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Breast cancer is one of the most prevalent types of cancers worldwide, especially for
females. Surgery is the preferred treatment for breast cancer, and various postoperative
adjuvant therapies can be reasonably used according to different pathological
characteristics, especially traditional radiotherapy, chemotherapy, and endocrine
therapy. In recent years, targeting agent therapy has also become one of the selective
breast cancer treatment strategies, including anti-HER-2 drugs, CDK4/6 inhibitor, poly
ADP-ribose polymerase inhibitor, PI3K/AKT/mTOR pathway inhibitor, ER targeting drugs,
and aromatase inhibitor. Because of the different pathologic mechanisms of these
adjuvant therapies, each of the strategies may cause cardiotoxicity in clinic. The cardiac
adverse events of traditional endocrine therapy, radiotherapy, and chemotherapy for
breast cancer have been widely detected in clinic; however, the targeting therapy agents
have been paid more attention with the extension of application. This review will
summarize the cardiac toxicity of various adjuvant therapies for breast cancer,
especially for targeting drug therapy.

Keywords: cardiotoxicity, targeting agents, breast cancer, radiotherapy, chemotherapy
INTRODUCTION

Breast cancer is one of the most common malignant tumors in females worldwide, with more than
one million new cases per year (1). The main advanced treatment of breast cancer, which is
combination of surgery, radiotherapy, chemotherapy, endocrine therapy, and other adjuvant
therapies, basically can get to the better outcome and long-term breast cancer survival rate (2).
Surgery is considered to be the core basis of breast cancer treatment; other adjuvant therapies were
designed to reduce the risk of recurrence and eradicate metastasis. According to the tumor staging,
the individual patients’ comorbid condition, the clinicopathological and molecular characteristics of
breast cancer, and the appropriate adjuvant therapies were chosen for different breast cancer
patients clinically. However, almost each adjuvant therapy may potentially cause acute or chronic
clinical adverse effects, such as cardiac complications based on the published articles over the years.
Especially, the application of molecular targeting drugs for breast cancer was promoted in recent
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years; the new therapeutic cardiac toxicity has gradually attracted
the rising concern in prognosis of breast cancer.

The aim of this review is to summarize the reported incidences
of cardiac toxicity after mainstream breast cancer adjuvant
therapies, including myocardial fibrosis, angina, infarction, atrial
fibrillation, and ventricular arrhythmia. The focus of this review is to
elaborate the association between the clinical adjuvant therapy of
breast cancer, such as endocrine therapy, chemotherapy,
radiotherapy, targeting therapy, and other treatment rather than
radical surgery, and cardiotoxicity as described above. So far, the
mechanisms of cardiotoxicity induced by adjuvant therapies for
breast cancer have not been clearly described; this review will also
provide a brief summary of the probable factors caused by each
adjuvant therapy.
TRADITIONAL ADJUVANT THERAPIES
AND CARDIAC TOXICITY

Some chemotherapy drugs for breast cancer treatment can induce
the cardiac disorders in clinical application according to the
reference in recent years. Most chemotherapy drugs include
anthracycline, taxanes, cyclophosphamide, cis-platinum, and 5-
fluorouracil. According to the side effect of each one, these
chemotherapy drugs may lead to the cardiotoxicity for breast
cancer patients. In general, there was a clinical threshold for the
cumulative dosage of chemotherapy drugs to breast cancer patients,
but there is no formal standard to define the threshold of inducing
cardiac toxicity in patients until now (Table 1). Therefore, we
described the cardiotoxicity in breast cancer patients at normal
doses of chemotherapeutic agents. Of course, the side effects,
including cardiotoxicity, may be more pronounced in patients
with dose-dense chemoradiotherapy, such as AC treatment with
anthracycline and cyclophosphamide. To avoid serious adverse
effects in these patients, rehydration to prevent dehydration and
the application of antidotes were commonly used in clinic.
However, recent literatures have revealed that the cardiotoxic
effects of dose-dense anthracyclines were not as severe as expected
(9, 10).
CHEMOTHERAPIES AND
CARDIOTOXICITY

The most common anthracycline-based drugs included
doxorubicin, epirubicin, daunorubicin, and idarubicin, which
have well-documented side effects of cardiac toxicity (11, 12),
especially arrhythmias, left ventricular dysfunction, and heart
failure (13, 14). Although cardiotoxicity of anthracycline is an
accepted side effect in clinic, the clear mechanism remains to be a
questionable issue. So far, there are two most likely hypotheses
for the anthracycline-induced cardiotoxicity, the damage of
oxygen-free radicals, and interaction with the topoisomerase-
II-beta enzyme (Top2b) in myocytes (11, 15). As for oxidative
stress, anthracyclines can bind to the endothelial cell-specific
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nitric oxide synthase reductase region, resulting in oxygen free
radicals and superoxide compounds increasing and NO synthesis
decreasing. When anthracyclines reach a certain concentration
in the mitochondria, cationic anthracyclines can also attract
negatively charged cardiolipin in the mitochondrial lining,
forming irreversible complexes that are also vulnerable to ROS
attacks, thus resulting in level changes of Bcl-2 and the pro-
apoptotic protein Bax. Cardiolipin peroxidation induced
caspase-dependent myocardial cell apoptosis and necrosis. On
the other hand, anthracyclines can form a covalent complex with
topoisomerase-II, causing double-stranded DNA breakage.
Anthracycline can insert into the DNA of cardiomyocytes through
the isozyme TOP2b that promotes mitosis of cardiomyocytes,
increases the mitochondrial permeability of cardiomyocytes, and
leads to acute damage and necrosis of cardiomyocytes (15–17).
Anthracycline-related cardiac toxicities represented a common
form of chemotherapy adverse effect, and the risk of clinical
cardiotoxicity revealed an increasing tendency among breast cancer
patients treated with anthracycline-related drugs compared to those
treated with non-anthracycline-based regimens by the meta-analysis
(18, 19). In order to maximize both quality of life and survival, the
aim of balancing the risks of cardiotoxicity and the benefits of
antitumor therapy should be paid more attention, especially the
understanding of the mechanisms of cardiotoxicity by antitumor
therapy (20, 21). Meanwhile, in breast cancer patients with
anthracycline-based chemotherapy, it is also essential to take into
account other classical risk factors for cardiac toxicity as well, such as
age, cumulative dose, administration of other cardiotoxic
chemotherapeutic agents, and preexisting cardiovascular disease
(3, 5, 22–24). The iron-chelating agent dexrazoxane, applied in the
management and treatment of anthracycline-induced cardiotoxicity
and extravasation injuries in clinic, is thought to decrease the cardiac
adverse effect of anthracycline-based drugs by blocking the generation
of free radicals, and in most studies, dexrazoxane did not affect the
clinical outcome of anthracycline therapy (25, 26).

Application of taxanes, including paclitaxel and docetaxel,
was thought to reduce the risk of recurrence of breast cancer with
anthracycline-based chemotherapy as an adjuvant therapy.
Taxanes seem to interfere with the metabolism and excretion
of anthracycline metabolites leading to potential cardiac toxicity,
such as left ventricular diastolic dysfunction and arrhythmias (4).
Epothilones, a taxane-like drug, has been applied to the clinical
treatment of breast cancers for the past years, but there is not
enough data on its cardiotoxicity because of insufficient clinical
feedback (27, 28).

Cyclophosphamide, which can inhibit DNA replication and
apoptosis, is a kind of DNA-alkylating agent for breast cancer,
cyclophosphamide-induced cardiac damage is dose dependent, and
mechanisms of cyclophosphamide-induced cardiotoxicity
encompass oxidative and nitrative stress and protein adduct
formation. The common clinical manifestations of cardiotoxicity
include cardiomyocyte inflammation, altered calcium homeostasis,
swelling of the cardiomyocytes, and heart failure (4, 29, 30). Because
of toxicity of cyclophosphamide, it is limited in clinical application,
so further studies on cyclophosphamide cardioprotective
antioxidants should be carried out in preclinical studies.
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5-Fluorouracil (5-FU) and capecitabine are two common but
different ways of administration chemotherapy fluoropyrimidine
drugs used to treat breast cancer with similar efficacy. Capecitabine,
one kind of oral fluoropyrimidine chemotherapy drug, can be
catalyzed to 5-FU by thymidine phosphorylase in tumor tissue.
One of the severe side effects to 5-FU and capecitabine-based
treatment is various kinds of cardiotoxicity, such as myocardial
ischemia, dysarteriotony, left ventricular dysfunction, cardiac arrest,
and sudden death (6, 7, 31–36). 5-FU was administered by two ways
of oral and intravenous injection in clinic. Oral 5-FU derivatives
mainly applied were ftorafur (FT), doxifluridine (5′-DFUR), UFT,
carmofur (HCFU), and S-1 (FT and two enzyme inhibitors, 5-
chloro-2,4-dihydroxypyridine and potassium oxonate with ratio of
1:0.4:1). Due to irregular absorption of oral 5-FU, the main way of
administration in clinic was intravenous injection, so the
cardiotoxicity of 5-FU was mostly caused by intravenous injection
in breast cancer treatment; only few patients showed myocardial
ischemia adverse effects with oral fluoropyrimidine drugs.
Moreover, capecitabine has a cardiac toxicity similar to
intravenous 5-FU, such as myocardial infarction and coronary
vasospasm (37, 38). The two most likely mechanisms of 5-FU-
related cardiotoxicity are ischemia and drug-related myocardial
toxicity. Coronary vasospasm is one of likely leading theories for
5-FU-related myocardial ischemia by endothelial dysfunction or
smooth muscle dysfunction, and according to these hypotheses 5-
FU may lead to thrombotic occlusive disease (39–41). The
pathological mechanisms that lead to 5-Fu-induced cardiotoxicity
also include oxidative stress and direct cell damage, but these
mechanisms are limited to experimental models (42–44). In
human autopsy subjects, ventricular dilatation and scatter necrosis
with an inflammatory infiltrate and proliferation of the
sarcoplasmic reticulum were also demonstrated in 5-FU treatment
patients (45). According to these hypotheses, 5-FU-induced
cardiotoxicity might be multifactorial; further research is needed
to clarify the pathogenesis of these adverse effects.
RADIOTHERAPY AND CARDIAC TOXICITY

Radiotherapy is an indispensable unit of multidisciplinary
treatment of breast cancer; it can reduce mortality and the risk
of local recurrences by about two-thirds (46). However, as the
adjacent organ, cardiac irradiation damage was unintentional in
breast cancer patients with radiotherapy. Radiotherapy was
recognized as the common factor of cardiac mortality among
breast cancer survivors, with a maximum increase of nearly 1.7
times in cardiovascular mortality from long-term radiotherapy
compared with surgery, and the risk increased over time (8, 47).
The pathophysiological mechanisms of radiation-induced
cardiac disease are related to vascular damage, which may lead
to pericarditis, coronary artery disease, acute myocardial
infarction, cardiomyopathy, or valvular heart disease (48, 49).
However, valvular heart disease rarely occurred on radiation for
conserved breast or post-mastectomy radiation therapy, and only
few patients developed symptoms 5 to 10 years after
radiotherapy (50). Similar to chemotherapy, radiation therapy
also has the relatively safe threshold of the cumulative amount of
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radioactive substances, exceeding the cumulative dose that may
increase the risk of cardiotoxicity, but there is no unified
standard for this threshold now (Table 1). Also, except for
radiation dose, the risk of cardiac toxicity for breast cancer
radiotherapy was associated with radiation time and higher
abnormalities after left-breast irradiation compared with the
right (51–54).

Considering the benefit of radiation therapy in breast cancer
treatment and improving survival, clinicians should pay more
attention to the development of cardiovascular disease in
patients. New radiation administration techniques, including
cardiac field shielding and radiation dose reduction, may
decrease the risk of developing cardiac disease (55). Recently,
in order to reduce the cardiac damage of irradiation, intensity-
modulated radiotherapy (IMRT) has been applied in clinical
breast cancer treatment, including rotational and proton IMRT
(56, 57). In addition, so as to improve the effect of target coverage
and decrease the risk of cardiac dose in breast cancer radiation
patients, new radiation therapies such as deep-inspiration breath
hold (DIBH) and multi-leaf collimators (MLC) have also been
applied in clinic (54, 58, 59).

Based on the advantages of radiotherapy in prolongation of
survival in breast cancer patients, the abandoning of radiation
therapy was not recommended due to cardiotoxicity. So the risk
of breast cancer-specific mortality and the cardiac risk factors must
be weighed up against the risk of radiation-induced cardiotoxicity,
respectively. Taking these factors into consideration, the application
of radiotherapy should consider the age and pathological grade of
patients; the individual decision between heart protection and
optimal target coverage was still up to the physicians (48, 60, 61).
TARGETING DRUGS AND
CARDIAC TOXICITY

In recent years, targeting drugs for tumor treatment became the
clinical hotspot including breast cancer therapy (62). There were
several hot targeting drugs in breast cancer treatment,
comprising the HER-2-targeting monoclonal antibody (mAb),
CDK4/6 inhibitor, poly ADP-ribose polymerase (PARP)
inhibitor, PI3K/AKT/mTOR pathway inhibitor, ER targeting
drugs, and aromatase inhibitor (AI). For these targeting
pharmaceuticals, the most common category of targeting drugs
is the class of humanized anti-HER-2 mAb, especially for HER-
2-positive breast cancer treatment.
ANTI-HER-2 TARGETING DRUGS
INDUCED CARDIOTOXICITY

Human epidermal growth factor receptor-2 (HER-2) is a
membrane tyrosine kinase receptor, together with HER-1 (also
called EGFR), HER-3, and HER-4, to form the EGFR family. No
ligand is known for HER-2 now, but ligand-stimulated HER-1,
HER-3, and HER-4 forming homodimers or combined with
Frontiers in Oncology | www.frontiersin.org 4
HER-2 in heterodimers can elicit a series of physiological cellular
responses. For HER-2-positive breast cancer, the formation of
heterodimers with HER-1 and HER-3 leads to the activation
of signaling pathways promoting proliferation and survival of
cancer cells (63).

With the extensive application of HER-2-targeting drugs in
clinical HER-2-positive breast cancer patients, trastuzumab can
improve the poor prognosis and prevent metastasis, and it even
has a significant effect on improving survival among the adjuvant
therapies (64–66). Since late 1990s, trastuzumab was first applied for
HER-2-positive and metastatic breast cancer. Trastuzumab can
bind to subdomain IV of the extracellular domain of the receptor.
Following the binding with the receptor, trastuzumab can disrupt
the ligand-independent interaction of HER-2/HER3/PI3K complex
downstream signaling, strengthen the activity of cell-cycle inhibitor
p27 potentially, inhibit the growth of breast cancer, and cause the
death of cancer cells by antibody-dependent immune cell-mediated
cytotoxicity (67–69). However, the cardiotoxicity of trastuzumab
was reported within a few years, and even the incidences of cardiac
dysfunction were up to unbelievably close 30% by combining with
chemotherapy (70). According to the clinical indication, the
targeting adjuvant trials for breast cancer must choose strictly in
accordance with cardiac exclusion criteria, monitoring of cardiac
function, cardiac safety analysis, and appropriate administration of
trastuzumab combined with anthracycline-based chemotherapy
drugs (71, 72).

Although trastuzumab has the notable effect on HER-2-
positive breast cancer, it also causes various significant adverse
reactions including cardiac dysfunction. The left ventricular (LV)
dysfunction and congestive heart failure were the most common
cardiotoxicity disorders with the duration of drugs, especially
combined with anthracycline-based chemotherapy treatment at
the same time (73–76). However, these disorders could be
medically controlled by interval administration or cardiac
protective drugs (77, 78), so trastuzumab could be used clinically.

Following the development of targeting drugs, another FDA-
approved anti-HER-2 humanized monoclonal antibody
pertuzumab came out. Compared with trastuzumab,
pertuzumab also targets the extracellular portion of HER-2, but
at a different epitope of subdomain II (79). Pertuzumab also
triggers antibody-dependent cell-mediated cytotoxicity, but it
prevents ligand-initiated heterodimerization of HER-2 and
HER-3 (80). Although trastuzumab and pertuzumab recognize
different sites of HER-2, their clinical combination results in
stronger antitumor efficacy (81). Surprisingly, the combination
of pertuzumab and trastuzumab does not seem to raise the risk of
LV dysfunction and congestive heart failure and even alleviate
the left ventricular dysfunction possibly (82–84). The latest
recombinant HER-2 humanized monoclonal antibody
inetetamab has entered into the clinical treatment of breast
cancer in the past 2 years, and so far it only seems to cause the
decrease of LVEF.

Due to the late application of HER-2-targeting therapy
compared with traditional chemotherapy drugs, breast cancer
patients were treated with HER-2-targeting drugs later than
conventional chemotherapy drugs, such as anthracyclines.
March 2022 | Volume 12 | Article 706861
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Lapatinib, a dual EGFR/HER-2 tyrosine kinase inhibitor, has
been found to exert significant biologic effects on the inhibition
of signaling pathways to promote breast cancer cell proliferation
and survival, especially in terminal, recurrent, or metastatic
breast cancer patients who had experienced anthracyclines
treatment (85). According to the collection of the clinical trial
data in recent years, lapatinib may have the lower cardiotoxicity
than pertuzumab and trastuzumab, especially for congestive
heart failure (86–88). However, there is still uncertainty on the
cardiac toxicity of lapatinib (89). Using the neonatal rat cardiac
myocyte model, chemotherapy-induced myocyte damage was
greatly enhanced by the addition of nanomolar lapatinib
concentrations, although lapatinib treatment alone only slightly
induced myocyte damage. Treatment by lapatinib alone decreased
phosphorylated ERK (MAPK), which may have increased
myocyte damage. Moreover, lapatinib is a strong inhibitor of
several ATP-dependent ABC-type efflux transporters, so lapatinib
may block doxorubicin efflux to increase intracellular doxorubicin
concentrations leading to myocyte damage (90). Another tyrosine
kinase inhibitor neratinib, which is an intensive adjuvant drug for
trastuzumab for early-stage HER-2-positive breast cancer patients,
has insufficient evidence of cardiac adverse effect, but only causing
diarrhea (91).

There is no clear definition on the cardiotoxicity mechanisms
of HER-2-targeting drugs now. According to the analysis of
myocardial deformation indexes by speckle tracking
echocardiography, impairment in apical rotation was observed.
It seems to be the first sign of global left ventricular (LV)
dysfunction predicting global longitudinal strain reduction
during trastuzumab treatment (92). Because of the few
histological correlates and the cardiac symptoms disappearing
after withdrawal, HER-2-targeting mAb is commonly viewed as
transient. So there were few breast cancer patients that showed
LV function damage (73, 93). Cardiac progenitor cells ensure the
limited capability of heart regeneration following injury, and
the HER-2-targeting drugs have the ability to hinder the
cardiomyogenic and angiogenic capacities of cardiac graft
enriched for these cells (94). Some studies have pointed out
that neuregulin-1 (NRG-1) may play a major role in the
formation of cardiac toxicity in HER-2-targeting treatment (95).
NRG-1 is the ligand of HER-4; NRG-1 can induce the protective
response of cardiomyocyte stress by binding of HER-4/HER-4
homodimers and HER-4/HER-2 heterodimers in animal models
and cell culture studies. Moreover, cardiomyocytes from Erbb-2
knockout mice are more susceptible to cause chemotherapy
toxicity of myofibrillar disarray. According to the above
mechanism, HER-2-targeting mAb antagonists may impede the
formation of NRG-1-triggered HER-4/HER-2 heterodimers to
produce cardiac damage (96). The emergence of some doubts,
such as HER-2-targeting therapy for downregulation of HER-2 in
the mouse cardiac tissue instead of cancer cells (97, 98) and the
validity of the NRG-1/HER-2 paradigm (99), suggests that there
are still unknown specific mechanisms to explore in the formation
of cardiotoxicity by HER-2-targeting therapy. Due to that
traditional chemotherapy drugs and targeted drugs have certain
cardiac toxicity in breast cancer treatment, the combination
Frontiers in Oncology | www.frontiersin.org 5
application of anthracyclines and HER-2-targeted therapy seems
to significantly increase vascular endothelial dysfunction
compared with targeted therapy alone. However, the predictive
effect of the combination of anthracyclines and HER-2-targeted
therapy on cardiotoxicity in breast cancer patients remains to be
confirmed (100). So breast cancer patients should try to avoid the
combined application of HER-2-targeting and anthracycline
therapy, or apply beta-blockers for protection.
CDK4/6 INHIBITORS
INDUCED CARDIOTOXICITY

Cyclin-dependent kinase (CDK) family members interact with
cyclin D proteins to play an important role in cell-cycle
progression, so the CDK family represents a potential target for
tumors including breast cancer. Cyclin-dependent kinases 4 and 6
(CDK4/6) in complex with cyclin D subunits phosphorylated the
antiproliferative retinoblastoma (Rb), which can regulate the
progression of the cell cycle by binding with the E2F family of
transcription factors, allowing increased synthesis of genes
importantly for DNA replication and thus progression from
Phases G1 to S of the cell cycle (101, 102). Because inhibitors of
CDK4/6 have the function of blocking the proliferation of tumor
cells, they have been persistent in clinical trial development for the
treatment of ER-positive and HER-2-negative breast cancer in the
last decade. The typical breast cancer-targeting drugs of CDK4/6
inhibitors include palbociclib, ribociclib, and abemaciclib.

Palbociclib and ribociclib, in combination with other
adjuvant treatments for advanced or metastatic breast cancer,
are CDK inhibitors with a similar mechanism. Palbociclib tends
to apply in hormone receptor-positive and HER-2-negative
breast cancer patients. These two agents have shown different
cardiotoxic effects with unclear mechanisms. In particular,
ribociclib has been associated with QT interval prolongation,
but not palbociclib (103). However, in a recent mouse model
study, palbociclib was found to protect cardiac tissue from
necrosis, localized fibrosis, and hypertrophy of cardiomyocytes
in diabetic cardiomyopathy interestingly (104). As a new CDK4/
6 inhibitor to metastatic breast cancer treatment for about 3
years, abemaciclib does not have sufficient clinical feedback
on cardiotoxicity.
PARP AND PI3K/AKT/MTOR PATHWAY
INHIBITORS INDUCED CARDIOTOXICITY

Poly ADP-ribose polymerases (PARP) are a group of DNA
damage-repairing enzymes. PARP1/2 assists in the repair of
single-strand breaks through base excision repair. Inhibition of
PARP results in the trapping of the PARP–DNA complex at
replication forks, causing single-strand breaks to become double-
strand breaks (105). Tumor-suppressor gene brca1/2 accounts
for about 10% of breast cancer cases, and the lifetime risk of
developing breast cancer in brca1/2 mutation carriers is about
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70% (106). BRCA1/2 are responsible for the repair of double-
strand DNA breaks; deficiency of BRCA1/2 is particularly
sensitive to the effects of PARP inhibition owing to repair
double-strand break dysfunction. The PARP inhibitor olaparib
has been applied in HER-2-negative, metastatic breast cancer
with a brca1/2 mutation for only about 10 years (107). The
adverse effect data were limited due to the short duration of
olaparib clinical application, including cardiotoxicity. According
to the recent studies, no cardiotoxicity of olaparib was found,
such as heart failure or QT/QTc interval (108). However, in a rat
model, olaparib protected cardiomyocytes against oxidative
stress and improved graft contractility in heart transplantation,
and this may show the possibility of tumor-targeting drug
olaparib for heart transplantation (109).

The PI3K/AKT/mTOR pathway can regulate cell growth,
survival, and proliferation. The mammalian target of
rapamycin (mTOR) is a key modulator of signals governing
protein and lipid biosynthesis and cell-cycle progression, so
mTOR can drive cancer growth by activating the lipid and
protein biosynthesis (110). The mTOR inhibitor everolimus
(Afinitor), a derivative of rapamycin, binds with high affinity
to its intracellular receptor FKBP12. The everolimus–FKBP12
complex inhibits mTOR to prevent the downstream signaling
required for cell-cycle progression, cell growth, and proliferation
(111). Everolimus is therefore used for mTOR-positive,
hormone receptor-positive, and HER-2-negative advanced
breast cancer in clinic to restore hormone sensitivity. In
limited studies of everolimus to breast cancer, there were no
serious adverse effects treated with everolimus so far, such as
acute coronary events, arrhythmias, acute heart failure, and left
ventricle ejection fraction. However, other metabolic syndromes,
hyperglycemia and hyperlipidemia, associated with cardiotoxicity
were reported, so it may lead to a risk of aggravating
atherosclerosis (112).
Frontiers in Oncology | www.frontiersin.org 6
ER-TARGETING DRUGS
INDUCED CARDIOTOXICITY

Tamoxifen (Nolvadex), an estradiol competitive modulator, can
bind with ER to deactivate the transcription for early or advanced
breast cancer (113). The most common cardiac adverse effect of
tamoxifen was ischemic heart disease in clinic (114). However,
according to the modulating lipid metabolism function of
tamoxifen, tamoxifen may decrease the risk of cardiovascular
disease, but it was not shown to have any benefit on
cardiovascular risk in breast cancer treatment (115–117).
Toremifene citrate, a selective estrogen receptor modulator, was
developed in the 1990s with the efficacy similar to tamoxifen and
with an improved safety profile. During these years, a number of
studies have investigated the association between toremifene
citrate and cardiovascular mortality, but it is still unclear
whether the relationship exists (118). Fulvestrant, a highly
selective estrogen receptor downregulator for postmenopausal
HR+/HER-2- advanced breast cancer patients by injection, can
bind with ER and accelerate its degradation (119). Fulvestrant is
extremely well tolerated with rare occurrence of ischemic
cardiovascular disorders, atrial tachycardia, and cardiac failure
adverse effects (120–122).
AROMATASE INHIBITORS
INDUCED CARDIOTOXICITY

Estrogen in postmenopausal women relies on aromatase enzymes
to convert androgen from the adrenal cortex into estrogen.
Aromatase inhibitors (AI), including anastrozole, letrozole, and
exemestane, acted as first-line endocrine therapy for advanced
breast cancer in postmenopausal women. Anastrozole and
TABLE 2 | The published potential molecular biological mechanisms of cardiotoxicity for breast cancer adjuvant treatment.

Drugs for breast cancer treatment Potential molecular mechanisms of cardiac toxicity References

Chemotherapy drugs
Anthracycline (epirubicin, daunorubicin, idarubicin) a. The damage of oxygen free radicals.

b. interaction with the topoisomerase-II-beta enzyme (Top2b) in myocytes
(11, 15–17,
25)

Taxanes Interfere with the metabolism and excretion of anthracycline (28)
Cyclophosphamide a. Oxidative and nitrative stress.

b. Protein adduct formation.
(29, 30)

5-Fluorouracil and capecitabine Vasospasm and thrombosis.
Oxidative stress

(36, 39–43)

Radiotherapy Vascular damage and higher abnormalities after left-breast irradiation (46, 48, 49)
Targeting drugs
Anti-Her-2 targeting drugs (trastuzumab, pertuzumab, lapatinib) a. May decrease phosphorylated ERK (MAPK) and increase intracellular

doxorubicin concentrations.
b. Hinder the cardiomyogenic and angiogenic capacities.
c. Neuregulin-1 (NRG-1) bind with HER-4

(89, 90, 94–
96)

CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) Unclear
PARP and PI3K/AKT/mTOR pathway inhibitors (olaparib, rapamycin,
everolimus)

Aggravating atherosclerosis, hyperglycemia, and hyperlipidemia. (112)

ER targeting drugs (tamoxifen, toremifene citrate, fulvestrant) Ischemic disorder. (115, 121)
AI (anastrozole, letrozole, exemestane) a. Causing hypercholesterolemia.

b. Renin–angiotensin system related genes changing
(123–127)
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letrozole are two reversible aromatase inhibitors; the irreversible
aromatase inactivator was exemestane.

Letrozole and anastrozole can reduce plasma estrogen levels for
advanced breast cancer in postmenopausal women who cannot be
controlled by anti-estrogen therapies. According to clinical data,
blood lipids seem to be increased during therapy with AI
(anastrozole, letrozole, and exemestane), leading to a series of
cardiac adverse events probably by hypercholesterolemia (123–
126). Moreover, in real-time PCR analysis for rats models,
letrozole can induce significant changes in renin–angiotensin
system-related genes to result in cardiac events (127).

However, the AI application rarely led to significant cardiac
adverse events in clinical treatment over the years. In the
treatment with trastuzumab plus anastrozole, only one patient
experienced congestive heart failure (128). In rare cases,
anastrozole could cause myocardial infarction independent of
treatment time (129).
CONCLUSION

Chemotherapy and radiotherapy are important adjuvant treatments
for breast cancer patients, and new treatment strategies targeting
HER-2, CDK4/6, ER, or aromatase have appeared in recent years.
With the increase in clinical application, these treatment strategies
were found to be associated with cardiac adverse effects through
different pathophysiological mechanisms (Table 2). Compared with
other adjuvant treatments of breast cancer, more and more newly
found targeting agents for breast cancer were applied in clinics with
less cardiotoxicity. However, it is also necessary to provide
appropriate cardiac monitoring and initiation of cardiovascular
medication to reveal cardiac dysfunction.
Frontiers in Oncology | www.frontiersin.org 7
Guidelines for the monitoring and management of cancer
treatment-induced cardiotoxicity are available from the
American Society of Clinical Oncology (ASCO) and the
European Society of Cardiology (ESC) (130, 131). We have seen
a number of patients with heart disorders after breast cancer
treatment in clinic. Thus, the treatment plan for each individual
breast cancer patient must be carefully considered to choose both
the appropriate therapy and the necessary cardiac monitoring
plan. As cardiotoxicity of breast cancer therapy is well recognized,
there was little evidence for the treatment of patients with baseline
cardiac diseases in clinic. Clinically, breast cancer patients with
cardiac dysfunction and arrhythmias are often monitored and
intervened during the treatment, such as application of
angiotensin-converting-enzyme (ACE) inhibitors or beta-
blockers. Therefore, collaboration among pharmacologists,
cardiologists, and oncologists in both scientific research and
clinical trial is important to develop cardioprotective strategies
for breast cancer patients.
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