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Global metabolome profiling 
of exhaled breath condensates 
in male smokers with asthma 
COPD overlap and prediction 
of the disease
Nilanjana Ghosh1, Priyanka Choudhury1, Mamata Joshi2, Parthasarathi Bhattacharyya3, 
Sushmita Roychowdhury4, Rintu Banerjee5 & Koel Chaudhury1*

Asthma—chronic obstructive pulmonary disease (COPD) overlap, termed as ACO, is a complex 
heterogeneous disease characterised by persistent airflow limitation, which manifests features of 
both asthma and COPD. These patients have a worse prognosis, in terms of more frequent and severe 
exacerbations, more frequent symptoms, worse quality of life, increased comorbidities and a faster 
lung function decline. In absence of clear diagnostic or therapeutic guidelines, ACO presents as a 
challenge to clinicians. The present study aims to investigate whether ACO patients have a distinct 
exhaled breath condensate (EBC) metabolic profile in comparison to asthma and COPD. A total of 132 
age and BMI matched male smokers were recruited in the exploratory phase which consisted of (i) 
controls = 33 (ii) asthma = 34 (iii) COPD = 30 and (iv) ACO = 35. Using nuclear magnetic resonance (NMR) 
metabolomics, 8 metabolites (fatty acid, propionate, isopropanol, lactate, acetone, valine, methanol 
and formate) were identified to be significantly dysregulated in ACO subjects when compared to 
both, asthma and COPD. The expression of these dysregulated metabolites were further validated in 
a fresh patient cohort consisting of (i) asthma = 32 (ii) COPD = 32 and (iii) ACO = 40, which exhibited a 
similar expression pattern. Multivariate receiver operating characteristic (ROC) curves generated using 
these metabolites provided a robust ACO classification model. The findings were also integrated with 
previously identified serum metabolites and inflammatory markers to develop a robust predictive 
model for differentiation of ACO. Our findings suggest that NMR metabolomics of EBC holds potential 
as a platform to identify robust, non-invasive biomarkers for differentiating ACO from asthma and 
COPD.

As per the definition provided by the Global Initiative for Asthma (GINA), asthma is considered to be a hetero-
geneous disease, with characteristics of chronic airway inflammation, clinical history of wheezing, shortness of 
breath, chest tightness and cough, together with reversible airflow limitation1. Chronic obstructive pulmonary 
disease (COPD), defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD), is a disease 
characterized by persistent respiratory symptoms like dyspnea, cough or sputum production and irreversible 
airflow obstruction. Emphysema and chronic bronchitis are usually seen in these patients. The changes in COPD 
are brought about by inhalation of noxious particles or gases and is also influenced by host factors including 
abnormal lung development2,3.

A significant proportion of older patients with chronic airflow limitation (i.e. not completely reversible after 
bronchodilation) have diagnosis and/or features of both asthma and COPD, particularly amongst smokers4,5. 
Such patients are termed as ‘overlap’ cases. However, there is no generally agreed term or defining features for 
this category4,6,7. Asthma and COPD are both heterogeneous diseases, with a range of underlying mechanisms. 
Similarly, overlap itself does not represent a single disease or a single phenotype. Gibson and Simpson proposed 
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the term asthma COPD overlap syndrome (ACOS) in 2009 to describe patients with features of both, asthma 
and COPD4. The GINA and GOLD global bodies later replaced the term ACOS by asthma COPD overlap (ACO) 
as the former was often misinterpreted as a single disease entity8. There is general agreement that patients with 
features of both asthma and COPD experience a more rapid decline in lung function, have poor quality of 
life, experience frequent exacerbations, have increased mortality and consume more resources than asthma or 
COPD alone9,10. These patients are generally treated with inhaled corticosteroids (ICS) with add-on treatment 
of long-acting beta-agonist (LABA) and/or long-acting muscarinic antagonists (LAMA), whenever necessary8. 
ACO patients have been excluded from randomised controlled trials (RCTs) till date and this population is also 
poorly characterised in most mechanistic studies. Precise diagnosis of an ACO patient is the first step towards 
development of an effective treatment plan.

Metabolomics is the large-scale study of small molecules, commonly known as metabolites produced during 
normal endogenous metabolism within biofluids, cells, tissues or organisms. The ever expanding metabolomic 
approach has moved on beyond biomarker discovery to provide insight into mechanistic changes associated 
with various physiological conditions, including diseases11. Exhaled breath condensate (EBC) has emerged as a 
popular clinical tool over the past two decades. EBC is a non-invasive method of sampling lung epithelial lining 
fluid, and is obtained by cooling the exhaled air from spontaneous breathing. It is predominantly composed of 
water vapour along with volatile and non-volatile substances from the lower airways. Collection of EBC involves 
minimal technical skills and is not associated with any discomfort or risk12. Nuclear magnetic resonance (NMR) 
spectroscopy is a promising approach for the identification of metabolites in EBC with prognostic and predictive 
significance. Though not very sensitive, NMR is characterized by inherent distinctive advantages, which include 
minimal sample preparation, rapid spectra acquisition time, and the possibility to perform an untargeted analysis 
limited to the chemical nature of metabolites. These advantages have promoted NMR-based metabolomics of 
EBC to the rank of a valuable method for an efficient investigation of a variety of lung diseases13.

It is evidenced that electronic-nose (eNose) and NMR metabolomics of EBC can distinguish patients with 
respiratory disorders, including asthma and COPD14,15. Also, EBC metabolic profiling using NMR can be effec-
tively used for differential diagnosis between newly diagnosed asthma and COPD16. It is reported that NMR 
spectral signatures of EBC can be used for the discovery and characterization of different asthma endotypes17.

A number of encouraging reports related to NMR metabolomics of EBC in asthma and COPD motivates us 
to test the hypothesis that this method could be a helpful tool to explore ACO. For this purpose, the ability of 
this technique to identify metabolic patterns that discriminate the EBC metabolome of ACO from asthma and 
COPD is ascertained. Our previous studies using NMR, gas chromatography–mass spectrometry (GC–MS) and 
immunological profiling have indicated significantly altered expression of 36 metabolites and immunological 
markers in serum of ACO patients as compared with asthma and COPD18,19. We have also attempted to integrate 
these markers with the present EBC metabolomic signatures for accurate prediction of ACO.

Results
Discovery phase.  The baseline clinical characteristics of all subjects recruited is tabulated in Table 1. For 
the initial part of the study, the discovery phase samples were assigned into two groups, obstructive lung diseases 
(asthma, COPD and ACO) and healthy controls. The supervised approach of partial least squares discrimi-
nant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were 
applied to unit variance scaled NMR binned spectra of both the groups. PLS-DA models displayed class separa-
tion while OPLS-DA, when applied to the dataset with factors unrelated to group characters removed, resulted in 
improved discrimination between the two groups (R2 = 0.979 and Q2 = 0.881; analysis of variance testing of cross 
validated predictive residuals (CV ANOVA) score p = 0) (Fig. 1a). In the permutation test, R2 and Q2 values were 
found significantly higher than the 200 permutated models (Fig. 1b).

Furthermore, OPLS-DA model optimized separation between ACO vs. asthma (R2 = 0.982 and Q2 = 0.862; CV 
ANOVA score p = 0) (Fig. 1c) and ACO vs. COPD (R2 = 0.98 and Q2 = 0.862; CV ANOVA score p = 0) (Fig. 1e). 
Permutation test indicated that the generated models could predict classes better than chance (Fig. 1d,f).

A typical representative 1H NMR EBC spectrum of an ACO patient comprising of signals arising from energy 
metabolites, organic acids and amino acids is shown in Fig. 2. Eighteen metabolites could be consistently identi-
fied using 2D NMR experiments, human metabolome database (HMDB) and literature. Analysis was based on 
these consistently identified metabolites.

Based on variable-importance in projection (VIP) ≥ 1 and S-line plot correlation value |r|≥ 0.6, highly sig-
nificant variables responsible for class separation between disease and controls were identified for ACO vs 
asthma and ACO vs COPD. Ten bins and twelve bins, respectively qualified the screening criteria described 
above. Eight common bins corresponding to metabolites from both ACO vs asthma and ACO vs COPD models 
were considered for further analysis. These bins corresponded to the metabolites propionate, lactate, valine, 
fatty acid, acetone, isopropanol, formate and methanol. To cross-validate the binning approach, integral values 
of these metabolites were subjected to univariate analysis (UVA). Metabolites such as propionate, isopropanol 
and acetone were found to be up-regulated in ACO as compared to both, asthma and COPD (Table 2). Only 
valine was observed to be downregulated in ACO as compared to both, asthma and COPD. Fatty acid, lactate 
and methanol were also found to be significantly dysregulated with contrasting trends in ACO with respect to 
asthma and COPD. The sample peaks identified in the chemical shift region 5.1–9.0 ppm (aromatic region) were 
also subjected to one way ANOVA (Dunnett’s post hoc test) or Kruskal–Wallis test (Dunn’s post hoc test), as 
applicable and only formate level was found to be significantly dysregulated in ACO.

Receiver operating characteristic (ROC) curve analysis.  Next, multivariate ROC curves were gen-
erated for the significantly altered 8 common metabolites of the two groups (ACO vs. asthma and ACO vs. 
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COPD). In order to establish a predictive model that could differentiate ACO from a group of both asthma and 
COPD patients together, we merged the data set of asthma and COPD (referred to as 0) and ACO (referred 
to as 1). ROC curves were generated by Monte-Carlo cross validation (MCCV), a method involving balanced 
sub-sampling. In each MCCV, two thirds (2/3) of the samples were used to evaluate the feature importance. The 
classification models were generated using the top important features, subsequently the models were validated 
on the 1/3 of the samples left out. The procedure was repeated multiple times to calculate the performance and 
confidence interval of each model. The multivariate ROC curves based on cross validation (CV) performance 
are shown in Fig. 3a. The curves of all models are averaged across all CV runs. The highest AUC was obtained 
for model 5, generated using 6 features (Fig. 3b). The significant features ranked using mean importance meas-

Table 1.   Clinical characteristics of the recruited subjects. Data are presented as mean ± SD or percentages, 
unless otherwise stated. COPD chronic obstructive pulmonary disease, ACO asthma COPD overlap, BD 
bronchodilator, FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, ICS inhaled corticosteroids, 
LABA long-acting beta agonists, LAMA long-acting antimuscarinics, PD4I phosphodiesterase-4-inhibitior, 
LTRA​ leukotriene receptor antagonist. Differences between groups were assessed by using the 1-way ANOVA 
test with post hoc Tukey HSD. p < 0.05 was considered statistically significant.

Discovery cohort Validation cohort

CONTROLS ASTHMA COPD ACO p value ASTHMA COPD ACO p value

Total 
Number of 
subjects (n)

33 34 30 35 32 32 40

Age (years) 50.90 ± 7.20 51.91 ± 7.16 54.97 ± 6.11 53.97 ± 5.89 ns 53.73 ± 5.38 55.26 ± 4.2 54.58 ± 4.6 ns

Body Mass 
Index (kg/
m2)

21.35 ± 1.64 21.43 ± 1.62 20.78 ± 1.58 20.96 ± 1.65 ns 21.79 ± 1.59 19.13 ± 1.73 20.29 ± 1.22 ns

Pre BD 
FEV1% 
predicted

97.6 ± 17.8 61.3 ± 15.3 55.3 ± 14.6 52.7 ± 13.6 < 0.0001 64.4 ± 10.6 53.1 ± 12.6 50.5 ± 11.2 < 0.0001

Post BD lung function

FEV1 (l) 3.8 ± 0.2 2.2 ± 0.2 1.5 ± 0.5 1.9 ± 0.2 < 0.0001 2.4 ± 0.1 1.3 ± 0.4 2.05 ± 0.2 < 0.0001

FVC (l) 4.6 ± 0.3 3.2 ± 0.8 2.9 ± 0.4 3.0 ± 0.8 < 0.0001 3.5 ± 0.2 2.7 ± 0.4 3.2 ± 0.5 < 0.0001

FEV1% 
predicted 99.2 ± 16.8 70.4 ± 11.3 57.6 ± 10.2 59.1 ± 9.8 < 0.0001 72.7 ± 9.7 56.9 ± 8.5 57.5 ± 6.3 < 0.0001

FEV1 /FVC 
(%) 83.2 ± 2.1 68.8 ± 10.1 58.5 ± 6.4 56.7 ± 2.4 < 0.0001 69.1 ± 7.2 50.5 ± 7.3 61.3 ± 7.2 < 0.0001

Smoking status (n)

Former 
smokers 15 21 20 13 15 21 12

Current 
smokers 18 13 10 22 17 11 28

Smoking 
history 
(pack-years)

15.3 ± 5.89 16.8 ± 4.88 35.04 ± 5.6 29.9 ± 5.7 < 0.0001 14.7 ± 3.78 37.2 ± 4.9 31.9 ± 4.7 < 0.0001

Blood eosin-
ophil cell/
μl, median 
(IQR)

120 (0–160) 340 
(0–3840) 140(0–300) 330 

(0–1500) < 0.0001 365 
(0–3840) 150(0–300) 345(0–1500) < 0.0001

Frequency of 
exacerba-
tion/year

– 0.95 ± 0.20 1.78 ± 0.36 1.11 ± 0.75 < 0.0001 0.82 ± 0.11 1.87 ± 0.22 1.21 ± 0.56 < 0.0001

Respiratory symptoms

Wheezing – 17.4 ± 0.6 13.3 ± 0.7 25.3 ± 0.4 < 0.0001 19.1 ± 0.3 14.7 ± 0.4 27.6 ± 0.6 < 0.0001

Expectora-
tion – 12.1 ± 0.3 19.4 ± 0.3 15.6 ± 0.5 < 0.0001 10.4 ± 0.5 20.3 ± 0.6 13.8 ± 0.3 < 0.0001

mMRC scale 
(0–4) – - 2.4 ± 0.21 1.2 ± 0.6 < 0.0001 - 2.25 ± 0.51 1.35 ± 0.5 < 0.0001

Atopic sta-
tus/allergy 
n (%)

– 29 (86) 3 (11) 24 (68) < 0.0001 27 (83) 2 (7) 29 (72) < 0.0001

Treatment n (%)

ICS – 33 (97) 17 (58) 27 (78) < 0.0001 28 (89) 19 (60) 33 (82) < 0.0001

LABA – 25 (74) 26 (87) 29 (82) < 0.0001 22 (70) 26 (82) 31 (78) < 0.0001

LAMA – 15.3 (45) 25 (83) 27 (76) < 0.0001 10 (32) 24 (75) 28 (70) < 0.0001

PD4I – - 4 (14) 3 (8) < 0.0001 - 4 (12) 2 (5) < 0.0001

LTRA/theo-
phylline – 24 (72) 1 (3) 16 (45) < 0.0001 20 (63) 2 (5) 16 (39) < 0.0001
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ure for the model are shown in Fig. 3c. The metabolites acetone, isopropanol, valine, propionate, fatty acid and 
lactate show maximum importance in generation of the 5th model.

Validation phase.  For validation of the 8 EBC metabolites identified in the discovery phase, UVA was 
performed on the data generated in the validation cohort. These metabolites viz propionate, lactate, valine, fatty 
acid, acetone, isopropanol, formate and methanol exhibited a similar trend yet again in the new cohort, thereby 

Figure 1.   Orthogonal projections to latent structures discriminant analysis (OPLS-DA) model removes outliers 
which do not contribute to class separation. OPLS-DA model shows optimized discrimination between (a) 
obstructive lung diseases and healthy controls (R2Y = 0.979 and Q2 = 0.881, CV-ANOVA score p = 0), (c) ACO 
and asthma (R2Y = 0.982 and Q2 = 0.862, CV-ANOVA score p = 0) and (e) ACO and COPD (R2Y = 0.98 and 
Q2 = 0.862, CV-ANOVA score p = 0). Response permutation test (n = 200) to estimate the statistical significance 
of the PLS-DA models. (b) Healthy controls vs. diseases R2 = (0.0, 0.433), Q2 = (0.0, − 1.22), (d) ACO vs. asthma 
R2 = (0.0, 0.44), Q2 = (0.0, − 0.248) and (f) ACO vs. COPD R2 = (0.0, 0.706), Q2 = (0.0, − 0.541). All models were 
generated using SIMCA 13.0.2 (Umetrics, Sweden). COPD chronic obstructive pulmonary disease, ACO asthma 
COPD overlap.
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confirming our findings (Table 2). To strengthen our findings, MVA was also performed on the validation cohort 
and the results were found to be similar to that of the discovery cohort (“Supplementary Materials").

Correlations and predictive modelling.  A combination of positive and negative correlations were 
observed between metabolites and immunological markers. This visualization further supports the hypothesis 
of tight interplay between metabolism and inflammation in ACO. Except interleukin-1beta (IL-1β) and IL-
17E, the inflammatory markers exhibited negative correlation with the significantly altered metabolites. These 
metabolites predominantly showed a positive correlation with lung function parameters such as forced expira-
tory volume in one second (FEV1) and ratio of the forced expiratory volume in one second to the forced vital 

Figure 2.   Representative 800 MHz 1H-NMR zgesgp spectra of exhaled breath condensate (EBC) collected from 
an ACO patient. 1.TSP 2. Fatty acid 3. Propionate 4. Isopropanol 5. Ethanol 6. Lactate 7. Threonine 8. Alanine 
9. Acetate 10. Proline 11. Acetone 12. Valine 13. Pyruvate 14. Trimethylamine 15. Methanol 16. Glycerol 17. 
2,3-butanediol 18. Phenylalanine 19. Formate. The NMR spectra was assigned using MestReNova version 7.1.0 
(Mestrelab Research, Santiago de Compostela, Spain).

Table 2.   Human Metabolome Database identifiers (HMDB ID), multivariate data analysis (variable influence 
on projection (VIP) scores, false discovery rate (FDR) adjusted p value), fold changes and pairwise univariate 
(ANOVA/Kruskal Wallis test) values are provided for the 8 significantly altered metabolites common to ACO 
vs. asthma and ACO vs. COPD. A new subject cohort (validation cohort) was recruited to confirm the findings 
of the exploratory (discovery) patient cohort. COPD Chronic obstructive pulmonary disease, ACO Asthma 
COPD overlap. *p < 0.05; **p < 0.01; ***p < 0.0001; ns not significant.

Metabolites

Chemical 
shift 
(ppm) HMDB ID

Discovery cohort Validation cohort

VIP scores Fold change Significance

FDR

Fold change Significance

FDR
ACO vs 
Asthma

ACO vs 
COPD

ACO vs 
Asthma

ACO vs 
COPD

Pairwise p value

ACO vs 
Asthma

ACO vs 
COPD

Pairwise p value

ACO vs 
Asthma

ACO vs 
COPD

ACO vs 
Asthma

ACO vs 
COPD

Fatty acid 0.89 – 1.41 1.31 0.81 1.26 ** * < 0.0001 0.82 1.29 * * < 0.0001

Propionate 1.06 HMDB0000237 1.68 1.53 1.22 1.28 * * 0.003385 1.08 1.16 ns ** 0.0025798

Isopropanol 1.18 HMDB0000863 2.4 1.82 1.22 1.17 *** * 0.001206 1.15 1.09 *** * < 0.0001

Lactate 1.33 HMDB0000190 1.35 1.45 1.31 0.81 * ** < 0.0001 1.94 0.64 ** *** < 0.0001

Acetone 2.23 HMDB0001659 1.59 1.77 1.15 1.11 *** * < 0.0001 1.21 1.17 *** ** < 0.0001

Valine 2.26 HMDB0000883 1.46 1.68 0.64 0.7 *** * < 0.0001 0.75 0.8 *** * < 0.0001

Methanol 3.36 HMDB0001875 1.24 1.14 1.32 0.83 ** * < 0.0001 1.36 0.82 *** ** < 0.0001

Formate 8.46 HMDB0000142 1.29 1.13 1.32 0.75 * * < 0.0001 1.28 0.85 *** ** < 0.0001
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capacity of the lungs (FEV1/FVC). The inflammatory markers, on the other hand, mostly displayed negative 
correlation with lung function parameters (Fig. 4).

Random forest (RF) classifier (number of trees = 50) was built via tenfold cross-validation and feature rank-
ing obtained to map the feature importance scores which play an important role in predictive modelling, as 
shown in Fig. 5a. This provides an insight into the data as well as the model, and the basis for dimensionality 
reduction. Feature selection can improve the efficiency and effectiveness of a predictive model. A multivariate 
ROC analysis with the RF classifier was performed by adding the features sequentially in a descending order of 
relative importance (Fig. 5a). The mean and standard deviations (SDs) of ROC AUC and their corresponding 
true positive rates (TPR) and false positive rates (FPR) are presented in Fig. 5b,c, respectively.

Finally, a comparison of all platforms in terms of serum NMR metabolomic fingerprints, serum GC–MS 
fingerprints, EBC NMR metabolomic fingerprints and immunological mediator fingerprints using the same 
classifier was performed, both individually and taken together. It was observed that combination of all these 
platforms provide the highest mean AUC with least uncertainty and largest TPR with smallest FPR for robust 
classification of ACO from asthma and COPD (Fig. 5d).

Discussion
EBC profiling using NMR metabolomics has increasingly gained popularity for the identification of metabolic 
phenotypes in various respiratory diseases. The present study discusses the metabolite content of EBC collected 
from subjects with ACO and their potential to discriminate ACO from asthma and COPD. NMR could unequivo-
cally identify distinct metabolic signatures in EBC of patients with ACO. Furthermore, the method unambigu-
ously recognizes metabolites responsible for between-group differences (asthma, COPD and healthy controls), 
thereby strongly suggesting identification of a set of promising unbiased biomarkers characterizing ACO.

Valine, an essential glucogenic amino acid, was found to be downregulated in ACO with respect to both 
asthma and COPD. Studies by other groups have shown that plasma levels of the branched chain amino acids 
(BCAAs) are significantly lower in patients with severe COPD than in controls20,21. Since BCAAs are utilized 
for muscle protein synthesis, their reduced levels appear to be consistent with muscle wasting and weight loss 
that are known to occur in advanced COPD22. It is, therefore, suggested that the significantly decreased level 
of valine in ACO reflects an enhanced metabolic demand. A similar trend in the expression of valine was also 
observed in serum of these subjects in our earlier study18.

The increased expression of lactate in EBC may be attributed to increased glycolysis due to an imbalance 
in oxygen supplement and demand, as explained by the “Warburg effect”. The concentration levels of lactate 
have been extensively studied in asthma23,24 and COPD25,26. Our observation, yet again, suggests an increased 
energy demand of ACO subjects. Also, a similar trend in lactate expression has been observed in serum of ACO 
subjects19.

Numerous groups have reported altered expressions of a common volatile organic compound (VOC), acetone 
in EBC of various respiratory diseases16,21. Montuschi et al. (2012) have indicated an increased expression of 
acetone in cystic fibrosis patients as compared with heathy controls27. This observation suggests increased lipid 
catabolism to meet the added energy requirements of the disease28. Our findings too indicate that the levels of 
acetone in EBC are significantly higher in ACO patients when compared to both, asthma and COPD.

Isopropanol or 2-propanol, yet another VOC, exhibited a similar trend in expression, as observed with 
acetone. It was found to be significantly upregulated in ACO. Elevated 2-propanol concentration in EBC might be 
due to bacterial metabolism and/or increased lipolysis and lipid peroxidation29. Endogenous formation of 2-pro-
panol can occur in humans from reduction of acetone by liver alcohol dehydrogenase, mainly when increased 
levels of acetone and high NADH/ NAD + ratio occurs, as observed in ketosis30. Increased levels of 2-propanol 
concentration is also documented in COPD and cystic fibrosis cases27,31.

Figure 3.   (a) Comparison of various receiver operating characteristic (ROC) curves using different number 
of variables based on Monte Carlo cross validation (MCCV) performance at 95% confidence interval. The 
ROC curves were generated using Metaboanalyst 4.0 (https://​www.​metab​oanal​yst.​ca/). Var. variable, AUC​ area 
under curve, CI confidence interval. (b) Model 5 ROC curve generated using 6 variables shows the highest 
AUC = 0.852 and good power in discriminating ACO from asthma and COPD. (c) Significant features plot 
ranked by frequencies of being selected for classification derived from 6 variable multivariate receiver operating 
characteristic (ROC) curve.

https://www.metaboanalyst.ca/
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Methanol, another VOC, was also found to be significantly higher in ACO with respect to asthma, but lower 
in comparison to COPD. It is reported that increased methanol may be associated with airway inflammation32. 
Methanol, present in human breath33, is a breakdown product of formaldehyde, which is demonstrated to exac-
erbate airways inflammation in A549 alveolar and BEAS-2B bronchial cells34. Methanol levels in ACO may be 
linked to the heightened inflammatory status of the patients.

Altered levels of fatty acids in EBC are extensively reported16,35–37. Fatty acid levels in ACO are significantly 
dysregulated with an expression pattern similar to that of serum observed in these patients19. Short-chain fatty 
acids (SCFAs) regulate several leukocyte functions linked to the production of cytokines, eicosanoids, and 
chemokines and seem to affect leukocyte migration to the foci of inflammation38. Since they are also involved 
in energy requirement, their decrease might reflect the tight interplay between inflammation and energy 
production36. SCFAs can also originate from different pyruvate metabolism pathways39. Various studies on cell/
animal models40,41 suggest that fatty acid residues can be harvested from lipids and may serve as energetic sub-
strates in conditions of inhibited glycolysis and up-regulated β-oxidation42.

An increased expression of propionate was observed in EBC of ACO when compared with asthma and 
COPD. Given the role of propionate in the inhibition of cholesterol synthesis, its increase may also suggest the 
involvement of lipid metabolism. This finding is in agreement with the reports of several research groups, where 
increased lipolysis has been attributed to this trend13,31. Few groups have also suggested that increased propionate 
level could be the effect of drugs regularly administered to these patients13.

Elevated levels of formate in EBC are reported in patients with COPD as compared with healthy subjects31,43. 
These findings have been confirmed in a recent 1H-NMR spectroscopy study which shows that formate con-
centration in EBC is 2.5 higher in patients with emphysema due to α1-antitrypsin deficiency than in healthy 

Figure 4.   Correlation heat map of 46 significantly altered markers in ACO using Pearson’s correlation 
coefficients. The analysis was performed using Scikit-learn package with Python 3.8 (https://​scikit-​learn.​org/​
stable). (nmr)—depicts the altered metabolites detected in serum using NMR based metabolomics, (gc)—
depicts the altered metabolites detected in serum using GC MS based metabolomics, (ebc)—depicts the altered 
metabolites detected in EBC using NMR based metabolomics.

https://scikit-learn.org/stable
https://scikit-learn.org/stable
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subjects13. Formate levels were higher in ACO with respect to asthma but lower than that of COPD in the present 
study.

To make the findings more robust and reproducible, expression levels of the 8 metabolites identified were 
validated in a fresh cohort of subjects. A similar trend in expression was observed in the validation cohort. 
These findings are in accordance with our earlier serum metabolomic findings18,19. Dysregulation of a number of 
metabolites in EBC of ACO patients suggests that the energy and metabolic requirement in ACO is more severe 
when compared to COPD or asthma alone. This could be attributed to the higher disease severity associated 
with ACO. Also, multivariate ROC curves could discriminate ACO from the combined group of asthma and 
COPD with good sensitivity and specificity. Furthermore, the models generated from these multivariate ROC 
curves suggest that the combination of these metabolites provide a robust classification model which is better 
than using any one or two metabolites as a biomarker for differentiating ACO from both asthma and COPD 
taken together. In conclusion, NMR metabolomics using EBC as a biofluid holds potential to be explored as a 
platform for development of non-invasive biomarkers responsible for identification of ACO from a cohort of 
asthma and COPD.

Earlier, metabolic and immunological signatures have been identified by our group in serum of these ACO 
subjects differentiating it from both asthma and COPD19. Here, a correlation heat map is generated using the 
46 markers which comprise of a wide array of significantly altered metabolites, immunological mediators and 
clinical parameters from both the present and previous studies of our group. Using these variables, we have also 
attempted to use RF classifier to predict whether a combination of markers generated using various platforms 
is useful for optimum classification of ACO, and whether ACO can be effectively distinguished from asthma 
and COPD patients taken together. A random forest (RF) algorithm is an extremely reliable classifier and has 
become popular as a biomarker detection tool in various metabolomics studies. Using RF as a classifier has 
the following advantages: simple theory, fast speed, stable and insensitive to noise, little or no overfitting, and 
automatic compensation mechanism on biased sample numbers of groups44–46. It constructs an ensemble of deci-
sion trees, which is a combination of tree-structured predictors. Each tree is independently constructed using 
a bootstrap sample of the original data. This serves as the training data, which is used to build the classification 
model. Using predictive random forest algorithms on our present and earlier reported findings, it is concluded 
that a combination of 10 markers i.e. glucose, glutamate, D-mannose, IL-6, citrate, butanedioic acid, neutrophil 
gelatinase-associated lipocalin (NGAL), chitinase 3 like 1 (YKL-40), FEV1/FVC and IL-5 provide optimum 
classification of ACO. Based on these findings, a schematic representation of the various biochemical cycles 

Figure 5.   (a) Feature ranking obtained by mapping the feature importance scores (46 variables) which play 
an important role in predictive modelling using random forest (RF) classifier (number of trees = 50) which was 
built via tenfold cross-validation classifier and used to predict whether ACO can be effectively distinguished 
from asthma and COPD patients taken together. (b) The mean and standard deviations (stdev) in area under 
curve (AUC) of multivariate receiver operating characteristic (ROC) with the RF classifier of the most important 
features sequentially in a descending order of relative importance. (c) The corresponding true positive rate 
(TPR) and false positive rate (FPR) of multivariate ROC. (d) A combination of all platforms provides the highest 
mean AUC with least uncertainty and largest TPR with smallest FPR for robust classification of ACO from 
asthma and COPD. The analysis was performed using Scikit-learn package with Python 3.8 (https://​scikit-​
learn.​org/​stable) (nmr)—depicts the altered metabolites detected in serum using NMR based metabolomics, 
(gc)—depicts the altered metabolites detected in serum using GC MS based metabolomics, (ebc)—depicts the 
altered metabolites detected in EBC using NMR based metabolomics, nmr_ftr—depicts the altered metabolites 
detected in serum using NMR based metabolomics, gc_ftr—depicts the altered metabolites detected in serum 
using GC MS based metabolomics, ebc_ftr—depicts the altered metabolites detected in EBC using NMR based 
metabolomics, im_ftr—depicts the altered immunological markers detected in serum, all_ftr—depicts the 
combination of features obtained from all the platforms.

https://scikit-learn.org/stable
https://scikit-learn.org/stable
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found to be dysregulated in ACO subjects is shown in Fig. 6. It exhibits perturbation of key metabolism cycles 
such as tricarboxylic acid (TCA) cycle, glycolysis and lipid metabolism. This could possibly be responsible for 
the higher disease burden in ACO. Enhanced inflammatory response was also observed in patients with ACO. 
The dysregulated key immunological mediators hold promise in designing strategies for clinical management 
of ACO subjects in future.

There are several limitations associated with this study. First, the ACO subjects in this study are selected using 
GINA/GOLD and American Thoracic Society (ATS) roundtable diagnostic criteria; hence, the present findings 
should not be extended to patients diagnosed using other guidelines7,47,48. Second, here only South Asian male 
subjects are recruited; genetic, race and sex differences adjustment is necessary before generalization of our 
findings49. Third, the present findings are related to ACO patients without active exacerbations and respiratory 
infections. Alterations in metabolic signatures are likely in presence of lung infections and exacerbations50–52. 
Fourth, validation of the models in a fresh patient cohort could not be performed. However, we did include a 
fresh cohort of patients for each sub-group, i.e. asthma, COPD and ACO. Fifth, stage IV COPD patients could 
not be included since most of them reported with co-morbidities and exacerbations. However, we propose to 
conduct multi-centric studies to validate our findings. This will increase the sample size considerably and facili-
tate inclusion of a group of severe COPD patients for comparison with ACO. Finally, limited sensitivity of NMR 
spectroscopy as a metabolomics tool is well realized. Integration of NMR with complementary GC-qTOF and 
LC–MS/MS would increase metabolome coverage and improve data quality significantly. Our group is presently 
involved in using these approaches on the same patient cohort for complementary information.

EBC analysis has garnered a lot of interest in recent times. It is undoubtedly an advantageous technique, being 
a non-invasive, effortless, and painless method of respiratory biological material collection. However, it is a less 
explored biofluid as compared to serum, plasma, urine etc. and has certain limitations which require attention. 

Figure 6.   Proposed schematic diagram of the dysregulated biochemical pathways in ACO.
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The diversity of EBC itself has prevented it from achieving clinical applicability12. It is a dilute, complex solution 
of diverse molecules with different chemical stabilities. EBC is possibly not the best matrix for exploring VOCs 
and studies should be limited to non/semi volatile compounds. The low concentration of the dissolved molecules 
in EBC is one of its major limitations. The measurement of these molecules is limited by the sensitivity of most 
assays53. Standardization of biomarker analysis in EBC remains a challenge. High variability and low reproduc-
ibility in exhaled markers may be explained by differences in a large number of pre-collection, collection and 
post-collection conditions. Conditions and duration of storage may also affect the assayed concentrations of 
biomarkers. It is also important to note that despite EBC sampling established to be a method of sampling the 
airways that is generally acceptable to patients12, a few patients reporting to our clinic, especially those report-
ing with severe disease condition, found this technique challenging. This poses a question regarding the clinical 
utility of the method, though extensive use of this method in research is well recognized.

Comparison of efficacy and reproducibility of sampling between different devices requires further investiga-
tion. Further studies are also required to establish if different mediators are evenly distributed in the expired air 
and if collection of all water vapour expired would decrease variability of EBC data. Flow-dependency and the 
potential for oral/upper airway/salivary contamination needs to be explored54. Inter-individual differences in 
the generation of particles in EBC during inhalation may exist. As of yet no fully validated method for calculat-
ing dilution of respiratory droplets is available and the anatomic origin of biomarkers is not precisely known. 
Therefore, it can be said that even though EBC is a promising biofluid, there are a number of challenges which 
needs better understanding and standardizations before its potential can be fully explored.

Though biomarkers are known to positively impact patient care by permitting early detection of disease 
which increases therapeutic efficacy considerably, it is well recognized that very few omics-derived biomarkers 
have made their way to the clinic so far. Disease heterogeneity, complexity of the involved cellular processes, 
non-ideal study design, and limited methodological robustness are the major bottlenecks that are responsible 
for the huge gap between the number of omics-based biomarkers reported in literature and those introduced 
to the clinical set-up. Identification of a panel of markers highly specific to the disease with a perfect diagnostic 
potential of 100% sensitivity and specificity is desirable and remains a challenge. There is a need to establish the 
exact concentration and cut-off levels of candidate markers for their use in clinical settings.

In recent years, there has been an increasing interest in understanding the group of individuals having fea-
tures of both asthma and COPD. As the complexity of ACO as a disease entity is gradually unraveled and better 
understood, a further revision in ACO definition would likely be required. It is envisaged that the findings from 
this exploratory study will motivate researchers and direct their attention towards unravelling the intricacies of 
ACO pathophysiology which remains to be elucidated.

Material and methods
Subject selection and sample collection.  Patients reporting to the Institute of Pulmocare and Research 
(IPCR), a tertiary respiratory care clinic at Kolkata, India were considered for this study. Based on the clinical 
history, questionnaire data, pulmonary function tests (PFTs) and diagnosis by the clinicians, the subjects were 
divided into four groups: (i) patients with asthma (ii) patients with COPD (iii) patients with ACO and (iv) 
healthy controls with normal lung function. Informed consent was obtained from all participants. Approval was 
obtained from the Institutional Ethics Committee of IPCR, Kolkata prior to commencement of the study. The 
detailed inclusion and exclusion criteria are mentioned elsewhere18,19.

Asthma was diagnosed as per GINA (2014) guidelines55. Subjects with wheezing in the past 12 months and 
reversibility (increase in post-bronchodilator (post-BD) FEV1 or FVC ≥ 200 ml and ≥ 12% baseline change) or 
asthma diagnosed earlier were included. All patients enrolled were moderate or severe asthma cases. Diagnosis 
of COPD was according to the GOLD (2014) criterion56. Subjects with FEV1 to FVC ratio < 70% post BD were 
included. All COPD subjects included were moderate (Stage II) and severe COPD (Stage III) cases.

Joint guidelines of GINA and GOLD and ATS roundtable discussion57–60 was used to diagnose ACO. The main 
criteria considered were (i) persistent airflow limitation [post-BD FEV1/FVC < 0.70] in individuals 40 years of 
age or older (ii) tobacco smoking ≥ 10 pack-years and (iii) bronchodilator response (BDR) of > 400 ml in FEV1 
or history of asthma before 40 years of age. The minor criteria taken into consideration were (i) history of aller-
gic rhinitis or atopy (ii) BDR of FEV1 ≥ 200 ml and 12% change from baseline values on two or more visits (iii) 
peripheral blood eosinophil count ≥ 300 cells/μl. All major criteria and at least one minor criterion were con-
sidered for inclusion of ACO subjects. History of alpha-1 antitrypsin deficiency (AATD) in the family of COPD 
and ACO subjects was excluded. In order to avoid gender and smoking induced bias, only present/former male 
smokers were considered. All volunteers were also matched for age and BMI to minimize bias.

For comparison purposes, healthy age-matched male smokers were considered as controls. Patients with 
history of exacerbations and those who had received oral corticosteroid (OCS) treatment during the last three 
months were excluded. Patients with co-morbidities including metabolic disorders were also excluded. For this 
pilot metabolomic study, two independent patient cohorts, the discovery and validation group having the same 
exclusion and inclusion criteria were considered. The discovery phase patient cohort comprised of (i) asthma = 34 
(ii) COPD = 30 (iii) ACO = 35 and (iv) controls = 33. The validation phase cohort consisted of (i) asthma = 32 (ii) 
COPD = 32 and (iii) ACO = 40 subjects.

EBC was collected in single-use disposable collection circuits using TURBO-DECCS 14 system (Medivac, 
Parma, Italy), according to the manufacturer’s instructions. All samples were collected based on the recom-
mendations of the ATS/ERS Task force12. Patients were requested to be in resting condition for 30 min prior to 
collection. Smoking was not permitted for a minimum of 12 h. All samples were collected following a minimum 
of 12 h overnight fasting. Tidal breathing into the mouthpiece was advised for about 15–20 min till 2–3 ml EBC 
was collected. EBC collection vials were immediately sealed and stored at − 80 °C. During initial standardization 
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of the collection process, two samples of EBC were collected from each subject for a total of 12 subjects (3 healthy 
controls, 3 asthma, 3 COPD and 3 ACO) within the same day (at time 0 h and 8 h). The spectral regions (exclud-
ing the water region) were integrated and normalized to the total spectrum area to avoid possible variation in 
metabolite concentrations. SD was calculated to check for natural variance and was found to be within ± 1.96, 
which according to the Bland–Altman test indicates good within-day repeatability61.

Sample processing.  Briefly, EBC samples were thawed and homogenized before performing the NMR 
experiments. A volume of 70 μl of D2O containing 1 mM TSP and 3 mM sodium azide was added to 630 μl of 
thawed condensate, thus making 700 μl of total volume and centrifuged at 8000 rpm for 5 min. The samples were 
transferred to 5 mm NMR tubes and subjected to NMR analysis.

NMR measurements.  1D NMR spectra of EBC samples were acquired, as discussed elsewhere31,62,63. 
Briefly, 1D spectra were recorded on a Bruker AVANCE NEO 800 MHz spectrometer equipped with TCI Cryo-
Probe operating at a frequency of 800 MHz (1H) and at a probe temperature of 27 °C. The water resonance was 
suppressed by using the excitation sculpting pulse sequence, zgesgp according to the manufacturer’s instruc-
tions. In the present study, the carrier frequency (01) value was set at the water resonance, the relaxation delay 
was 3.5 s, acquisition time 0.85 s, the spectral width was 9615 Hz, the time domain was 16 K and the number of 
transients was 256. This resulted in a total acquisition time of about 18 min per sample. For every sample, the 
probe was perfectly tuned and the 90 degree pulse width determined. For processing, a shifted sine bell (SSB) of 
2 Hz was applied before Fourier transformation and a real spectrum size of 16 K used.

The resulting spectra were phased and baseline corrected offline using MestReNova version 7.1.0 (Mestre-
lab Research, Santiago de Compostela, Spain) software. TSP served as the chemical shift reference point 
(δ = 0.00 ppm) and a concentration standard for all samples. Each metabolite was identified from earlier pub-
lished literature and cross verified with the HMDB 3.6 and 2D NMR experiments like correlation spectroscopy 
(COSY) and total correlation spectroscopy (TOCSY).

Quality control (QC) samples were prepared to monitor the analytical variability and reproducibility of 
NMR data acquisition over time. Equal volume of EBC (100 µl) was aliquoted from all subjects (discovery and 
validation cohort) and pooled together to prepare the QC samples. A total of 4 QC samples were included per 
day with each sample introduced at the beginning, after every 10 samples, and at the end of each day, respectively 
of NMR experimentation (~ 25 samples per day). CVs for each of the 18 consistently identified and quantified 
metabolites were calculated based on the QC samples (~ 40) and was found to be < 15%. In addition, pH of each 
sample (including QC samples) was checked and adjusted prior to each run.

Data pre‑processing.  Multivariate analysis was performed on the spectral region of 0.5–4.0 ppm (exclud-
ing residual water signal: 4.0–6.0 ppm). This region was bucketed/binned into various integrated segments of 
equal frequency window (0.03 ppm) using MestReNova. The binned data matrix was normalized and scaled to 
the working region of 0.5 to 4.0 ppm. Normalization (by sum) was performed on the binned data sets to com-
pensate for the variation in concentration between the samples and to represent each data point as a fraction of 
the total integral value of the spectra. Following normalization, unit variance scaling was performed using Meta-
boanalyst 4.0. Data transformation and scaling are two different strategies to make features more comparable. 
The preprocessed data was subjected to MVA using SIMCA 13.0.2 (Umetrics, Sweden)64.

Multivariate analysis and statistical model validation.  Various multivariate statistical approaches 
exist to understand the complex structures of metabolomic data. Supervised classification models including 
PLS-DA and OPLS-DA were generated using SIMCA 13.0.2 (Umetrics, Sweden). A coefficient of variation plot 
was used to represent differences in the metabolite concentration between the groups. The parameters including 
R2, Q2, and CV-ANOVA score were used to detect robustness of the OPLS-DA model. The most significantly 
altered bins (corresponding to dysregulated metabolites) were identified based on VIP score with a threshold of 
VIP ≥ 1 and S-line plot with correlation value r ≥ 0.6.

Univariate statistical analysis of selected metabolites.  Following constant sum normalization using 
MestReNova, the selected altered metabolite signals in the discovery cohort were extracted and subjected to spec-
tral integration. Statistical significance of the mean integral values for the corresponding metabolites between 
the groups was obtained using one way ANOVA (Dunnett’s post hoc test) or Kruskal–Wallis test (Dunn’s post 
hoc test), whichever applicable (GraphPad Prism version 7.00 for Windows, GraphPad Software, San Diego, CA, 
USA). The peaks identified in the chemical shift region 6.0–9.0 ppm (aromatic region) were also subjected to 
one way ANOVA (Dunnett’s post hoc test) or Kruskal–Wallis test (Dunn’s post hoc test), as applicable. Statisti-
cal significance was considered to be p < 0.05. Fold change analysis was also performed for ACO vs. asthma and 
ACO vs. COPD.

The most significantly altered metabolites identified in the discovery phase were further validated by integrat-
ing the spectra for quantitative measurements in a fresh cohort of subjects (validation cohort) using the same 
univariate techniques.

Multivariate ROC curve correlation analysis and predictive modelling.  Multivariate ROC was 
performed on all significantly altered EBC metabolites and the AUC calculated (Metaboanlyst 4.0) using clas-
sification method support vector machine (SVM) and feature ranking as SVM built-in.
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Our earlier studies using GC–MS metabolomics indicated 11 metabolites [serine, threonine, ethanola-
mine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic acid, linoleic acid, D-mannose and succinic 
acid] to be significantly altered in serum of ACO patients as compared with asthma and COPD19. NMR based 
metabolomics evidenced dysregulation of 12 metabolites including lipids, isoleucine, N-acetylglycoproteins 
(NAG), valine, glutamate, citric acid, glucose, L-leucine, lysine, asparagine, phenylalanine and histidine in ACO 
patients18. Also, 13 immunological mediators including tumor necrosis factor alpha (TNF-α), IL-1β, IL-17E, 
granulocyte macrophage-colony stimulating factor (GM-CSF), IL-18, NGAL, IL-5, IL-10, monocyte chemoat-
tractant protein- 1 (MCP-1), YKL-40, interferon gamma (IFN-γ), IL-6 and transforming growth factor (TGF-β) 
showed distinct expression patterns in ACO19.

A correlation heat map was generated using a total of 46 variables dysregulated in ACO. The wide array of 
significantly altered metabolites, immunological mediators and clinical parameters consisted of 8 EBC markers 
identified in the present study, 2 lung function parameters, and 36 serum markers generated from our previous 
studies. Pearson’s correlation coefficients were calculated between all the features using Scikit-learn package with 
Python 3.8. Using these 46 variables, RF classifier65 was used to predict whether ACO can be effectively distin-
guished from asthma and COPD patients taken together. To develop this binary classifier, ACO was defined as 
one group and asthma and COPD, taken together, as the other.

Ethics approval.  All procedures performed in the study involving human participants were done in accord-
ance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration 
and its later amendments.

Consent to participate.  Informed consent was obtained from all individual participants included in the 
study.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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