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Abstract. Sepsis is a systemic inflammatory response 
syndrome that develops in the host against microorganisms. 
This response develops away from the primary infection site 
and results in end‑organ damage. The present study aimed 
to investigate the protective and therapeutic effects on lung 
and kidney tissue of silymarin (S) and dexmedetomidine 
(DEX) applied 1 h before and after sepsis induced by the 
cecal ligation and puncture (CLP) method in rats. A total of 
62 rats was randomly divided into eight groups: i) Control 
(n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S 
+ CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S 
administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; 
DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX 
administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX 
administered 1 h before CLP) and viii) CLP + SD (n=8; S 
and DEX administered 1 h after CLP). After the cecum filled 
with stool, it was tied with 3/0 silk under the ileocecal valve 
and the anterior surface of the cecum was punctured twice 
with an 18‑gauge needle. A total of 100 mg/kg silymarin 
and 100 µg/kg DEX were administered intraperitoneally to 
the treatment groups. Lung and kidney tissue samples were 
collected to evaluate biochemical and histopathological 
parameters. In the histopathological examination, all param‑
eters indicating kidney injury; interstitial edema, peritubular 

capillary dilatation, vacuolization, ablation of tubular epithe‑
lium from the basement membrane, loss of brush border in 
the proximal tubule epithelium, cell swelling and nuclear 
defragmentation; were increased in the CLP compared with 
the control group. Silymarin administration increased kidney 
damage, including ablation of tubular epithelium from the 
basement membrane, compared with that in the CLP group. 
DEX significantly reduced kidney damage compared with the 
CLP and silymarin groups. The co‑administration of DEX + 
silymarin decreased kidney damage, although it was not as 
effective as DEX‑alone. To conclude, intraperitoneal DEX 
ameliorated injury in CLP rats. DEX + silymarin partially 
ameliorated injury but silymarin administration increased 
damage. As a result, silymarin has a negative effects with this 
dosage and DEX has a protective effect. In the present study, 
it was determined that using the two drugs together had a 
greater therapeutic effect than silymarin and no differences in 
the effects were not observed any when the application times 
of the agents were changed.

Introduction

Sepsis is a systemic inflammatory response syndrome (SIRS) 
that develops in the host against microorganisms. This response 
develops away from the primary infection area and results 
in end‑organ damage (1). The response that occurs during 
infection in healthy individuals continues with pathogen recog‑
nition, control and rapid tissue repair (2,3). Upon activation of 
the cell‑mediated immune response, anti‑/pro‑inflammatory 
mediators are released (4,5). Overactivation by powerful 
pathogens leads to endothelial damage, tissue hypoperfusion, 
disseminated intravascular coagulation, treatment‑resistant 
shock, multiple organ damage and death (6). Although a number 
of treatment methods have been developed such as antibiotics, 
corticosteroids, fluid and adjunctive therapies; SIRS and sepsis 
have high mortality and morbidity in intensive care units (7). 
In 2017, 48.9 million cases of sepsis were reported worldwide, 
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of which 11 million resulted in death (8). Similar proportions 
of mortality and incidence have been reported in European 
countries (9‑14). The current clinical approach to treatment 
starts with early diagnosis, identification of the source of 
infection and early antibiotic treatment, with corticosteroids 
also playing an important role (1). However, although there 
are studies showing that steroid treatment reduces mortality 
in sepsis, its effects on long‑term mortality are controver‑
sial (15,16). Therefore, the effectiveness of novel drugs is being 
investigated in experimental and clinical studies (17‑21).

Milk thistle (Silybum marianum) is a historical medicinal 
plant and its well‑known flavonoid silymarin is an agent 
that has promising therapeutic efficacy in different clinical 
studies (22‑24). S. marianum is a herbal product used in 
Ancient Greek medicine to treat gallbladder disorder and 
protect the liver from toxic agents (25). Furthermore, sily‑
marin preparations have been used to treat liver and other 
gastrointestinal diseases due to hepatoprotectivity, neuro‑
protectivity, anti‑fungal and anti‑cancer activity (23,26,27). 
The anti‑inflammatory activity of silymarin may underlie 
the positive effects of the agent (26,28). Several studies have 
demonstrated the anti‑inflammatory activities of silymarin, 
which inhibits interferon‑g, IL‑4 and IL‑10 in a dose‑depen‑
dent manner (29‑31). Silymarin suppresses NF‑κB binding 
transporter gene transcription in a rat model of sepsis (32). 
In addition to its cell‑protective effects via antioxidative and 
radical scavenging activity, silymarin also acts via specific 
receptor interactions such as P‑glycoproteins and estrogen 
and nuclear receptors (29). Derivatives of silymarin could 
provide new avenues for therapeutic applications. However, 
although certain researchers have reported silymarin to be 
well‑tolerated and safe clinically, there are also conflicting 
results (24,33‑35). While gastrointestinal and neurological side 
effects were reported in the study by Schrieber et al (33); there 
are also studies in the literature, in which no adverse events 
were observed despite using similar or higher doses (34,35). 
Therefore, it is crucial that this agent be studied experimen‑
tally in organs and tissues before use in clinical practice. 
Furthermore, the origin of the milk thistle plant, from which 
silymarin is obtained, is along the Mediterranean coast of 
Europe and therefore, the fact that this herbal flavonoid is 
quite common in Anatolia (36) was also effective in its selec‑
tion in the present study as it is possible to obtain pure raw 
materials from this plant in Turkey, where the present study 
was performed.

The activation of adrenergic α2 receptors causes 
hypotension, bradycardia, sedation, arterial and venous 
vasoconstriction, decreased presynaptic transmitter release, 
thrombus stabilization, hypothermia, decreased gastric acid 
secretion and motility and inhibition of lipolysis and pancre‑
atic insulin release (37,38). A number of studies has shown that 
sepsis is associated with sympathetic overactivation, which 
may contribute to end‑organ damage (39,40). In septic shock, 
increased endogenous sympathetic outflow plays a major role 
in maintaining vascular tone and tissue perfusion (41). Despite 
elevated concentrations of endogenous vasoconstrictors, such 
as noradrenaline, downregulation of adrenergic receptors and 
post‑receptor signaling pathways leads to significant decline in 
vascular response (40,41). To prevent the negative consequences 
of excessive sympathetic flow, researchers have investigated the 

use of sympathetic blockade in the treatment of sepsis (42,43). 
According to Pichot et al, inhibiting sympathetic activity with 
an α2 agonist corrects vascular reactivity by upregulating 
α1 receptors in septic shock, thereby decreasing the need 
for vasopressors (44). Similarly, response to norepinephrine 
decreases following application of lipopolysaccharide and 
the administration of α2 agonists increases this response 
in rats (45). Dexmedetomidine (DEX), is one of the most 
commonly used sedation agents in intensive care (46‑48). As a 
highly selective α2‑adrenoreceptor agonist, DEX serves as an 
adjunctive therapy through pro‑inflammatory downregulation 
and control of the anti‑inflammatory response in patients with 
sepsis (49). DEX suppresses the release of TNF‑α, IL‑6, IL‑8 
and high mobility group box‑1 (HMGB‑1) in human whole 
blood cultured with lipopolysaccharide (50). The suppres‑
sive effect of DEX on proinflammatory mediator production 
occurs via α2 adrenergic receptors (49). There are numerous 
experimental and retrospective observational studies on the 
benefits of this agent in sepsis, which is the most common 
cause of mortality in intensive care units (8,51). To the best of 
our knowledge, however, there are still insufficient data on the 
specific protective benefits of this agent on tissue and organs. 
Various studies have shown that DEX, similar to silymarin, 
has potential benefits by inducing antioxidant pathways in 
different clinical situations such as ischemia‑reperfusion, 
cancer and sepsis (52‑55). Therefore, it was hypothesized these 
two agents together may show strong antioxidant activity and 
decrease tissue and organ damage.

There are three current approaches frequently used to 
construct sepsis models: Lipopolysaccharide administration, 
intravascular or intraperitoneal administration of live bacteria 
and the cecal ligation and puncture (CLP) method (56). 
The CLP method provides the closest results to sepsis in 
humans (57). Although the efficacy of experimental sepsis 
models in animals and their adaptability to human studies 
have been discussed for some time (58), the cecal ligation and 
puncture method still remains valid (59).

The aim of the present study was to investigate the 
protective and therapeutic effects of silymarin and DEX in 
CLP‑induced sepsis in rat lung and kidney tissues.

Materials and methods

Animal studies. The present study was conducted at the 
Gazi University Animal Experiments Laboratory (Ankara, 
Turkey) in July 2021 in accordance with the ARRIVE guide‑
lines (60). The present study was approved by The Local 
Ethics Committee of Gazi University Animal Experiments 
(approval no. G.Ü.E.T‑20.022; Ankara, Turkey). Animal 
studies were performed in accordance with The Guide for 
the Care and Use of Laboratory Animals by the National 
Institutes of Health (61). A total 62 male Wistar Albino rats 
(Gazi University Animal Experiments Laboratory, Ankara, 
Turkey) weighing 225‑300 g were used. Rats were kept in a 
temperature‑controlled (21±1˚C) and humidity‑controlled 
(45‑55%) room and were maintained under a 12‑h light/dark 
cycle. The animals were fed a standard pellet diet and allowed 
to drink water ad libitum. Rats were randomly divided into 
eight groups as follows: i) Control (n=6); ii) cecal perforation 
(CLP; n=8); iii) silymarin + CLP (n=8; S + CLP; silymarin 
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administered 1 h before CPL); iv) CLP + S (n=8; silymarin 
administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; 
DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX 
administered 1 h after CLP); vii) SD + CLP (n=8; silymarin 
and DEX administered 1 h before CLP) and viii) CLP + SD 
(n=8; silymarin and DEX administered 1 h after CLP).

Rats were anesthetized by 50 mg/kg intramuscular 
ketamine hydrochloride (Ketalar® vial; Parke‑Davis; Pfizer, 
Inc.) and 10 mg/kg xylazine hydrochloride (Alfazyne; 2%; 
EGE VET) and placed on a heating pad to maintain their body 
temperature. Midline laparotomy was performed in rats whose 
skin was aseptically prepared. The intestines were removed 
using wet gauze. In the control group, the cecum was manipu‑
lated. However, drilling and ligation were not performed.

After the cecum filled with stool, it was tied with 3/0 silk 
under the ileocecal valve and the anterior surface of the cecum 
was punctured twice using an 18‑gauge needle. No treatment 
(e.g., dexmedetomidine or slymarin) was applied to the sham 
or CLP group. Saline was applied to the peritoneal space to 
minimize heat and fluid loss. A total of 100 mg/kg silymarin 
(Sigma‑Aldrich; Merck KGaA; cat. no. SO292‑50G) and 
100 µg/kg DEX (Sedodamid; 100 µg/2 ml; Koçak Farma®) 
was administered intraperitoneally to the treatment groups. 
All the rats were sacrificed 24 h after the operation; rats 
were anesthetized with ketamine (50 mg/kg) and xylazine 
(10 µg/kg) and sacrificed by collecting blood (5‑10 ml) from 
the abdominal aorta. After heartbeat and respiration ceased, 
rats were monitored for a further 2 min to confirm death. 
Tissue samples were stored at ‑70˚C for biochemical analysis 
and immersed in 10% neutral buffered formalin for histo‑
pathological assessment.

In the present study, two rats were lost in the CLP and S + 
CLP groups and one rat in the CLP + S group. No losses were 
observed in any of the other groups. In the first 24 h, 
mortality rates in the CLP and S groups were similar to those 
reported by Kang et al (32), Al‑Kadi et al (62) and Canikli 
Adıgüzel et al (63).

Histopathological evaluation. Lung and kidney tissue speci‑
mens were fixed in 10% neutral‑buffered formalin for 48 h 
at room temperature and embedded in paraffin after routine 
tissue processing. Tissue specimens were dehydrated through 
an increasing‑grade series of ethanol. Dehydrated specimens 
were cleared in xylene, infiltrated in liquid paraffin at 60˚C, and 
embedded in paraffin. Thereafter, 5 µm‑thick tissue sections 
were cut from paraffin blocks using a microtome (Leica SM 
2000; Leica Microsystems GmbH) and stained with hema‑
toxylin and eosin (H&E) to analyze histopathological changes. 
Lung and kidney sections were incubated with hematoxylin 
and eosin stain solutions for 12 min each, at room temperature. 
The stained sections were assessed under a light microscope 
(Leica DM 4000 B; Leica Microsystems GmbH) equipped 
with a computer, and micrographs were captured using Leica 
LAS V4.9 software (Leica Microsystems GmbH).

H&E‑stained kidney sections were examined under x400 
magnification and renal injury was evaluated semi‑quanti‑
tatively. Histopathological parameters, including interstitial 
edema, peritubular capillary dilatation, vacuolization, ablation 
of tubular epithelium from the basement membrane, loss of 
brush border in the proximal tubule epithelium, cell swelling 

and nuclear defragmentation, were scored 0‑3 (0, none; 1, mild; 
2, moderate; 3, severe) and the mean score was determined for 
each parameter in each group (64).

H&E‑stained lung samples were examined under 200x and 
400x magnification and lung injury was assessed semi‑quan‑
titatively. Alveolar wall thickening, capillary congestion, 
intra‑alveolar hemorrhage and interstitial and intra‑alveolar 
neutrophil infiltration were scored 0‑3 (0, none; 1, mild; 2, 
moderate; 3, severe), and the mean score was determined for 
each parameter (65).

Biochemical determination. Total antioxidant status (TAS) and 
total oxidative status (TOS) were analyzed in blood samples. 
TAS and TOS were measured using test kits according to 
the manufacturer's instructions (Rel Assay Diagnostics®). 
TAS levels were calculated as follows: TAS=[(ΔAbsorbance 
(Abs) H2O‑ΔAbs sample)/(ΔAbs H2O‑ΔAbs standard)], 
and the results were expressed in mmol Trolox Eq/l. TOS 
levels were calculated as follows: TOS=(ΔAbs sample/ΔAbs 
standard) x standard concentration (10 µmol/l), and the results 
were expressed in µmol H2O2 Eq/l.

Statistical analysis. All data are expressed as the mean ± stan‑
dard deviation (SD) or standard error of mean (SEM). The 
experiments was performed once. All statistical analyses 
were performed using SPSS (version 26.0; IBM Corp.). The 
distribution of data was analyzed using the Shapiro‑Wilk 
test. Comparisons of >2 groups were performed using 
Kruskal‑Wallis test followed by Dunn's post hoc test or 
one‑way ANOVA followed by Tukey's post hoc test. P<0.05 
was considered to indicate a statistically significant difference. 
The intention to treat analysis method was used (66‑68).

Results

Kidney tissue histopathological results. The mean scores for 
histopathological changes in kidney specimens are summa‑
rized in Table I. The severity of interstitial edema in kidney 
was significantly different between the groups (P=0.003); it 
was more severe in the CLP, S + CLP, SD + CLP and CLP + SD 
groups than in the control group (P=0.008, P=0.001, P=0.016 
and P=0.004, respectively). Interstitial edema was decreased 
in the D + CLP group compared with that in the CLP group 
(P=0.013). The interstitial edema score was significantly 
lower in the D + CLP and CLP + D groups than in the S + 
CLP group (P=0.001 and P=0.013, respectively). Peritubular 
capillary dilatation mean scores were also different (P=0.034), 
with a significantly higher score in the CLP, S + CLP and 
CLP + S groups than in the control group (P=0.047, P=0.012 
and P=0.012, respectively), whereas it was lower in the CLP + D 
and CLP + SD groups than in both the S + CLP (P=0.020 
and P=0.020, respectively) and CLP + S groups (P=0.020 and 
P=0.020, respectively; Table I; Fig. 1). Focal cystic formations 
along the more prominent tubular dilatation were observed 
in the cortex and medulla of the kidney from S + CLP and 
CLP + S groups (Fig. 1).

Lung tissue histopathological results. The histopathological 
changes in the lung samples are summarized in Table II. 
Alveolar wall thickening in lung scores were significantly 
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Figure 1. Hematoxylin and eosin‑stained kidney sections. Black arrowhead, dilatation of peritubular capillaries. Waved arrow, loss of brush border in proximal 
tubule epithelium. Black arrow, vacuolization in tubular epithelial cells. Hollow arrowhead, interstitial edema. Hollow arrow, ablation of tubular epithelium 
from the basement membrane. Asterisk, focal cysts in both the cortex and medulla. CLP, cecal ligation and puncture; S, silymarin; D, dexmedetomidine; 
SD, S + D.



YAVUZ et al:  EFFECT OF SILYMARIN AND DEXMEDETOMIDINE ON KIDNEY AND LUNG TISSUE6

different between the groups (P<0.0001). Alveolar wall 
thickening in the CLP, S + CLP, CLP + S, D + CLP, CLP + 
D and CLP + SD groups was greater than that in the control 
group (P<0.0001, P<0.0001, P=0.004, P=0.012, P=0.004 and 
P=0.012, respectively). However, it was significantly reduced 
in S + CLP, CLP + S, D + CLP, CLP + D, SD + CLP and CLP + 
SD groups compared with the CLP group (P=0.002, P<0.0001, 
P<0.0001, P<0.0001 and P<0.0001, respectively). Furthermore, 
this decrease was more prominent in the SD + CLP group than 
that of the S + CLP group (P=0.007). The difference in severity 
of interstitial neutrophil infiltration between the groups was 
also significant (P=0.015). It was significantly more severe 
in the CLP than in the control group (P<0.0001), whereas it 
was improved in the S + CLP, CLP + S, D + CLP, CLP + D, 
SD + CLP and CLP + SD groups compared with that in the 
CLP group (P=0.024, P=0.007, P=0.024, P=0.007, P<0.0001 
and P=0.007, respectively). By contrast, intra‑alveolar neutro‑
phil infiltration scores of all the groups were similar (P=0.158; 
Table II; Fig. 2).

Lung tissue biochemical results. There was a significant 
difference in lung TOS and TAS levels (P=0.001 and P=0.001, 
respectively). The TOS levels were significantly higher in the 
CLP, S + CLP, CLP + S, SD + CLP and CLP + SD groups than 
in the control group (P<0.0001, P<0.0001, P<0.0001, P=0.044 
and P=0.005, respectively). TOS levels were significantly 
lower in the D + CLP, CLP + D and SD + CLP groups than 
in the CLP group (P=0.032, P=0.002 and P=0.043, respec‑
tively). TOS levels were significantly lower in the D + CLP 
and CLP + D groups than in the S + CLP group (P=0.041 
and P=0.006, respectively; Fig. 3). Similarly, TOS levels were 
significantly lower in the D + CLP and CLP + D groups than 
in the CLP + S group (P=0.036 and P=0.003, respectively; 
Fig. 3).

TAS levels were significantly lower in the CLP, S + CLP 
and CLP + S groups than in the control group (P=0.002, 
P=0.039 and P=0.047, respectively). TAS levels were 
significantly higher in the D + CLP, CLP + D, SD + CLP and 
CLP + SD groups than in the CLP group (P<0.0001, P<0.0001, 
P=0.001 and P<0.0001, respectively). Similarly, TAS levels 
were significantly higher in the D + CLP, CLP + D, SD + CLP 
and CLP + SD groups than in the S + CLP group (P=0.014, 
P=0.008, P=0.035 and P=0.021, respectively; Fig. 4).

Kidney tissue biochemical results. There was a significant 
difference in kidney TOS and TAS levels (P<0.0001 and 
P<0.0001, respectively). TOS levels were significantly higher 
in the CLP, S + CLP and CLP + S groups than in the control 
group (P=0.004, P=0.010 and P=0.027, respectively). TOS 
levels were significantly lower in the D + CLP, CLP + D and 
SD + CLP groups than in the CLP group (P<0.0001, P<0.0001 
and P=0.006, respectively). TOS levels were significantly 
lower in the D + CLP, CLP + D and SD + CLP groups than in 
the S + CLP group (P<0.0001, P=0.001 and P=0.015, respec‑
tively). Similarly, TOS levels were significantly lower in the 
D+ CLP, CLP + D, SD + CLP and CLP+ SD groups than in 
the CLP + S group (P=0.001, P=0.003, P=0.035 and P=0.042, 
respectively; Fig. 5).

TAS levels were significantly lower in the CLP, S + CLP 
and CLP + S groups than in the control group (P<0.0001, 

P=0.044 and P=0.035, respectively). TAS levels were signifi‑
cantly higher in the D + CLP, CLP + D, SD + CLP and CLP + 
SD groups than in the CLP group (all P<0.0001). The TAS 
levels were significantly higher in the D + CLP, CLP + D and 
CLP + SD groups than in the CLP group (P=0.005, P=0.003 
and P=0.012, respectively). Similarly, TAS levels were signifi‑
cantly higher in the D + CLP, CLP + D, and CLP + SD groups 
than in the S + CLP group (P=0.044, P=0.002, and P=0.009, 
respectively; Fig. 6).

Discussion

In the clinical use of agents, prophylactic efficacy is as 
important as therapeutic efficacy. Therefore, the present study 
aimed to observe both the therapeutic and preventive effects of 
dexmedetomidine and silymarin. The present study observed 
differences following application of agents both before and 
after sepsis modeling.

Silymarin and DEX have been used in different doses in 
different studies and a definite effective dose has not been 
determined yet (24,69). In the present study, dose selection 
was based on similar studies (70‑75). Treatment time was also 
determined based on previous studies, but since both preven‑
tive and therapeutic effects were investigated in the clinical 
sepsis model, separate groups were created for application 
times (62,76).

Since the polymicrobial peritonitis table created by the 
CLP model is termed sepsis in studies in the literature (77‑84), 
it was assumed that the clinical picture created by the CLP 
method in the present study constitutes a sepsis model. CLP, 
which is an experimental technique, may not mimic sepsis 
in exactly the same way. Of course, due to the dynamic and 
developing nature of science, it may be possible to perform 
more accurate sepsis modeling in the coming years if different 
techniques are discovered.

In the present study, histopathological damage in lung 
and kidney tissue following sepsis modeling was observed. 
However, this damage was accompanied by decreased TAS and 
increased TOS. Tissue oxidant‑antioxidant balance may result 
in organ damage, which is in line with the literature (85,86). 
Sepsis is a common clinical problem and silymarin and 
DEX have shown promising results in recent experimental 
studies (87‑90).

Sepsis is the most common cause of mortality in intensive 
care units (91). Lung and kidney involvement is relatively 
common in sepsis, and dysfunction of these organs is asso‑
ciated with poor survival outcome (92,93). Therefore, it has 
become increasingly important to identify agents that have 
therapeutic or protective effects on the lungs and kidney 
during sepsis.

Silymarin is a herbal flavonoid obtained from the seeds 
or fruits of S. marianum (thistle) (25). Flavonoids, a class 
of secondary metabolites of plants and fungi, have both 
prooxidant and antioxidant activity due to their poly‑
phenolic structure (94,95). These effects vary depending 
on the dose and cell or tissue types (72). For example, 
Malekinejad et al (96) determined that silymarin applied 
at the same dose and time had a protective effect on the 
liver, while increasing damage in the brain. Numerous 
studies have examined the curative and protective effects of 
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silymarin on kidney and lung tissue through various mecha‑
nisms (94,95,97).

Al‑Kadi et al showed that 1 h after CLP induction, 
100 mg/kg silymarin has a protective effect on kidney 
tissue (62). Toklu et al (94) studied serum and plasma oxidation 
markers in lung tissue and concluded that 50 mg/kg per oral 
silymarin has potential therapeutic efficacy in a similar sepsis 
model and they found that silymarin may reduce sepsis‑induced 
oxidative organ injury and that this can be attributed to its 
ability to balance oxidant‑antioxidant status. By contrast with 
previous studies (32,88,94) in the present study, silymarin 
was administered 1 h before and after sepsis induction. In our 

study, a decrease in organ damage was observed in the kidney 
and lung tissues examined in histopathological samples, but 
no statistically significant difference was detected between 
the groups. In addition, TAS and TOS measurements did not 
improve in the silymarin‑treated groups (S + CLP, CLP + S). 
This may indicate that the biochemical improvement reported 
in the literature (98,99) does not significantly contribute to 
tissue damage observed in sepsis.

Silymarin improves kidney tissue damage (62,71,95), however, 
this was not observed in the present study. This may be due to 
differences in the mechanisms that cause damage (ischemia reper‑
fusion, sepsis, toxicity, malignancy) or changes in the selection of 

Figure 2. Representative micrographs of hematoxylin and eosin‑stained lung sections. Arrowhead, intra‑alveolar hemorrhage. Arrow, capillary congestion. 
Waved arrow, interstitial neutrophil infiltration. Hollow arrowhead, neutrophils within the alveolar space. CLP, cecal ligation and puncture; S, silymarin; 
D, dexmedetomidine; SD, S + D.
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drug doses. Flavonoids have also been shown to have pro‑oxidant 
activity and these pro‑oxidant mechanisms are thought to provide 
anticarcinogenic activity by triggering cell death in malignant 
cells (100). Therefore, silymarin has different effects on different 
tissues at different doses (72,96,100). Although the antioxidant 
activity of silymarin is well‑known (22,100,101), further studies 
are required to understand its protective effects against sepsis and 
associated organ damage. In the review of Soleimani et al (24), 
the side effects and doses used in the studies conducted with sily‑
marin were examined and it was seen that it can be used safely 
at a number of different doses. However, present study suggested 
that it may have a prooxidant effect on the lung and kidney at the 
dose used in the experimental sepsis model (100 mg/kg, intraperi‑
toneal). The continued use of silymarin, one of the oldest known 

plant‑derived medicinal agents, in experimental studies may be 
due to novel effects, as demonstrated in the present study.

Although silymarin has demonstrated promising results in 
numerous clinical situations (31,35,72), it needs larger studies 
with different doses and drug combinations before it can 
be used clinically for its therapeutic or prophylactic effects. 
The present study evaluated both preventive and therapeutic 
efficacy, performed with the one of the highest intraperitoneal 
doses found in the literature (102) and also including inter‑
action with a different agent. It was hypothesized that the 
dose of silymarin used had a pro‑oxidant effect, as in other 
studies (72,96,100), and that this is why the animal losses 
occurred. Using the two drugs together had a greater thera‑
peutic effect than silymarin.

Figure 3. Lung tissue TOS levels (mean ± SD). P<0.05 vs. *control, **CLP, ***S + CLP and ****CLP + S. CLP, cecal perforation; S, silymarin; D, dexmedetomi‑
dine; SD, S + D; TOS, total oxidative status.

Figure 4. Lung tissue TAS levels (mean ± SD). P<0.05 vs. *control, **CLP, ***S + CLP. CLP, cecal perforation; S, silymarin; D, dexmedetomidine; SD, S + D; 
TAS, total antioxidant status.
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DEX is a α2‑adrenergic receptor agonist that exerts sympa‑
tholytic effects such as anxiolysis, sedation and analgesia in 
certain regions of the brain (103). Owing to the absence of 
side effects such as respiratory depression, it is a frequently 
preferred agent for sedation in intensive care units (104). The 
positive effects of DEX on in vitro experimental sepsis models 
have been reported in literature (105,106). For example, 
Koca et al (107) applied 50 µg/kg DEX to rats and observed 
improvements in both histomorphological and immunohis‑
tochemical findings in a sepsis model using CLP technique. 
Different hypotheses have been proposed for the similar 
organ‑protective effects of DEX and positive results have 
been obtained. Li et al (108) suggested that the lung protective 
effect of dexmedetomidine in septic rats was achieved through 

increasing vagal tone; Wu et al (109), in the same experimental 
model, argued that the protective effect occurs through the 
TLR4/NF‑κB pathway. Qiu et al (76) observed that DEX 
decreased acute renal failure and increased survival in a sepsis 
model. They also suggested that this effect occurred via the 
NF‑KB pathway induced by lipoxin A4.

In the present study, it was hypothesized that DEX, which 
is known to regulate the oxidant‑antioxidant balance in isch‑
emia‑reperfusion models (74,75), may show organ‑protective 
effects in sepsis through oxidant‑antioxidant balance pathway. 
Statistically significant positive effects were observed at both 
the histopathological and biochemical levels in the DEX treat‑
ment groups (D + CLP, CLP + D, SD + CLP, CLP + SD). DEX 
improved lung and kidney tissue damage in the treatment 

Figure 5. Kidney tissue TOS levels (mean ± SD). P<0.05 vs. *control, **CLP, ***S + CLP and ****CLP + S. CLP, cecal perforation; S, silymarin; D, dexmedeto‑
midine; SD, S + D; TOS, total oxidative status.

Figure 6. Kidney tissue TAS levels (mean ± SD). P<0.05 vs. *control, **CLP, ***S + CLP and ****CLP + S. CLP, cecal perforation; S, silymarin; D, dexmedeto‑
midine; SD, S + D; TAS, total antioxidant status.
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groups. The effects of DEX administration before and after 
sepsis were not significantly different.

In the present study, DEX application statistically 
significantly increased the total antioxidant score in tissues 
and decreased the oxidant score. In a study conducted by 
Şengel et al (110), TAS and TOS scores in kidney tissue 
after DEX application showed similar changes as in the 
present study and a statistically significant improvement in 
histopathological damage was observed. These data support 
the hypothesis that DEX may exert positive effects on the 
lung and kidneys during sepsis. The positive effects of DEX 
on both TAS and TOS levels and pathological examinations 
may be a guide for further studies on its mechanism of 
action.

In previous studies, si lymarin and dexmedeto‑
midine have been studied together with different 
combinations (98,111‑116), but no study has been performed 
in which these two agents were used together. Thus, the 
present study aimed to investigate the effects of these two 
agents used together. However, a limitation of the present 
study was that the mechanism of action of these agents 
was not examined, and only tissue and organ results were 
studied. Further studies should study the mechanisms of the 
effects of these agents.

Although the present study aimed to observe the prophy‑
lactic effects of the agents before and after sepsis induction, no 
differences in the effects were observed when the application 
times of the agents were changed; however, it may be possible 
to obtain different results using larger sample sizes. The 
present study compared both the interactions and preventive 
and therapeutic effects of promising agents in an experimental 
sepsis model.
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