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Therapeutic proteins expressed using transgenic ani-
mals have been of great interest for several years.
Especially, transgenic silkworm has been studied inten-
sively because of its ease in handling, low-cost, high-
yield and unique glycosylation patterns. However, the
physicochemical property of the therapeutic protein
expressed in transgenic silkworm remains elusive.
Here, we constructed an expression system for the
TNFR-Fc fusion protein (Etanercept) using transgenic
silkworm. The TNFR-Fc fusion protein was employed
to N-glycan analysis, which revealed an increased
amount of afucosylated protein. Evidence from surface
plasmon resonance analysis showed that the TNFR-Fc
fusion protein exhibit increased binding affinity for Fcc
receptor IIIa and FcRn compared to the commercial
Etanercept, emphasizing the profit of expression sys-
tem using transgenic silkworm. We have further dis-
cussed the comparison of higher order structure,
thermal stability and aggregation of the TNFR-Fc
fusion protein.
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Abbreviations: ADCC, antibody-dependent cell-
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Therapeutic proteins belong to the most extensively
growing class of drugs in recent years. Those thera-
peutic proteins have been approved for the treatments
of a wide range of indications, from cancer, auto-
immune diseases, to genetic disorders such as lyso-
somal storage diseases. Chinese hamster’s ovary
(CHO) cells are frequently used as an expression sys-
tems, because (i) CHO cells produce high yield of
therapeutic protein; (ii) characteristics of the protein
including post-translational modifications are well
studied and (iii) the methodology for protein expres-
sion is well-established (1, 2). However, the biotechno-
logical development enables the use of transgenic
animal, plant and insect cells as alternative expression
systems for therapeutic proteins.

Transgenic silkworm (Bombyx mori) has been inten-
sively focussed as an expressing system from the per-
spectives of ease in handling, low-cost, high-yield and
unique glycosylation patterns (3–7). Recombinant ca-
nine interferon gamma and feline interferon gamma
expressed using baculovirus-infected silkworms were
approved as veterinary drugs (8, 9). Those cases em-
phasize the utility of silkworm-expression system.

The glycosylation pattern of antibody-Fc expressed
in silkworms is known to be unique (6, 7). Most
antibody-Fc derived from transgenic silkworm are
carrying mannose-terminated glycans or less complete
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glycans compared to the native protein. As in the
cases of therapeutic antibodies in which the glycosyla-
tion pattern of fragment Fc region of therapeutic
antibody has a great impact on its stability and
effector functions including antibody-dependent
cell-mediated cytotoxicity (ADCC) and complement-
dependent cytotoxicity (CDC), the glycosylation
pattern of therapeutic proteins expressed in silkworm
is quite important (10–13).
The physicochemical properties of therapeutic pro-

tein expressed in silkworm, including thermal stability,
degradation and aggregation have not well-addressed
so far. Here, we characterized the glycosylation pat-
tern and physicochemical properties of therapeutic
protein expressed in transgenic silkworm and com-
pared their properties with those of native protein. In
this study, we have used Etanercept as a model of
therapeutic protein. Etanercept is the anti-tumor ne-
crosis factor (TNF) therapeutic protein approved for
the treatment of rheumatoid arthritis. Etanercept is a
fusion protein, in which TNF receptor 2 (TNFR2) is
fused to the human IgG1-Fc domain. TNFR-Fc fu-
sion protein was successfully expressed in silkworm-
expression system (termed as ‘sTNFR-Fc’). Glycan
analysis revealed that the amount of afucosylated Fc
was significantly higher in sTNFR-Fc compared to
Etanercept. We employed structural and biological
analysis. Furthermore, we focussed on their thermal
stability and aggregation propensity in detail. This
study certainly highlights the benefits of alternative
expression system using transgenic silkworm for
therapeutic protein.

Materials and Methods

Expression and preparation of TNFR2-Fc in transgenic
silkworm (sTNFR-Fc)
The amino acid sequence of sTNFR-Fc used in this study was iden-
tical to that of the commercial Etanercept (Enbrel

VR

). To establish
transgenic silkworm strain expressing sTNFR-Fc, we constructed
pBac [UAS_sTNFR-Fc/3�P3-EYFP] vector (Fig. 1) and injected
the plasmid into silkworm eggs with helper plasmid DNA and
mRNA that supply the piggyBac transposase. G0 adults were mated
with other G0 adults potentially carrying the same plasmid to gener-
ate G1 eggs. G1 embryos were screened for expressions of EYFP in
the eyes. To express sTNFR-Fc in the middle silk glands (MSGs) of
transgenic silkworms, the sTNFR-Fc strain was mated with Ser1-
GAL4 strain (Fig. 1) that expresses the GAL4 gene in MSGs (4). In
the next generation, the transgenic silkworms that expressed both
EYFP and DsRed2 in embryonic eyes were selected and used in the
subsequent experiments.

Graphical Abstract The silkworm MSGs or cocoons were
collected and suspended in phosphate-buffered saline (PBS), pH 7.2,
containing 1% Triton X-100. The soluble fraction was subjected to
a HiTrap Protein G HP column (GE Healthcare), which was pre-
equilibrated with PBS. After washing with PBS, sTNFR-Fc was
eluted with 0.1M glycine–HCl (pH 3.0) and neutralized with 1.0M
Tris–HCl (pH 8.0). The concentration of protein was measured
using a NanoDrop 2000c spectrophotometer (Thermo Fisher
Scientific). The extinction coefficient at 280 nm of Etanercept and
sTNFR-Fc is 0.8ml/(mg cm), which were calculated based on the
amino acid sequence.

Surface plasmon resonance (SPR) analysis
SPR analysis was employed to Etanercept and sTNFR-Fc to com-
pare their binding affinity for FccRI, FccRIIa, FccRIIIa, FcRn and
TNF. Biacore T200 (GE Healthcare) was used for the analysis. The
C-terminus His-tagged ectodomain of FccRs (FccRI, FccRIIa,

FccRIIIa) and TNF was obtained from Sino Biologicals and
WAKO (Catalog # 207-15261), respectively. First, anti-human IgG
antibody was immobilized onto the CM5 sensor chip. Etanercept or
sTNFR-Fc was immobilized on the surface. Subsequently, binding
sensorgrams were obtained by injecting each of the FccRs and TNF
at a flow rate of 30ll/min. The interaction between FcRn and
Etanercept/sTNFR-Fc was measured as described previously (14).

Glycan analysis (LC/MS/MS)
N-glycosylation pattern of the Fc-part was analysed by peptide
mapping using liquid chromatography/mass spectroscopy (LC/MS/
MS), as described previously (6). Briefly, Etanercept and sTNFR-Fc
dissolved in 0.5M Tris–HCl, 8M guanidine–HCl and
5mM ethylenediaminetetraacetic acid (EDTA) (pH 8.6) was
reduced with dithiothreitol and carboxy-methylated with sodium
monoiodoacetamide. Desalted samples were employed for tryptic
digestion (Promega) at 37�C for 4 h. The tryptic digests were dis-
solved in distilled water containing 2% acetonitrile and 0.1% tri-
fluoroacetic acid. The samples were separated using an Eksigent
Nano LC System (SCIEX) using a Nano LC column (3 lm,
ChromXP C18CL; SCIEX). The mobile phase consisted of 0.1%
formic acid in water (solvent A) and 0.1% formic acid in 90%
acetonitrile (solvent B). The chromatography was performed with a
gradient from 0% to 55% solvent B for 40min at a flow rate of
0.3ml/min. Mass spectrometric analyses were performed by using a
TripleTOF 6,600 mass spectrometer (SCIEX). Mass spectra were
acquired over m/z 400–2,000 for mass spectrometry (MS) and m/z
100–2,000 for MS/MS. The areas of the peaks were integrated to
calculate the relative abundance of each N-glycan.

Higher order structure analysis
The higher order structure of Etanercept and sTNFR-Fc was deter-
mined and compared using a sandwich array of anti-Etanercept
peptide antibody (Enbrbridge; Array bridge Inc., St Louis,
Missouri, USA) by following the instructions of the manufacturer.
Etanercept and sTNFR-Fc at a concentration of 5 mg/ml were
seeded into each well of a 96-well plates, which was coated with sev-
eral antibodies which recognize the peptide of Etanercept. After in-
cubation at room temperature for 1 h, the biotin-labelled reporting
antibody was added. Subsequently, streptavidin-horseradish
peroxidase (HRP) and tetramethylbenzidine substrate were used to
detect the signal. Optical density at 450 nm was detected using an
EnSpire Multimode Plate Reader (PerkinElmer). The measurements
were performed in triplicate.

Papain digestion and protein A purification
The Fc fragment of the Etanercept and sTNFR-Fc was obtained by
papain digestion (Thermofisher cat# 44985). First, samples were
desalted using Zeba Spin column. The pre-equilibrated and immobi-
lized papain–resin and samples were incubated at 37�C for 12h.
Digested Fc and TNFR were purified with a protein A kit
(Thermofisher cat# 44985) by following the instructions of the
manufacturer.

Differential scanning fluorimetry (DSF)
The thermal stability of Etanercept and sTNFR-Fc was determined
by DSF analysis. The samples at a concentration of 0.5lg/ml were
mixed with the protein thermal shift dye (Applied Biosystems,
Catalog # 4461146). The peaks of excitation and emission wave-
length of the dye are 580 and 623nm, respectively. A StepOne real-
time polymerase chain reaction systems (Applied Biosystems) was
programmed to increase the temperature from 25�C to 99�C at a
scanning speed of 0.05�C/s.

Accelerated protein degradation
Purified proteins were subjected to heat stress at 40�C and at 25�C
(as a negative control) and acidic condition at pH 3.0 (50mM cit-
rate, 150mM NaCl) and at pH 7.4 (PBS, as a negative control) for
1month.

Size exclusion chromatography (SEC)
Fifty micrograms of degraded samples was subjected to TSKgel
G3000SWXL column (7.8mm ID� 30 cm, 5.0lm particle size,
TOSOH) equilibrated with PBS, using ÄKTA Avant system (GE
Healthcare). The flow rate was set at 0.5ml/min, and the samples
were analysed by ultraviolet absorbance at 280nm.
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Results

Generation of TNFR-Fc fusion protein using
transgenic silkworm
The yield of sTNFR-Fc derived from MSGs and
cocoons was 220lg and 50lg per worm, respectively.
sTNFR-Fc derived from cocoons was used for subse-
quent analysis. Non-reducing sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) ana-
lysis of the Etanercept and sTNFR-Fc is given in
Fig. 1b. Both proteins were of high purity.
Approximately, protein bands of 150 and 125 kDa
were detected. We have determined that the whole
protein was expressed without lacking any domain
using peptide mapping (data not shown). The differ-
ence in molecular weight between Etanercept and
sTNFR-Fc indicated that the amount of glycosylation
of TNFR-part of the sTNFR-Fc was decreased. Since
a methodology for determining O-glycosylation pat-
terns of TNFR-part of Etanercept is yet to be estab-
lished so far, the O-glycosylation patterns of sTNFR-
Fc remain elusive (15–17). Peptide mapping analysis
determined the exact content of N-glycan attached to
Asn297 of CH2 domain (Fig. 2). sTNFR-Fc exhibited
more reduced level of fucosylation (7). The relative
abundance of fucosylated protein in Etanercept and
sTNFR-Fc was 98.6% and 3.2%, respectively. The
relative abundance of high-mannose glycans in
Etanercept and sTNFR-Fc was 1.4% and 55.7%,
respectively.

Binding affinity for FccRs, FcRn and TNF
Since the interaction between Fc and FccRs has a
profound impact on multifaceted properties, such as

effector functions which are elicited by several im-
mune cells, SPR analysis was employed to quantify
the affinity of Etanercept/sTNFR-Fc for FccRs
(FccRI, FccRIIa, FccRIIIa), FcRn and TNF. Note
that the main mechanism of Etanercept is the inhib-
ition of TNF by neutralizing and not ADCC nor
CDC. The sensorgrams of Etanercept and sTNFR-Fc
for the binding with those proteins, which are immo-
bilized on a sensor chip, are given in Fig. 3. The val-
ues of dissociation constant (KD) calculated from a
fitting curve are given in Table I. The affinity of
sTNFR-Fc towards FccRI and FccRIIa is slightly
decreased compared to that of Etanercept (59% and
44%, respectively). On the other hand, the affinity of
sTNFR-Fc towards FccRIIIa is significantly
increased. The affinity of sTNFR-Fc for FccRIIIa
was 4.4-fold higher than that of Etanercept. This af-
finity improvement was assumed to be associated with
the lower relative abundance of fucosylated protein in
sTNFR-Fc.

The Fc region of therapeutic protein binds to the
salvage receptor (FcRn), leading to long pharmacoki-
netic half-life in vivo; hence, the molecular interaction
between Fc-FcRn has been studied intensively (18).
As shown in Table I, sTNFR-Fc exhibited 2.3-fold
higher affinity for FcRn compared to Etanercept (KD

Etanercept; 2.5lM, KD sTNFR-Fc; 1.1lM). sTNFR-Fc
and Etanercept have nearly the same affinity for
TNF.

Structural perspective
Antibody array (ELISA) is a prominent methodology
that gives information on specific conformational dif-
ferences between two therapeutic proteins (19). The
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Fig. 1. Expression of sTNFR-Fc using transgenic silkworms. (a) The structures of the plasmids used to generate transgenic silkworms. Each
plasmid has right and left arms of piggyBac and the 3�P3-fluorescent gene cassette for a screening marker (EYFP or DsRed2).
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array provides detailed insight into conformational
comparability using antibodies that recognize disor-
dered peptides of Etanercept. Each antibodies # from
1 to 11 recognize a peptide of TNFR2 part (residues
ranging from 1 to 238 of the amino acid sequence)
and antibodies # from 12 to 24 recognize a peptide of
Fc-part (residues ranging from 215 to 451 of the
amino acid sequence). As shown in Fig. 4a, sTNFR-
Fc represented higher values in all regions (antibody #
from 1 to 24) compared to Etanercept. Notably, the
peptide of Fc-part of sTNFR-Fc exhibited remarkably
high value indicating that the Fc-part of sTNFR-Fc is
highly perturbed in solution. Particularly, antibody #
16 (corresponds to the peptide ranging from V288 to
S313) showed extremely high value compared to
Etanercept (15-fold increase) (Fig. 4b). The peptide is
located at exactly the N-glycosylation site of the CH2

domain (Fig. 4c).

Thermal stability
Protein stability was examined using DSF. Both pro-
teins exhibited single denaturation peak, corresponds
to melting temperature (Fig. 5b). The value of melting
temperature for Etanercept and sTNFR-Fc was found
to be 69.8�C and 64.6�C, respectively, indicating that
the sTNFR-Fc is thermally less stable. To identify the
difference of thermal stability is derived from
TNFR2-part, or Fc-part, both proteins were subjected
to papain digestion and protein A purification
(Fig. 5a). The proteins separated into TNFR2-part
and Fc-part were further examined their thermal sta-
bility using DSF (Fig. 5c and d). As shown in Fig. 5c,
the peaks were not defined clearly indicating the
hydrophobicity of TNFR2-part. Especially, the de-
naturation curve of sTNFR-part was hardly measur-
able. In contrast, Fc-part exhibited a single
denaturation peak (Fig. 5d). The value of melting
temperature of the Fc derived from Etanercept and
sTNFR-Fc was found to be 69.0�C and 64.7�C, re-
spectively. These results demonstrated that the differ-
ence of thermal stability of Etanercept and sTNFR-Fc
was primarily derived from the Fc-part but the differ-
ence of thermal stability at TNFR-part was also
revealed.

Accelerated (forced) degradation
It is widely accepted that there is a strong correlation
between Fc-glycosylation and long-term stability of
therapeutic proteins (20–24). The accelerated

degradation study provides information on the poten-
tial long-term storage stability (25). Exposure of
therapeutic proteins to harsh environments results in
various degradation pathways, such as denaturation,
aggregation and fragmentation.

The propensity of denaturation, aggregation and
fragmentation of Etanercept and sTNFR-Fc was com-
pared by exposing harsh stresses as follows: (1) ther-
mal; at 40�C and (2) acidic condition; at pH 3.0 and
pH 7.4 (as a negative control) for 1month. The sam-
ples were subjected to SEC analysis to examine aggre-
gation and fragmentation. Etanercept showed a single
peak corresponding to monomeric protein (Fig. 6a).
After degradation at pH 7.4, whereas peaks of oligo-
mer and fragments appeared, the peak of monomer
remained as the major component (Fig. 6b). After
degradation at pH 3.0, the peak of monomer disap-
peared because proteins were fragmented and aggre-
gated in the acidic condition (Fig. 6c). Compared to
Etanercept, sTNFR-Fc showed higher aggregation
rate after degradation at pH 7.4 (Fig. 6e). Similar to
Etanercept, no monomeric peak was observed after
degradation at pH 3.0 (Fig. 6f).

The degraded samples were further analysed using
DSF and SDS–PAGE. Consistent with the results of
SEC analysis, Etanercept and sTNFR-Fc degraded at
pH 3.0 generated no clear denaturation curve
(Fig. 7a). The SDS–PAGE analysis confirmed that the
degraded proteins at pH 3.0 were largely fragmented.
Particularly, sTNFR-Fc degraded at pH 3.0 repre-
sented only a blurred protein band (Fig. 7b).

Discussion

There has been a strong interest of expressing thera-
peutic proteins in various host cells, such as animal,
plant or insect cells from perspectives of lowering
cost, enhanced effector function. Given that there is a
strong need to accumulate studies of characterization
of the effector function and physicochemical property.
Here, we have focussed on transgenic silkworm as an
alternative expression system, owing to the ease in
handling, low-cost and unique glycosylation patterns.
In this study, Etanercept was adopted as a model
therapeutic protein.

Thus far, to the best of our knowledge, this is a first
example of the study for characterization of Fc fusion
protein expressed in transgenic silkworm. Successfully
expressed sTNFR-Fc fusion protein exhibited unique

Exact MASS 2282.9 2430.0 2486.0 2632.1 2794.1 2956.2 3085.2 3248.3 3538.4 1918.8 2080.8 2226.9 2241.9 2403.9 2566.0 2728.0 2890.1 3053.1 3215.2

sTNFR-Fc 34.2 0 6.5 0 0 0 0 0 0 3.5 14.9 3.2 6.0 16.3 5.1 2.5 2.4 1.7 0.1

Etanercept 0 4.9 0 43.1 26.3 5.8 15.6 2.0 0.9 0 1.4 0 0 0 0 0 0 0 0

Structure
Scheme

Fig. 2. N-glycosylation pattern of Fc-part. Blue squares, green circles, yellow circles, magenta diamonds and red triangles correspond to
GlcNAc, Man, Gal, sialic acid and Fuc, respectively. The relative abundance (%) of each N-glycan was shown.
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N-glycosylation patterns in the Fc-part. The decreased
content of fucosylated protein of sTNFR-Fc was con-
sistent with the previous study of monoclonal

antibody expressed in MSGs or cocoons of transgenic
silkworm (7, 26). Iizuka et al. showed that the content
percentage of fucosylated protein expressed in MSGs
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Fig. 3. Binding sensorgrams of Etanercept and sTNFR-Fc examined using SPR. Every experiment was run in at least five different
concentrations.
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or cocoons is significantly low compared to other
organs (fat body, haemolymph, etc.). Decreased con-
tent of fucosylated protein resulted in increased affin-
ity for FccRIIIa. On the other hand, the affinity of
sTNFR-Fc for TNF was unchanged compared to
Etanercept confirming the advantage of using trans-
genic silkworm as a host for expressing therapeutic
protein.
SDS–PAGE analysis showed that the molecular

weight of sTNFR-Fc was smaller than Etanercept.
This is probably because the TNFR-part was less
O-glycosylated. Determining O-glycosylation of
TNFR-part is quite important for understanding the
physicochemical property of sTNFR-Fc.
The antibody array analysis shed light on the specif-

ic peptide ranging from V288 to S313, which is

extremely disordered region. The peptide is exactly
located at the position where the N-glycan is covalent-
ly connected. Also, the peptide is exactly located at
the C’E loop, where Subedi and Barb have previously
discussed that the motion is increased upon the ab-
sence of N-glycan (27). The shorter N-glycan makes
the Fc protein more perturbed because of less interac-
tions between the N-glycan and the Fc protein. This
phenomenon has been demonstrated by multiple stud-
ies (27–31). Especially, Yamaguchi et al. showed that
the number of perturbed residues in the Fc is
increased upon step-wise cleavage of the N-glycan
using NMR (32). In our study, the N-glycan
of sTNFR-Fc is relatively shorter than that of
Etanercept; probably, this is because why the peptide
of sTNFR-Fc is more disordered compared to

Table I. Binding affinity of Etanercept and sTNFR-Fc for FccRs, FcRn and TNF

Protein KD (M) KD (Etanercept)/KD (sTNFR-Fc) (affinity increase relative to Etanercept)

Etanercept sTNFR-Fc

FccRI 1.66 0.2� 10�10 2.76 0.7� 10�10 0.6
FccRIIa 2.66 0.04� 10�7 5.96 0.02� 10�7 0.4
FccRIIIa 7.46 0.7� 10�8 1.76 0.03� 10�8 4.4
FcRn 2.56 0.4� 10�6 1.16 0.02� 10�6 2.7
TNF 3.76 0.4� 10�10 3.66 0.4� 10�10 1.0
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Fig. 6. SEC chromatogram of degraded proteins. (a) Native Etanercept. (b) Etanercept degraded in 40�C for 1month at pH 7.4. (c)
Etanercept degraded in 40�C for 1month at pH 3.0. (d) Native sTNFR-Fc. (e) sTNFR-Fc degraded in 40�C for 1month at pH 7.4.
(f) sTNFR-Fc degraded in 40�C for 1month at pH 3.0.
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Etanercept. These observations are in good agreement
with the results Yamaguchi et al. showed.
Given the structural characteristics, we hypothe-

sized that sTNFR-Fc could easily to be denatured and
thermally less stable compared to Etanercept. Our
previous study showed that the anti-HER2 monoclo-
nal antibodies (Trastuzumab) produced by the silk-
worm baculovirus expression system was thermally
less stable compared to commercial Trastuzumab (6).
Indeed, DSF, SEC and SDS–PAGE analysis illus-
trated that the sTNFR-Fc was fragmented in physio-
logical condition and in acidic condition. The
DSF analysis revealed that the Tm of Fc-part of
sTNFR-Fc was 4.3�C lower than Fc-part of
Etanercept. When looking at TNFR-part, we found
the TNFR-part exhibited no clear denaturation signal
due to the decreased glycosylation. Those results cer-
tainly help estimating the pharmacological effect of
the therapeutic protein expressed using silkworm.
In summary, we revealed that the TNFR2-Fc fusion

protein expressed by silkworm is profitable, but ther-
mally unstable, owing to the decreased glycosylation
of TNFR-part and the highly disordered specific pep-
tide. When transgenic silkworm is used to express a
therapeutic protein in which there are multiple glyco-
sylation sites, the profound focus is necessary to con-
sider the decreased stability due to different
glycosylation patterns. Accumulating studies on the
correlation between N-glycosylation and the charac-
teristics of therapeutic protein is quite significant (12,
33). The present study aids in advance the use of those
transgenic animal-derived therapeutic proteins.
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