesothelin-directed CAR-T
cells

CRISPR-
Cas9

Chinese PLA General Hospital China 2018 NCT03747965

25 B Cell Leukemia/B Cell
Lymphoma

Biological: Universal Dual Specificity CD19
and CD20 or CD22 CAR-T Cells

CRISPR-
Cas9

Chinese PLA General Hospital China 2018 NCT03398967

26 Multiple Myeloma/
Melanoma/Synovial
Sarcoma/Liposarcoma

Biological: NY-ESO-1 redirected
autologous T cells with CRISPR edited
endogenous TCR and PD-1

CRISPR-
Cas9

Parker Institute for Cancer
Immunotherapy

USA 2018 NCT03399448

27 Solid Tumor Biological: anti-mesothelin CAR-T cells CRISPR-
Cas9

Chinese PLA General Hospital China 2018 NCT03545815

28 Thalassemia Major Biological: c-globin reactivated autologous
hematopoietic stem cells

CRISPR-
Cas9

Shanghai Bioray Laboratory Inc. China 2019 NCT04211480

29 B-cell malignancies Biological: CTX110 CRISPR-
Cas9

CRISPR Therapeutics AG USA 2019 NCT04035434

30 b-thalassemia Major Biological: b-globin restored autologous
HSC

CRISPR-
Cas9

Shanghai Bioray Laboratory Inc. China 2019 NCT04205435

31 Leber Congenital
Amaurosis 10 (LAC10)

Drug: AGN-151587 CRISPR-
Cas9

Editas Medicine, Inc. USA 2019 NCT03872479

32 CD19+ leukemia or
lymphoma

Genetic: XYF19 CAR-T cell CRISPR-
Cas9

Xi’An Yufan Biotechnology Co.,
Ltd

China 2019 NCT04037566

33 Gastro-Intestinal (GI)
Cancer

Biological: Tumor-Infiltrating
Lymphocytes (TIL)

CRISPR-
Cas9

Intima Bioscience, Inc. USA 2020 NCT04426669

34 Multiple Myeloma Biological: CTX120 CRISPR-
Cas9

CRISPR Therapeutics AG USA 2020 NCT04244656

35 Renal Cell Carcinoma Biological: CTX130 CRISPR-
Cas9

CRISPR Therapeutics AG Australia 2020 NCT04438083

36 Advanced Hepatocellular
Carcinoma

Biological: PD-1 knockout engineered T
cells

CRISPR-
Cas9

Central South University China 2020 NCT04417764
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thalassaemia, sickle cell disease (SCD), hemophilia B (HB),
retinitis pigmentosa (RP), leber congenital amaurosis type
10 (LCA10), duchenne muscular dystrophy (DMD),
2407
hutchinson-gilford progeria syndrome (HGPS), hereditary
tyrosinemia (HT), cystic fibrosis (CF), etc [159]. Most of the
monogenic diseases are rare diseases lacking of effective
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treatment, which will greatly affect the life quality of
patients. Nowadays, many animal models of monogenic dis-
eases have been treated with CRISPR-mediated gene ther-
apy. Furthermore, even some CRISPR clinical trials for
monogenic diseases are going on [160].

b-Thalassaemia, a hereditary hemolytic anemia disease, is one of
the most common and health-threatening monogenic diseases in the
world. It is characterizedbymutations in theb-globin (HBB)gene, lead-
ing to severe anemia causedbydecreasedhemoglobin (Hb) level [161].
For the moment, the only way to cure b-thalassemia is hematopoietic
stemcell transplantation (HSCT). Yet, high cost of treatment and short-
age of donors limit its clinical application [162]. Other therapy, for
example, blood transfusion, can only sustain the life of patients but
can’t cure the disease [161]. To better treat b-thalassemia, researchers
have turned their attention togene therapy.Amajor technical idea is to
repair the defective b-globin gene of iPSCs from patients with b-
thalassemia by CRISPR-Cas9 technology, then red blood cells can be
produced normally and the disease could be cured [163,164]. Besides,
reactivating fetal hemoglobin (HbF) expressionhas alsobeenproposed
to be an effective method to treat b-thalassemia through knockout of
BCL11A gene, which suppresses the expression of fetal hemoglobin
[165,166].

Additionally, CRISPR-Cas systems have also been used for the
treatment of other hematologic diseases, such as sickle cell disease
(SCD) and hemophilia B (HB). SCD is a monogenic disease caused
by a single-nucleotide mutation in human b-globin gene, leading
to a substitution of glutamic acid by valine and the production of
an abnormal version of b-globin, which is known as hemoglobin
S (HbS) [167]. CRISPR-Cas9 system has been used to treat SCD by
repairing the b-globin gene mutation or reactivating HbF expres-
sion [168,169]. HB is an X-linked hereditary bleeding disorder
caused by deficiency of coagulation factor IX, and the most com-
mon treatment for hemophilia B is supplement blood coagulation
factor [170,171]. Huai et al. injected naked Cas9-sgRNA plasmid
and donor DNA into the adult mice of F9 mutation HB mouse
model for gene correction [172]. Meanwhile, Cas9/sgRNA were also
microinjected into germline cells of this HB mouse model for gene
correction. Both in vivo and ex vivo experiment were sufficient to
remit the coagulation deficiency [172]. Guan et al. corrected the
F9 Y371D mutation in HB mice using CRISPR-Cas9 mediated
in situ genome editing, which greatly improved the hemostatic
efficiency and increased the survival of HB mice [173].

Duchenne muscular dystrophy (DMD) is an X-chromosome
recessive hereditary disease, with clinical manifestations of muscle
weakness or muscle atrophy due to a progressive deterioration of
skeletal muscle function [174]. It is usually caused by mutations
in the DMD gene, a gene encoding dystrophin protein [174]. Dele-
tions of one or more exons of the DMD gene will result in frame-
shift mutations or premature termination of translation, thereby
normal dystrophin protein can not be synthesized [175]. Currently,
there is no effective treatment for DMD. Conventional drug treat-
ment can only control the disease to a certain extent, but can not
cure it. It was found that a functional truncated dystrophin protein
can be obtained by removing the mutated transcripts with CRISPR-
Cas9 system [176–178]. In addition, base editing systems can also
be applied in DMD treatment by repairing single base mutation or
inducing exon skipping by introducing premature termination
codons (PTCs) [179].

Retinitis pigmentosa (RP) is a group of hereditary retinal degen-
erative diseases characterized by progressive loss of photoreceptor
cells and retinal pigment epithelium (RPE) function [180]. RP has
obvious genetic heterogeneity, and the inheritance patterns
include autosomal dominant, autosomal recessive, and X-linked
recessive inheritance [180]. To date, there is still no cure for RP.
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In recent years, with the rapid development of gene editing tech-
nology, there has been some progress in the treatment of RP. Sev-
eral gene mutations causing RP have been corrected by CRISPR-
Cas9 in mouse models to prevent retinal degeneration and improve
visual function, for example, RHO gene, PRPF31 gene and RP1 gene
[181,182].

Leber Congenital Amaurosis type 10 (LCA10) is an autosomal
retinal dystrophy with severe vision loss at an early age. The most
common gene mutation found in patients with LCA10 is IVS26
mutation in the CEP290 gene, which disrupts the coding sequence
by generating an aberrant splice site [183]. Ruan et al. used CRISPR-
Cas9 system to knock out the intronic region of the CEP290 gene
and restored normal CEP290 expression [184]. In addition, subreti-
nal injection of EDIT-101 in humanized CEP290 mice showed rapid
and sustained CEP290 gene editing [185,186].

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare lethal
genetic disorder with the characteristic of accelerated aging
[187]. A point mutation within exon 11 of lamin A gene activates
a cryptic splice site, leading to the production of a truncated lamin
A called progerin [188]. However, CRISPR-Cas based gene therapy
has opened up a broad prospect in HGPS treatment. Administration
of AAV-delivered CRISPR-Cas9 components into HGPS mice can
reduce the expression of progerin, thereby improved the health
condition and prolonged the lifespan of HGPS mice [189,190]. In
addition, Suzuki et al. repaired G609G mutation in a HGPS mouse
model via single homology arm donor mediated intron-targeting
gene integration (SATI), which ameliorated aging-associated phe-
notypes and extended the lifespan of HGPS mice [191].

CRISPR-Cas systems have also showed their advantages in gene
therapy of hereditary tyrosinemia (HT) and cystic fibrosis (CF). HT
is a disorder of tyrosine metabolism caused by deficiency of fuary-
lacetoacetate hydrolase (Fah) [192]. Yin et al. corrected a Fah muta-
tion in a HT mouse model by injecting CRISPR-Cas9 components
into the liver of the mice [193]. Then, the wild-type Fah protein
in the liver cells began to express and the body weight loss pheno-
type was rescued [193]. CF, an autosomal recessive inherited dis-
ease with severe respiratory problems and infections, has a high
mortality rate at an early age [194]. It is caused by mutations in
the CFTR gene, which encodes an epithelial chloride anion channel,
the cystic fibrosis transmembrane conductance regulator (CFTR)
[194]. Until now, genome editing strategies have been carried
out in cell models to correct CFTR mutations. In cultured intestinal
stem cells and induced pluripotent stem cells from cystic fbrosis
patients, the CFTR homozygous D508 mutation has been corrected
by CRISPR-Cas9 technology, leading to recovery of normal CFTR
expression and function in differentiated mature airway epithelial
cells and intestinal organoids [195,196].

(2) Infectious diseases
In recent years, gene therapy has gradually been applied to
the treatment of viral infectious diseases. Transforming host
cells to avoid viral infection or preventing viral proliferation
and transmission are two main strategies for gene therapy of
viral infectious diseases [197].

Human immunodeficiency virus (HIV), a kind of retrovirus,
mainly attacks the human immune system, especially the CD4＋

T lymphocytes. When human cells are invaded by HIV, the viral
sequences can be integrated into the host genome, blocking cellu-
lar and humoral immunity while causing acquired immunodefi-
ciency syndrome (AIDS) [198]. There is still no known cure for
AIDS but it could be treated. Although antiretroviral therapy can
inhibit HIV-1 replication, the viral sequences still exist in the host
genome, and they could be reactivated at any time [199]. CRISPR-
Cas9 system can target long terminal repeat (LTR) and destruct
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HIV-1 proviruses, thus it is possible to completely eliminate HIV-1
from genome of infected host cells [200,201]. In addition, resis-
tance to HIV-1 infection could be induced by knockout of the HIV
co-receptor CCR5 gene in CD4＋ T cells [202,203].

Cervical cancer is the second most common gynecologic malig-
nant tumor. The incidence is increasing year by year and young
people are especially prone to this disease. It was found that the
occurrence of cervical cancer is closely related to HPV (human
papillomavirus) infection [204]. HPV is a double-stranded cyclic
DNA virus, E6 and E7 genes located in HPV16 early regions are car-
cinogenic genes [205]. Researchers designed sgRNAs targeting E6
and E7 genes to block the expression of E6 and E7 protein, subse-
quently the expression of p53 and pRb was restored to normal,
finally increasing tumor cells apoptosis and suppressing subcuta-
neous tumor growth in in vivo experiments [206–208]. Moreover,
HPV virus proliferation was blocked through cutting off E6/E7
genes, and the virus in the bodies could be eliminated [206–208].

(3) Cancer
Cancer is the second leading cause of death worldwide after
cardiovascular diseases, and it is also a medical problem that
needs to be solved urgently. A variety of genetic or epige-
netic mutations have been accumulated in the cancer gen-
ome, which can activate proto-oncogenes, inactivate tumor
suppressors and produce drug resistance [209,210]. So far,
CRISPR-Cas systems have been used to correct the oncogenic
genome/epigenome mutations in tumor cells and animal
models, resulting in inhibition of tumor cell growth and pro-
motion of cell apoptosis, thereby inhibiting tumor growth
[211–213].

In addition, immunotherapy is considered to be a major break-
through in cancer treatment, especially chimeric antigen receptor-
T (CAR-T) cell therapy, which has a significantly therapeutic effect
on leukemia, lymphoma and certain types of solid tumors [214–
216]. CAR-T cells are genetically manipulated, patient-specific T
cells, which express receptors targeting antigens specially
expressed on tumor cells, for example, CD19 CAR-T cells for B cell
malignancies. Then these cells will be transfused back to patients
to fight against cancer [217]. However, CAR-T cell therapy is com-
plex, time-consuming and expensive, and it is greatly limited by
the quality and quantity of autologous T cells. Therefore, research-
ers have used CRISPR-Cas9 system to develop universal CAR-T
cells, such as simultaneously removing endogenous T cell receptor
gene and HLA class I encoding gene on T cells of healthy donors and
introducing CAR sequence [218–220]. Thereby, it could be used in
multiple patients without causing graft versus host reaction
(GVHR). In addition, CRISPR-Cas mediated genome editing has also
been used to enhance the function of CAR-T cells by knocking out
genes encoding signaling molecules or T cell inhibitory receptors,
such as programmed cell death protein 1 (PD-1) and cytotoxic T
lymphocyte antigen 4 (CTLA-4) [221,222].

5. Challenges and perspectives

Though CRISPR-Cas mediated efficient genome editing technolo-
gies have been broadly applied in a variety of species and different
types of cells, there are still some important issues needed to be
addressed during the process of application, such as off-target effects,
delivery methods, immunogenicity and potential risk of cancer.

5.1. Off-target effects

It was found that designed sgRNAs will mismatch with non-
target DNA sequences and introduce unexpected gene mutations,
called off-target effects [223]. Off-target effects seriously restrict
2409
the widespread application of CRISPR-Cas mediated genome edit-
ing in gene therapy, for it might lead to genomic instability and
increase the risk of certain diseases by introducing unwanted
mutations at off-target sites [224]. At present, several strategies
have been used to predict and detect off-target effects, online pre-
diction software, whole genome sequencing (WGS), genome-wide,
unbiased identification of DSBs enabled by sequencing (GUIDE-
seq), discovery of in situ cas off-targets and verification by
sequencing (DISCOVER-Seq), etc [225]. Furthermore, to minimize
off-target effects, researchers have systematically studied the fac-
tors affecting off-target effects and developed a number of effective
approaches.

(1) Rational design and modification of sgRNAs
The specific binding of sgRNA with the target sequence is the
key factor in CRISPR-Cas mediated genome editing. Rational
design of highly specific sgRNAs might minimize off-target
effects [224]. The length and GC content of sgRNAs, and mis-
matches between sgRNA and its off-target site will all affect
the frequency of off-target effects [226]. In addition, on the
basis of rational design of sgRNAs, the specificity of
CRISPR-Cas systems can be further improved by modifying
sgRNAs, such as engineered hairpin sgRNAs and chemical
modifications of sgRNAs [227,228].

(2) Modification of Cas9 protein
As we know, the interaction between Cas9 and DNA affects
the stability of DNA-Cas9/sgRNA complex as well as toler-
ance to mismatch [229]. Therefore, high-fidelity SpCas9 vari-
ants have been developed by introducing amino substitution
(s) into Cas9 protein in order to destabilize the function
structure of the CRISPR complex [230]. Researchers have
developed several highly effective Cas9 mutants, high-
fidelity Cas9 (SpCas9-HF1), enhanced specificity Cas9 (eSp-
Cas9), hyper-accurate Cas9 (HypaCas9), etc [231–233]. All
of them can significantly reduce off-target effects while
retain robust target cleavage activity.

(3) Adoption of double nicking strategy
Recently, a double-nicking strategy has been developed to
minimize off-target effects, which employs two catalytic
mutant Cas9-D10A nickases and a pair of sgRNAs to produce
a cleavage on each strand of the target DNA, thus forming a
functional double strand break [234]. Additionally, it was
proven that the fusion protein generated by combining
dCas9 with FokⅠ nuclease can also reduce off-target effects
[235]. Only when the two fusion protein monomers are close
to each other to form dimers, can they perform the cleavage
function [235]. This strategy could greatly reduce DNA
cleavage at non-target sites.

(4) Anti-CRISPRs
‘‘Off switches” for CRISPR-Cas9 system was first discovered
by Pawluk et al. in 2016. They identified three naturally
existing protein families, named as ‘‘anti-CRISPRs”, which
can specifically inhibit the CRISPR-Cas9 system of Neisseria
meningitidis [236]. Later, Rauch et al. discovered four unique
type IIA CRISPR-Cas9 inhibitor proteins encoded by Listeria
monocytogenes prophages, and two of them (AcrllA2 and
AcrllA4) can block SpCas9 when assayed in Escherichia coli
and human cells [237]. Recently, Doudna et al. discovered
two broad-spectrum inhibitors of CRISPR-Cas9 system (Acr-
llC1 and AcrllC3) [238]. Therefore, in order to reduce off-
target effects, the ‘‘anti-CRISPRs” could be used to prevent
the continuous expression of Cas9 protein in cells to be
edited.

(5) Others
The concentration of Cas9/sgRNA can also affect the fre-
quency of off-target mutations [239]. Thus, the optimal con-
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centration of Cas9 and sgRNA needs to be determined by
pre-experiment. Besides, the formulation of CRISPR-Cas9
can affect the frequency of off-target mutations as well.
Cas9 nucleases can be delivered into target cells in 3 differ-
ent forms: DNA expression plasmid, mRNA or recombination
protein [240]. Currently, the use of Cas9/sgRNA ribonucleo-
protein complexes (Cas9-RNPs), which are composed of
purified Cas9 proteins in combination with sgRNA, is becom-
ing more and more widespread. It was found that delivery as
plasmid usually produces more off-targets than delivery as
RNPs, since the CRISPR-Cas system is active for a shorter
time without Cas9 transcription and translation stages
[241,242].
5.2. Delivery methods

Nowadays, how to effectively deliver CRISPR-Cas components
to specific cells, tissues and organs for precisely directed genome
editing is still a major problem in gene therapy. Ideal delivery vec-
tors should have the advantages of non-toxicity, well targeting
property, high efficiency, low cost, and biodegradability [35,156].
At present, three main delivery methods have been employed in
delivering CRISPR-Cas components, including physical, viral and
non-viral methods [243]. Physical methods are the simplest way
to deliver CRISPR-Cas components, including electroporation,
microinjection and mechanical cell deformation. They are simple
and efficient, which can also improve the expression of genes,
and being widely applied in in vitro experiments [243,244]. In
addition, viral vectors, such as adenovirus, adeno-associated virus
(AAV) and lentivirus viral vectors, are being widely used for both
in vitro/ex vivo and in vivo delivery due to their high delivery effi-
ciency. They are commonly used for gene delivery in gene therapy,
and some of them have been approved for clinical use [245,246].
However, safety issue of viral vectors is still a major problem
needed to be solved in pre-clinical trials. Therefore, researchers
have turned their attention to non-viral vectors, for instance, lipo-
somes, polymers and nanoparticles [247]. Based on the advantages
of safety, availability and cost-effectiveness, they are becoming a
hotspot for the delivery of CRISPR-Cas components [248].

Since all these delivery methods have both advantages and dis-
advantages, it’s necessary to design a complex of viral vectors and
non-viral vectors, which combines the advantages of both vectors.
Along with the deepening of research, various carriers could be
modified by different methods to increase the delivery efficiency
and reduce the toxicity [249]. In addition, more novel vectors, such
as graphene and carbon nanomaterials (CNMs), could also be
applied in the delivery of CRISPR-Cas components [250,251].
5.3. Immunogenicity

Since the components of CRISPR-Cas systems are derived from
bacteria, host immune response to Cas gene and Cas protein is
regarded as one of the most important challenges in the clinical tri-
als of CRISPR-Cas system [156,252]. It was found that in vivo deliv-
ery of CRISPR-Cas components can elicit immune responses against
the Cas protein [252,253]. Furthermore, researchers also found that
there were anti-Cas9 antibodies and anti-Cas9 T cells existing in
healthy humans, suggesting the pre-existing of humoral and cel-
luar immune responses to Cas9 protein in humans [254]. There-
fore, how to detect and reduce the immunogenicity of Cas
proteins is a major challenge will be faced in clinical application
of CRISPR-Cas systems. Researchers are trying to handle this prob-
lem by modifying Cas9 protein or using Cas9 homologues [255].
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5.4. Potential risk of cancer

Recently, two independent research groups found that CRISPR-
Cas mediated double-stranded breaks (DSBs) can activate the p53
signaling pathway [256,257]. This means that genetically edited
cells are likely to become potential cancer initiating cells, and clin-
ical treatment with CRISPR-Cas systems might inadvertently
increase the risk of cancer [256–258]. Although there is still no
direct evidence to confirm the relationship between CRISPR-Cas
mediated genome editing and carcinogenesis, these studies once
again give a warning on the application of CRISPR-Cas systems in
gene therapy. It reminds us that there is still a long way to go
before CRISPR-Cas systems could be successfully applied to
humans.
5.5. Ethical issues

CRISPR-Cas mediated genome editing has attracted much atten-
tion since its advent in 2012. In theory, each gene can be edited by
CRISPR-Cas systems, even genes in human germ cells [259]. How-
ever, germline gene editing is forbidden in many countries includ-
ing China, for it could have unintended consequences and bring
ethical and safety concerns [260].

However, in March 2015, a Chinese scientist, Junjiu Huang, pub-
lished a paper about gene editing in human tripronuclear zygotes
in the journal Protein & Cell, which brings the ethical controversy
of human embryo gene editing to a climax [261]. Since then, gen-
ome editing has been challenged by ethics and morality, and legal
regulation of genome editing has triggered a heated discussion all
around the world.

Then, on Nov. 28, 2018, the day before the opening of the sec-
ond international human genome editing summit, Jiankui He, a
Chinese scientist from the Southern University of Science and
Technology, announced that a pair of gene-edited babies, named
Lulu and Nana, were born healthy in China this month. They are
the world’s first gene-edited babies, whose CCR5 gene has been
modified, making them naturally resistant to HIV infection after
birth [262]. The announcement has provoked shock, even outrage
among scientists around the world, causing widespread contro-
versy in the application of genome editing.

The society was shocked by this breaking news, for it involves
genome editing in human embryos and propagating into future
generations, triggering a chorus of criticism from the scientific
community and bringing concerns about ethics and security in
the use of genome editing. Therefore, scientists call on Chinese
government to investigate the matter fully and establish strict reg-
ulations on human genome editing. Global supervisory system is
also needed to ensure genome editing of human embryos moving
ahead safely and ethically [263].
5.6. Conclusions

Since CRISPR-Cas mediated genome editing technologies have
provided an accessible and adaptable means to alter, regulate,
and visualize genomes, they are thought to be a major milestone
for molecular biology in the 21st century. So far, CRISPR-Cas sys-
tems have been broadly applied in gene function analysis, human
gene therapy, targeted drug development, animal model construc-
tion and livestock breeding, which fully prove their great potential
for further development. However, there are still some limitations
to overcome in the practical applications of CRISPR-Cas systems,
and great efforts still need to be made to evaluate their long-
term safety and effectiveness.
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