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Abstract
The wasp Scleroderma guani	 is	an	 important	parasitic	natural	enemy	of	a	variety	of	
stem	borers	 such	as	 longicorn	beetles.	Studying	and	clarifying	 the	 suitable	area	of	
this	wasp	plays	an	 important	 role	 in	controlling	stem	borers.	Based	on	 information	
about	 the	 actual	 distribution	 of	 S. guani	 and	 on	 a	 set	 of	 environmental	 variables,	
MaxEnt	niche	model	and	ArcGIS	were	exploited	to	predict	the	potential	distribution	
of	this	insect	in	China.	This	work	simulated	the	geographical	distribution	of	potential	
climatic	 suitability	 of	 S. guani	 in	 China	 at	 present	 and	 in	 different	 periods	 in	 the	
future.	Combining	 the	relative	percent	contribution	score	of	environmental	 factors	
and	the	Jackknife	test,	the	dominant	environmental	variables	and	their	appropriate	
values	restricting	the	potential	geographical	distribution	of	S. guani were screened. 
The	results	showed	that	the	prediction	of	the	MaxEnt	model	was	highly	in	line	with	
the	actual	distribution	under	current	climate	conditions,	and	the	simulation	accuracy	
was	very	high.	The	distribution	of	S. guani	is	mainly	affected	by	bio18	(Precipitation	
of	 Warmest	 Quarter),	 bio11	 (Mean	 Temperature	 of	 Coldest	 Quarter),	 bio13	
(Precipitation	of	Wettest	Month),	and	bio3	(Isothermality).	The	suitable	habitat	of	S. 
guani	in	China	is	mainly	distributed	in	the	Northeast	China	Plain,	North	China	Plain,	
middle-	lower	Yangtze	Plain,	and	Sichuan	Basin,	with	total	suitable	area	of	547.05 × 104 
km2,	 accounting	 for	 56.85%	 of	 China’s	 territory.	 Furthermore,	 under	 the	 RCP2.6,	
RCP4.5,	and	RCP8.5	climate	change	scenarios	in	the	2050s	and	2090s,	the	areas	of	
high,	medium,	and	low	suitability	showed	different	degrees	of	change	compared	to	
nowadays,	exhibiting	expansion	 trend	 in	 the	 future.	This	work	provides	 theoretical	
support	for	related	research	on	pest	control	and	ecological	protection.
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1  |  INTRODUC TION

Scleroderma guani	 (Hymenoptera:	 Bethylidae),	 an	 ectoparasitic	
wasp,	is	a	natural	enemy	insect	that	takes	the	larvae	and	pupae	of	
Coleoptera,	Lepidoptera,	and	other	insects	(particularly	long-	horned	
beetles)	 as	 hosts	 (Zheng	 et	 al.,	 2015).	 It	 is	 widely	 distributed	 in	
China,	including	Hebei,	Shandong,	Henan,	Guangdong,	Hunan,	and	
Jiangsu	provinces	(Hu	et	al.,	2014).	The	parasite	was	first	discovered	
in	 1973	 and	 successfully	 reproduced	 indoors	 for	 the	 first	 time	 in	
1977	(Zhang,	2018).	The	occurrence	of	S. guani is related to the host 
distribution	 and	 is	 affected	 by	 different	 climate-	related	 variables,	
especially	temperature	and	rainfall.	It	is	an	effective	natural	enemy	
for	the	prevention	and	control	of	borer	pests	such	as	long-	horn	bee-
tles,	buprestid	beetles,	and	some	engraver	beetles.	In	nature,	if	adult	
wasps	locate	their	hosts	and	lay	eggs	smoothly	on	the	surface,	this	
means	that	parasitism	begins.	In	addition,	the	insect	is	an	inhibitory	
parasitic	wasp	 (Luo	&	 Li,	 2018; Zhang et al., 2015).	 Before	 laying	
eggs,	the	female	will	stab	the	host,	inject	the	venom	to	make	it	anes-
thetized,	and	 then	 lay	eggs	on	 the	host	with	no	 resistance	 (Yao	&	
Yang,	2008).	The	female	S. guani	also	has	a	stronger	ability	to	hunt	
and attack hosts. Scleroderma guani has a high parasitic rate against 
small-		and	medium-	sized	boring	pests	(Zhang	et	al.,	2015).	Generally,	
one	generation	of	S. guani, involving egg, larva, pupa, and adult, will 
be	 completed	 in	 about	 a	month	 at	 25°C	 (Wang	et	 al.,	2020).	 This	
wasp	has	a	valuable	biological	control	agent.

Ecological	Niche	Models	(ENMs)	infer	the	relationship	between	
species	distribution	and	environmental	variables	by	relating	the	in-
formation	on	a	sample	of	occurrence	data	of	the	target	species	with	
the	values	of	the	environmental	variables	on	the	sample	localities	and	
adopt	 this	 relationship	 to	estimate	 the	distribution	of	 regions	 that	
satisfy	the	niche	requirements	of	target	species	(Hutchinson,	1965; 
Peterson	et	al.,	2011; Zhu et al., 2013),	then	regarding	those	areas	
as	 parts	 of	 the	 potential	 distribution.	 ENMs	 are	 crucial	 tools	 for	
ecological	 research	 (Booth,	2018).	 In	 the	past	 few	decades,	ENMs	
have	been	widely	applied	to	study	the	distribution	of	species.	Many	
studies	have	demonstrated	that	the	MaxEnt	model	has	certain	ad-
vantages	in	terms	of	prediction	accuracy,	particularly	in	the	case	of	
fewer	target	species	distribution	data	(Phillips	et	al.,	2006;	Saatchi	
et al., 2008;	Yi	et	al.,	2017).	Zhang	et	al.	(2016)	compared	the	pre-
diction	 accuracy	 of	 4	 commonly	 used	 niche	 models,	 and	 the	 re-
sults	showed	that	MaxEnt	model	had	better	prediction	effect.	Elith	
et	al.	(2006)	compared	the	prediction	ability	of	various	niche	models	
and	concluded	that	MaxEnt	had	the	highest	prediction	ability	among	
16	models.	 Consequently,	MaxEnt	was	 selected	 as	 the	 simulation	
software	in	this	study.	The	MaxEnt	model	has	the	characteristics	of	
being	relatively	convenient	to	use	and	only	requires	a	small	sample	
size	 (Ma	&	Sun,	2018).	Since	Phillips	proposed	this	model,	MaxEnt	
has	 been	 commonly	 applied	 in	 the	 assessment	 of	 potential	 distri-
bution	of	species	(Zhou	et	al.,	2016),	the	protection	of	endangered	
plant	and	animal	(Zheng	et	al.,	2016),	the	risk	evaluation	of	species	
invasion	(Rodríguez-	Merino	et	al.,	2018),	the	assessment	of	pest	and	
disease	spread	and	control	(Zaidi	et	al.,	2016),	and	good	simulation	
outcomes	were	obtained.	The	Maxent	model	was	used	to	predict	the	

suitable	areas	of	insects	under	current	and	future	climate	conditions,	
which	can	clarify	the	impact	of	climate	change	on	insect	distribution	
and	provide	a	certain	basis	for	further	research	on	 insects	 (Huang	
et al., 2020;	Zhao	&	Shi,	2019).

In	this	work,	the	MaxEnt	and	ArcGIS	technologies	were	used	to	
analyze	 the	 environmental	 suitability	 of	S. guani,	 based	on	 known	
distribution	data	and	combined	with	environmental	data	 in	China.	
Predicting	 the	current	and	 future	potential	distribution	of	S. guani 
will	 provide	 theoretical	 basis	 for	 pest	 control,	 particularly	 stem	
borers.

2  |  MATERIAL AND METHODS

2.1  |  Species data sources and processing

The	 crucial	 prerequisite	 for	 building	 a	 niche	 model	 is	 that	 there	
should	 be	 enough	 existing	 species	 records	 (Zhang	 et	 al.,	 2019).	
Scleroderma guani	first	appeared	in	Guangdong	province	in	1973	and	
Shandong	province	 in	1975.	Soon	afterwards,	 it	was	discovered	 in	
many	provinces	of	China	(Zhang	et	al.,	1987).	By	querying	the	records	
of	the	Global	Biodiversity	Information	Facility	(GBIF,	https://www.
gbif.org/),	 consulting	 published	 relevant	 literature	 and	 books,	 and	
integrating	with	GPS	field	survey	data,	the	statistics	of	the	natural	
distribution	 points	 of	 S. guani	 were	 obtained.	 The	 records	 were	
converted	 to	 uniform	 latitude	 and	 longitude	 coordinates	 (refer	 to	
WGS84	geographic	coordinates	system);	the	latitude	and	longitude	
data	of	S. guani	distribution	points	were	confirmed	by	Google	Earth	
online	(http://www.earth	ol.com/).	The	collected	distribution	points	
of	 S. guani	 were	 imported	 into	 ArcGIS	 software.	 Buffer	 analysis	
method	 was	 used	 to	 screen	 the	 obtained	 distribution	 points	 to	
exclude	 the	 influence	 of	 over-	fitting	 simulation	 caused	 by	 large	
spatial	 correlation.	 Since	 the	 spatial	 resolution	 of	 environmental	
variables	was	2.5	arc-	min	(about	4.5	km2),	the	buffer	radius	was	set	
to	 1.5	 km.	When	 the	 distance	 between	 the	 distribution	 points	 is	
<3	km,	only	one	point	was	retained.	Ultimately,	a	total	of	124	valid	
sites	were	obtained	(Figure 1);	these	records	were	exported	as	a	CSV	
file	for	further	model	analysis.

2.2  |  Environmental factors

The	theoretical	basis	of	the	ENMs	is	the	concept	of	ecological	niche,	
which	 is	 defined	 as	 the	 position	 occupied	 by	 a	 population	 in	 an	
ecosystem	in	time	and	space	and	its	relationship	and	role	with	other	
populations	 (Hutchinson,	 1965).	 Environmental	 variables	 play	 an	
important	role	in	the	niche	distribution	of	species	(Wang	et	al.,	2019).	
In	order	 to	comprehensively	explore	 the	effects	of	climate	on	 the	
spread	of	S. guani	in	China,	the	environmental	variables	considered	
in	this	work	were	extracted	from	the	Worldclim	database	(Version	
2.0, http://www.world	clim.org/).	 Climatic	 variables	 used	 in	 the	
model	are	shown	 in	Table 1,	 including	19	bioclimate	variables	and	
the	 altitude	 data	 selected	 as	 topographic	 factor.	 The	 Worldclim	

https://www.gbif.org/
https://www.gbif.org/
http://www.earthol.com/
http://www.worldclim.org/
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bioclimatic	 variables	 for	 the	 current	 scenario	 represented	 average	
values	 for	 the	 1970–	2000	 period,	 and	 the	 corresponding	 raster	
files	 were	 downloaded	 at	 a	 spatial	 resolution	 of	 2.5	 arcminutes.	
The	global	climate	model	used	in	this	study	was	BCC-	CSM1-	1,	and	
it	 was	 found	 that	 BCC-	CSM1-	1	 has	 a	 good	 simulation	 effect	 on	
China's	 regional	 climate	 (Feng,	2012).	We	obtained	 future	 climate	
data	 for	 the	 2050s	 (2041–	2060)	 and	 2090s	 (2081–	2100)	 by	 the	
Climate	 Change,	 Agriculture	 and	 Food	 Security	 website	 (CCAFS,	

https://ccafs.cgiar.org/).	 The	 Fifth	 Assessment	 Report	 of	 the	
Intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC)	 considered	
the	four	greenhouse	gas	concentration	scenarios	(Petersen,	2013).	
Indeed,	Zhang	et	al.	 (2014)	showed	that	the	RCP4.5	scheme	has	a	
higher	priority	than	RCP6.0,	so	this	study	did	not	use	the	RCP6.0.	
Three	representative	concentration	pathways	(RCPs),	comprising	the	
minimum	greenhouse	gas	emission	scenario	 (RCP2.6),	 the	medium	
greenhouse	 gas	 emission	 scenario	 (RCP4.5),	 and	 the	 maximum	

F I G U R E  1 Geographical	distribution	
points	of	Scleroderma guani in China. 
Yellow	points,	occurrence	data	of	S. guani. 
Light pink, low altitude. Dark red, high 
altitude.

Code Environmental variables

bio1 Annual	Mean	Temperature

bio2 Mean	Diurnal	Range	(Mean	of	monthly	[max	temp–	min	temp])

bio3 Isothermality	(bio	2/bio	7)	(*100)

bio4 Temperature	Seasonality	(SD	*100)

bio5 Max	Temperature	of	Warmest	Month

bio6 Min	Temperature	of	Coldest	Month

bio7 Temperature	Annual	Range	(bio5–	bio6)

bio8 Mean	Temperature	of	Wettest	Quarter

bio9 Mean	Temperature	of	Driest	Quarter

bio10 Mean	Temperature	of	Warmest	Quarter

bio11 Mean	Temperature	of	Coldest	Quarter

bio12 Annual	Precipitation

bio13 Precipitation	of	Wettest	Month

bio14 Precipitation	of	Driest	Month

bio15 Precipitation	Seasonality	(Coefficient	of	Variation)	1

bio16 Precipitation	of	Wettest	Quarter

bio17 Precipitation	of	Driest	Quarter

bio18 Precipitation	of	Warmest	Quarter

bio19 Precipitation	of	Coldest	Quarter

Alt Altitude

TA B L E  1 Climatic	variables	used	
for	predicting	potential	geographic	
distribution	of	Scleroderma guani.

https://ccafs.cgiar.org/
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greenhouse	 gas	 emission	 scenario	 (RCP8.5),	 were	 selected	 to	
simulate	the	distribution	of	the	species	in	this	work.

2.3  |  MaxEnt modeling

This	 research	 aimed	 at	 exploring	 the	 effects	 of	 environmental	
factors	 on	 the	 distribution	 of	S. guani.	 Combining	 the	 determined	
distribution	 points	 with	 the	 screened	 climatic	 factors,	 MaxEnt	
3.4.4	 software	 was	 used	 for	 simulating	 the	 potential	 distribution	
of	S. guani.	Among	them,	75%	of	the	species	occurrence	data	were	
randomly	selected	as	the	training	data	set,	with	the	remaining	25%	
utilized	as	test	data,	and	the	number	of	repetition	trainings	was	set	
to	10	to	 reduce	the	uncertainty	caused	by	abnormal	values	 in	 the	
environmental	 variables	 associated	 with	 the	 randomly	 selected	
training	points.	The	maximum	number	of	background	points	was	set	
to	10,000,	and	bootstrap	was	selected	as	replicated	run	type.	During	
the	 construction	 of	 the	 initial	 model,	 the	 percent	 contribution	 of	
each	environmental	variable	was	detected	by	Jackknife	test	of	the	
MaxEnt	 3.44	 software	 (Yan	 et	 al.,	2020),	 and	 the	 variables	which	
had	low	percent	contribution	(<1%)	were	removed	(Zhu	et	al.,	2014).	
After	that,	the	Pearson	correlation	coefficient	(r)	was	analyzed	for	the	
remaining	climate	variables	by	R	software.	According	to	widespread	
practice	 in	 Ecological	 Niche	Modeling,	 highly	 correlated	 variables	
(|r| ≥ 0.8)	were	removed	to	exclude	the	effect	of	collinearity	on	model	
and	further	improved	the	veracity	of	the	simulation	(Xu	et	al.,	2019).	
Ultimately,	the	Maxent	model	was	then	refitted	using	only	the	highly	
contributing	and	uncorrelated	environmental	predictors.

Then,	the	distribution	territory	of	S. guani	in	China	was	extracted	
by	ArcGIS,	and	the	climatic	suitability	of	the	wasp	was	analyzed.	The	
output	of	the	MaxEnt	software	simulation	ranged	from	0	to	1,	and	
the	value	closer	to	1	meant	the	higher	the	possibility	of	species	pres-
ence	(Wang	et	al.,	2017).	Referring	to	the	IPCC	report	on	the	assess-
ment	of	the	possibility	of	the	division	of	the	method	(IPCC,	2007),	
combined	with	the	actual	situation	of	S. guani,	the	habitat	suitabil-
ity	was	divided	 into	four	 levels	and	 indicated	 in	different	colors	 in	
this	work:	high	suitability	area	(0.66–	1,	red),	medium	suitability	area	
(0.33–	0.66,	orange),	low	suitability	area	(0.05–	0.33,	yellow),	and	un-
suitability	area	(0–	0.05,	white).

2.4  |  Model optimization and evaluation

In	 this	 research,	 the	 default	 parameters	 of	 the	 MaxEnt	 software	
were RM =	 1,	 FC	 =	 LQHPT.	 In	 R	 software,	 two	 parameters	 of	
regularization	multiplier	(RM)	and	feature	classes	(FC)	were	adjusted	
by	 calling	 ENMeval	 package	 to	 optimize	 MaxEnt	 model	 (Kass	
et al., 2021; Zhou et al., 2016).	 The	MaxEnt	model	 provided	 five	
features,	which	were	L(linear),	Q(quadratic),	H(hinge),	P(product),	and	
T(threshold),	and	they	can	generate	31	different	combinations.	The	
RM	parameter	was	set	from	0.1	to	4,	and	the	interval	was	0.1,	so	that	
40 RM values were evaluated. The ENMeval packet was used to test 

the	 above	 1240	 parameter	 combinations.	 AUCDIFF	 (the	 difference	
between	training	set	AUC	and	test	set	AUC)	and	test	omission	rate	
were	used	to	test	the	fit	of	the	model	to	species	distribution.	The	
closer	 the	 test	 omission	 rate	 to	 the	 theoretical	 omission	 rate,	 the	
higher	 the	 accuracy	 of	 the	 constructed	 model	 is	 (Shcheglovitova	
&	Anderson,	2013).	Akaike	information	criterion	(AIC)	was	used	to	
evaluate	 the	 fitting	degree	 and	 complexity	of	 different	parameter	
combinations.	 The	 parameter	 combinations	 leading	 to	 the	 lowest	
AICc	value	(ΔAICc	=	0)	were	selected	to	fit	the	optimized	model	(Jia	
et al., 2019).

After	 the	 optimization,	 the	 optimal	 parameters	 were	 used	 to	
simulate	and	predict	the	suitable	habitat	of	S. guani	in	different	peri-
ods.	The	accuracy	of	the	simulation	results	was	evaluated	using	the	
receiver	 operating	 characteristic	 curve	 (ROC),	 and	 the	 area	 under	
the	curve	 (AUC)	was	used	 to	evaluate	 the	predictive	performance	
of	the	model	(Na	et	al.,	2018).	The	value	of	AUC	changes	between	0	
and	1,	and	the	value	of	AUC	is	<0.8	means	the	simulation	result	has	
low	reliability,	and	the	AUC	value	is	 in	the	range	of	0.8–	0.9,	which	
means	the	simulation	result	is	more	accurate.	The	AUC	value	is	in	the	
range	of	0.9–	1,	which	means	the	simulation	result	 is	very	accurate	
(Walden-	Schreiner	et	al.,	2017).	In	addition,	since	TSS	and	Kappa	are	
not	affected	by	the	size	of	the	verification	set	(Allouche	et	al.,	2006),	
we	also	chose	TSS	and	Kappa	to	evaluate	the	accuracy	of	the	model.	
The	Kappa	value	above	0.75	indicates	that	the	performance	of	this	
model	is	excellent.	The	TSS	value	ranges	from	−1	to	1.	The	closer	the	
TSS	value	is	to	1,	the	better	the	accuracy	of	the	model,	and	the	closer	
to	−1	the	lower	the	accuracy	(Yan	et	al.,	2020).	TSS	= 0 indicates that 
the	model	 does	not	 recognize	omission	 and	 commission	errors	 (Li	
et al., 2021).

3  |  RESULTS

3.1  |  Model optimization results and accuracy 
evaluation

The	 MaxEnt	 model	 was	 optimized	 with	 the	 ENMeval R package, 
and	 the	 current	 and	 future	potential	 distribution	 areas	of	S. guani 
were	predicted.	When	FC	=	LQP	and	RM	=	0.2,	the	delta	AIC	value	
reached	its	minimum	(ΔAICc	=	0),	 indicating	that	the	model	under	
this	 parameter	 combination	 was	 the	 optimal	 one.	 The	 optimized	
AUCDIFF	value,	mean	AUC	value,	mean	TSS,	mean	Kappa	were	0.015,	
0.988,	0.852,	and	0.801,	respectively.	The	results	indicated	that	the	
optimized	 MaxEnt	 model	 could	 accurately	 simulate	 the	 potential	
geographical	distribution	of	S. guani.

3.2  |  Model performance and Key 
environment variables

Combined	 with	 the	 percent	 contribution	 and	 Pearson’s	 corre-
lation	 coefficient,	 the	 eight	 key	 environmental	 variables	 were	
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screened	 out,	 and	 the	 species	 distribution	 model	 was	 recon-
structed. Table 2	displayed	the	percent	contribution	and	permuta-
tion	importance	of	eight	environmental	variables	which	affected	
the	 distribution	 of	 S. guani:	 precipitation	 of	 warmest	 quarter	
(bio18),	temperature	seasonality	(bio4),	precipitation	seasonality	
(bio15),	 precipitation	 of	 wettest	 month	 (bio13),	 mean	 tempera-
ture	of	coldest	quarter	(bio11),	isothermality	(bio3),	altitude	(alt),	
and	precipitation	of	coldest	quarter	 (bio19).	The	percent	contri-
bution	of	bio18	was	the	highest,	reaching	42.1%,	followed	by	bio4	
(17.3%)	and	bio15(10.5%).	The	accumulated	percent	contribution	
of	those	key	environmental	variables	accounted	for	89.5%,	 indi-
cating	 that	 the	 above-	mentioned	 eight	 environmental	 variables	
contained	effective	 information	on	 the	most	 suitable	habitat	of	
S. guani	and	were	the	key	to	simulating	the	potential	geographic	
distribution	of	S. guani.

The	 Pearson	 correlation	 coefficients	 of	 the	 above-	mentioned	
eight	environmental	variables	are	shown	 in	Table 3. The results il-
lustrated	 that	 except	 for	 |r| =	 0.851	of	 both	 bio3	 and	bio4,	 these	
values	were	lower	than	0.8.	As	the	percent	contribution	of	bio3	and	
bio4	in	this	study	were	relatively	large,	and	these	two	factors	have	a	
great	impact	on	the	distribution	of	many	insects	(Wang	et	al.,	2017; 
Xu, Liu, et al., 2021; Xu, Tang, et al., 2021;	 Zhao	&	 Shi,	2019),	 so	
they	are	 retained.	As	 shown	 in	Figure 2a,	 the	prediction	omission	
rate	showed	a	high	agreement	with	the	test	sample	omission	rate,	
which	indicated	the	good	prediction	effect	of	the	model.	Figure 2b 
showed	 the	ROC	 curve	 of	 the	model	 and	 exhibited	 that	 the	AUC	
value	reached	0.988,	which	 indicated	the	model's	prediction	accu-
racy	was	excellent.	This	model	was	reliable	for	confirming	the	poten-
tial	distribution	of	S. guani in China.

3.3  |  Predicting the current distribution of S. guani 
in China

Projection	of	 the	suitability	 for	S. guani across China, according to 
the	optimized	Maxent	model,	is	shown	in	Figure 3.	The	statistics	for	
the	predicted	areas	of	S. guani	 in	different	provinces	are	displayed	
in Table 4.	The	results	displayed	that	the	contemporary	distribution	
of	high	suitability	area	was	distributed	in	subtropical	and	warm	tem-
perate	regions,	mainly	concentrated	in	low-	altitude	and	basin	areas,	
especially	 the	 Northeast	 China	 Plain,	 North	 China	 Plain,	 middle-	
lower	Yangtze	Plain,	and	Sichuan	Basin.	The	total	suitable	area	was	
547.05 × 104	km2,	accounting	for	56.85%	of	China's	total	land	area.	
The	 provinces	with	 large	 suitable	 areas	 included	Beijing	 (96.88%),	
Jiangsu	(96.05%),	Shandong	(74.77%),	Hebei	(66.43%),	and	Liaoning	
(58.87%).	In	addition,	Tianjin	(100%)	and	Hong	Kong	(100%)	were	all	
listed	as	highly	suitable	areas.	The	distribution	of	moderately	suit-
able	area	was	closely	connected	with	the	high	suitable	area,	and	the	
distribution	area	was	wide.	With	the	change	of	time,	there	is	a	great	
possibility	to	transform	to	high	suitable	area.

3.4  |  Potential distribution of S. guani in 
future period

Habitats	predicted	by	the	Maxent	model	as	suitable	for	S. guani in 
China	under	the	RCP2.6,	RCP4.5,	and	RCP8.5	climate	change	sce-
narios are shown in Figure 4.	Compared	with	the	predicted	results	
under	the	current	climate,	there	was	an	obvious	change	in	tendency	
of	the	predicted	high,	medium,	and	low	suitable	area	 in	the	2050s	

Code Environmental variables
Percent 
contribution/%

Permutation 
importance/%

bio18 Precipitation	of	Warmest	Quarter 42.1 18

bio4 Temperature	Seasonality	(SD	*100) 17.3 5.5

bio15 Precipitation	Seasonality	(Coefficient	of	
Variation)	1

10.5 2.6

bio13 Precipitation	of	Wettest	Month 5.1 0.4

bio11 Mean	Temperature	of	Coldest	Quarter 4.5 22

bio3 Isothermality	(bio2/bio7)	(*100) 4.4 2.9

Alt Elevation 3.4 1.1

bio19 Precipitation	of	Coldest	Quarter 2.2 0.4

TA B L E  2 Percent	contribution	and	the	
permutation	importance	of	environmental	
variables	affecting	the	distribution	of	
Scleroderma guani.

bio3 bio4 bio11 bio13 bio15 bio18 bio19

bio4 −0.851

bio11 0.797 −0.703

bio13 0.631 −0.563 0.594

bio15 −0.053 0.032 −0.334 −0.107

bio18 0.482 −0.366 0.526 0.785 −0.303

bio19 0.479 −0.435 0.377 0.628 −0.299 0.432

alt −0.231 0.123 −0.622 −0.319 0.566 −0.357 −0.233

TA B L E  3 Pearson’s	correlation	
coefficients	of	crucial	environmental	
factors.
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and	2090s.	The	suitable	distribution	area	showed	a	trend	of	north-
west	expansion.

As	shown	 in	Table 5 and Figure 5,	under	 the	RCP2.6	scenario,	
model	 projections	 suggest	 that	 by	 the	 2090s,	 the	 high	 suitability	
area	 will	 decrease	 the	most	 compared	 to	 current	 conditions,	 and	
the	reduced	areas	will	be	17.64 × 104	km2,	accounting	for	19.65%	of	
the	current	predicted	one.	From	now	to	the	2050s	and	the	2090s,	
there	will	 be	 a	 trend	of	 transformation	 from	high	 suitable	 area	 to	
medium	suitable.	Among	 them,	 the	highly	 suitable	 areas	will	 have	
significantly	declined	in	the	provinces	of	Hubei,	Anhui,	Jiangsu,	and	
Liaoning.	 Under	 the	 RCP4.5	 scenario,	 the	 extent	will	 convert	 low	
suitable	areas	to	medium	and	high	suitable	in	the	2050s.	The	extent	

of	high	suitable	area	will	 rise	by	11.06 × 104	km2	 in	2050s	and	fall	
by	 2.58 × 104	 km2	 in	 2090s,	 accounting	 for	 12.33%	 and	 2.87%	of	
the	current	predicted	one,	respectively.	From	present	to	the	2050s	
and	to	 the	2090s,	 the	moderate	suitable	area	 increased	 in	extent,	
with	the	percentage	rising	by	2.91%	and	2.45%,	respectively.	Many	
currently	 low	suitability	areas	 in	 the	provinces	of	Fujian,	Zhejiang,	
Jiangxi,	and	Hunan	will	turn	to	medium	suitability.	Under	the	RCP8.5	
scenario,	the	high	suitable	areas	will	increase	by	20.15 × 104	km2 and 
2.74 × 104	 km2	 from	 current	 to	 the	2050s	 and	 the	2090s,	 respec-
tively.	They	account	for	22.46%	and	3.06%	of	the	current,	respec-
tively.	The	significantly	increased	high	suitability	areas	will	mainly	be	
distributed	in	Guangxi,	Guizhou,	and	Hunan	provinces.

F I G U R E  2 Predictive	effect	of	the	MaxEnt	model	of	Scleroderma guani.	(a)	Curve	of	omission	and	predicted	area.	(b)	ROC	curve	of	
potential	distribution	prediction.

F I G U R E  3 Current	suitable	distribution	
of	Scleroderma guani in China. Red, high 
suitability	area	with	the	probability	of	
.66–	1.	Orange,	medium	suitability	area	
with	the	probability	of	.33–	.66.	Yellow,	
low	suitability	area	with	the	probability	of	
.05–	.33.	White,	unsuitability	areas	with	
the	probability	of	0–	.05.
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3.5  |  Relationship between environmental 
variables and geographical distribution

The	 selected	 environmental	 variables	 that	 have	 a	 noticeable	 im-
pact	on	the	distribution	of	S. guani	were	analyzed	by	Jackknife	test	
method.	As	 shown	 in	Figure 6,	 all	 the	predictors	affected	 the	po-
tential	distribution	of	S. guani	to	some	extent,	with	bio18	being	the	
most	 important	when	used	 alone.	 The	blue	band	 represented	 the	

importance	of	 the	variable	 to	species	distribution	 in	Figure 6. The 
longer	 the	 band,	 the	more	 important	 the	 variable	 was	 to	 species	
distribution.	Figure 7	showed	how	predicted	suitability	varied	with	
increasing	values	of	the	selected	variables.	Referring	to	the	grading	
method	of	the	IPCC	(IPCC,	2007),	the	range	of	environmental	vari-
ables	suitable	for	S. guani	distribution	was	divided,	using	0.33	as	a	
threshold. The results revealed that in the appropriate range, when 
the	environmental	variable	value	was	below	the	optimal	value,	the	

TA B L E  4 Predicted	suitability	for	Scleroderma guani	in	China	under	current	climatic	conditions.

Province

High suitability Medium suitability Low suitability No suitability

Predicted area 
(×104 km2)

Area 
ratio (%)a

Predicted area 
(×104 km2)

Area ratio 
(%)a

Predicted area 
(×104 km2)

Area ratio 
(%)a

Predicted area 
(×104 km2)

Area ratio 
(%)a

Hebei 13.03 66.43 3.89 19.83 2.70 13.74 0.00 0.00

Sichuan 12.00 26.42 4.39 9.66 9.64 21.22 19.40 42.69

Shandong 11.53 74.77 3.89 25.23 0.00 0.00 0.00 0.00

Jiangsu 9.45 96.05 0.39 3.95 0.00 0.00 0.00 0.00

Liaoning 9.23 58.87 6.45 41.13 0.00 0.00 0.00 0.00

Hubei 6.22 35.22 11.25 63.68 0.19 1.10 0.00 0.00

Anhui 5.56 41.58 7.81 58.42 0.00 0.00 0.00 0.00

Chongqing 4.03 52.35 3.42 44.40 0.25 3.25 0.00 0.00

Guangxi 4.03 19.13 16.12 76.52 0.92 4.35 0.00 0.00

Henan 2.95 18.09 13.31 81.74 0.03 0.17 0.00 0.00

Inner Mongolia 2.64 2.04 17.92 13.86 75.70 58.52 33.10 25.59

Guangdong 1.89 12.08 12.78 81.71 0.97 6.22 0.00 0.00

Beijing 1.72 96.88 0.06 3.13 0.00 0.00 0.00 0.00

Tianjin 1.22 100.00 0.00 0.00 0.00 0.00 0.00 0.00

Jiangxi 1.00 6.57 11.28 74.09 2.95 19.34 0.00 0.00

Hunan 0.83 4.30 15.81 81.64 2.72 14.06 0.00 0.00

Jilin 0.78 3.65 9.56 44.85 10.98 51.50 0.00 0.00

Shaanxi 0.72 3.51 18.31 89.05 1.53 7.43 0.00 0.00

Zhejiang 0.31 3.28 7.98 85.67 1.03 11.04 0.00 0.00

Shanxi 0.19 1.22 12.25 76.83 3.50 21.95 0.00 0.00

Shanghai 0.17 27.27 0.44 72.73 0.00 0.00 0.00 0.00

Hong	Kong 0.14 100.00 0.00 0.00 0.00 0.00 0.00 0.00

Guizhou 0.14 0.88 13.56 85.46 2.17 13.66 0.00 0.00

Yunnan 0.11 0.33 1.36 3.98 10.81 31.63 21.90 64.07

Gansu 0.06 0.13 10.00 24.11 16.31 39.32 15.12 36.44

Fujian 0.00 0.00 2.95 26.77 8.06 73.23 0.00 0.00

Taiwan 0.00 0.00 0.67 20.69 1.58 49.14 0.97 30.17

Hainan 0.00 0.00 0.00 0.00 2.20 72.48 0.83 27.52

Heilongjiang 0.00 0.00 6.11 11.23 34.71 63.76 13.62 25.01

Xinjiang 0.00 0.00 0.08 0.05 25.48 14.53 149.78 85.42

Ningxia 0.00 0.00 2.97 57.84 2.17 42.16 0.00 0.00

Qinghai 0.00 0.00 0.58 0.82 11.25 15.73 59.69 83.45

Xizang 0.00 0.00 0.11 0.10 13.53 11.83 100.76 88.07

Total area 89.95 215.73 241.37 415.17

aThe	ratio	of	the	predicted	area	to	the	total	predicted	land	area	of	the	corresponding	province.
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F I G U R E  4 Potential	distribution	of	
Scleroderma guani	in	future	period	(2050s,	
2090s)	under	the	RCP2.6,	RCP4.5	and	
RCP8.5	climate	change	scenarios.	Red,	
high	suitability	area	with	the	probability	
of	.66–	1.	Orange,	medium	suitability	area	
with	the	probability	of	.33–	.66.	Yellow,	
low	suitability	area	with	the	probability	of	
.05–	.33.	White,	unsuitability	areas	with	
the	probability	of	0–	.05.

TA B L E  5 Predicted	suitable	areas	for	Scleroderma guani	under	current	and	future	climatic	conditions.

Decade Scenarios

Predicted area (×104 km2) Comparison with current distribution (%)

Total change 
(×104 km2)

Low 
suitability

Medium 
suitability

High 
suitability

Low 
suitability

Medium 
suitability

High 
suitability

Current 240.82 215.23 89.75

2050s RCP2.6 245.17 238.52 79.35 1.81 10.82 −11.58 17.24

RCP4.5 220.14 221.49 100.81 −8.59 2.91 12.33 −3.35

RCP8.5 245.64 206.27 109.90 2.00 −4.16 22.46 16.02

2090s RCP2.6 229.78 224.90 72.11 −4.58 4.50 −19.65 −18.99

RCP4.5 248.86 220.50 87.17 3.34 2.45 −2.87 10.73

RCP8.5 237.44 222.08 92.49 −1.40 3.18 3.06 6.21
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distribution	probability	 increased	with	 the	environmental	variable,	
when	the	value	was	greater	than	the	optimal	value,	it	decreased	as	
the	environmental	variables	increased.

According	to	the	response	curve	of	environmental	variables	to	
distribution	probability	in	the	MaxEnt	model	(Figure 7),	the	appro-
priate	range	of	environmental	variables	to	the	potential	distribution	
of	S. guani	was	determined,	 as	 shown	 in	Table 6. The appropriate 
value	range	of	precipitation	of	warmest	quarter	(bio18)	was	302.3–	
1784.2 mm,	 and	 the	 optimal	 value	 was	 460.7 mm.	 This	 relatively	
wide	range	of	values	for	bio18	suggests	that	S. guani can occur under 
simultaneously	 warm	 and	 humid	 conditions.	 At	 302.3–	460.7 mm,	
the	predicted	suitability	of	S. guani	increased	rapidly	with	the	raising	
of	precipitation	of	warmest	quarter	and	decreased	slowly	with	the	
increase	of	precipitation	of	warmest	quarter	 at	460.7–	1784.2 mm.	
When	the	mean	temperature	of	coldest	quarter	(bio11)	was	−11.5°C–	
14.9°C,	the	predicted	suitability	of	S. guani was higher than 0.33, and 
the	predicted	suitability	was	the	highest	at	2°C,	reaching	0.63.	The	
small	range	of	appropriate	values	for	bio11	suggested	that	S. guani 
is	highly	sensitive	to	extreme	temperature	changes.	When	the	pre-
cipitation	of	wettest	month	 (bio13)	was	 lower	 than	120.0 mm,	 the	
suitability	of	predicted	S. guani	was	 lower	 than	0.33.	With	 the	 in-
crease	in	precipitation,	the	suitability	of	prediction	increased	quickly	
and	reached	the	peak	at	175.1 mm.	When	the	precipitation	exceeded	
364.5 mm,	the	suitability	of	predicted	dropped	again	below	0.33.	A	
slight	change	in	bio3	can	have	a	significant	effect	on	the	distribution	
of	S. guani,	suggesting	that	it	preferred	areas	with	less	temperature	
variation.	The	appropriate	range	of	the	response	curve	for	isother-
mality	(bio3)	was	23.4%–	36.9%,	and	the	most	appropriate	value	was	
29.6%.	The	suitable	values	range	of	bio15,	alt,	bio4,	and	bio19	are	all	
shown in Table 6.

4  |  DISCUSSION

The	MaxEnt	model	was	used	 to	 simulate	 the	potential	 geographi-
cal	 distribution	 of	 S. guani in China, and the results showed that 
the	 highly	 suitable	 areas	 were	 mainly	 located	 in	 Sichuan,	 Hebei,	
Shandong,	 Jiangsu,	 Guangdong,	 Beijing,	 Chongqing,	 and	 other	 re-
gions, which was consistent with relevant previous research on this 
species	 (Xiao	&	Wu,	 1983; Zheng et al., 2015),	 and	 the	 predicted	
suitable	 distribution	 ranges	 were	 broader	 in	 this	 study.	 MaxEnt	
quantifies	 the	 distribution	 of	 species	 based	 on	 the	 maximum	 en-
tropy	theory.	This	method	unrestricted	unknown	distribution	infor-
mation,	and	compared	with	other	similar	models,	MaxEnt	has	more	

F I G U R E  5 The	area	change	of	suitable	habitat	for	Scleroderma 
guani	under	different	climate	change	scenarios.	(a)	area	of	high	
suitability.	(b)	area	of	medium	suitability.	(c)	area	of	low	suitability.

F I G U R E  6 Importance	of	
environmental	variables	to	Scleroderma 
guani	by	Jackknife	test.
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advantages	and	has	been	widely	used	 in	China	and	abroad	 (Wang	
et al., 2021).	The	MaxEnt	model	was	evaluated	by	using	Kappa,	TSS,	
ROC	curves,	and	the	AUC	values	in	this	study.	The	results	indicated	
that	the	model	has	a	particularly	good	prediction	effect	on	the	distri-
bution	area	of	S. guani	and	has	a	very	high	reliability.

In	this	 research,	 the	most	 important	environmental	variables	
limiting	S. guani	distribution,	which	included	bio18,	bio11,	bio13,	
and	 bio3,	 were	 screened	 using	 Jackknife	 test	 combined	 with	
Pearson’s	 correlation	 coefficient,	 and	 the	 result	 indicated	 that	
precipitation	 and	 temperature	 jointly	 constrained	 the	 current	

distribution	pattern	of	S. guani. Scleroderma guani	has	a	relatively	
high	 tolerance	 to	 humidity	 and	 can	 develop	 normally	 under	 the	
condition	of	relative	humidity	of	40%–	90%	(Yao	et	al.,	1983).	The	
range	of	bio18	 from	302.34 mm	to	1784.19 mm	was	suitable	 for	
S. guani	occurrence	in	this	research,	and	the	ranges	of	bio13	and	
bio19	 were	 also	 relatively	 wide,	 which	 was	 consistent	 with	 the	
results	of	predecessors	(Yao	et	al.,	1983).	Wang	et	al.	(2004)	dis-
covered	that	the	parasitism	rate	of	S. guani	is	inversely	related	to	
temperature.	Li	et	al.	(1984)	revealed	that	the	reproductive	cycle	
and	survival	rate	of	S. guani	were	markedly	diverse	under	different	
temperature	and	humidity.	Temperature	and	humidity	are	closely	
related	to	the	growth	and	development	of	S. guani	 (Zhao,	2019).	
The	 female	wasps	are	not	able	 to	 lay	eggs	at	15°C.	 It	 takes	53–	
62 days	to	complete	a	generation	at	23.1°C,	29–	30 days	at	25.9°C,	
21–	24 days	at	28–	30°C	 (Yao	et	al.,	1983).	The	starting	 tempera-
tures	 of	 egg,	 larva,	 and	 pupa	 are	 60.18,	 169.71,	 and	 219.00 day	
degrees,	 respectively	 (Yao	 et	 al.,	 1983).	 The	 temperature	 range	
of	artificial	 reproduction	 in	the	room	of	S. guani	 is	22–	28°C,	the	
optimum	temperature	is	26°C,	the	relative	humidity	is	60%–	80%;	
in	this	temperature	and	humidity	interval,	the	vaccination	success	
rate	and	spawned	volume	of	S. guani	are	higher	(Zhou	et	al.,	2005).	
All	the	above	results	indicated	that	temperature	and	precipitation	
play	 a	 key	 role	 in	 S. guani.	 This	 study	 showed	 that	 the	 suitable	
distribution	range	of	bio11	was	−11.5°C–	14.9°C,	and	the	altitude	

F I G U R E  7 Response	curves	between	environmental	variables	and	predicted	suitability.	a–	d	were	bio18,	bio11,	bio13,	and	bio3,	
respectively.

TA B L E  6 Suitable	range	of	environmental	variables	for	potential	
distribution	of	Scleroderma guani.

Environmental variables Suitable range Optimum value

Bio18/mm 302.3–	1784.2 460.7

Bio11/°C −11.5–	14.9 2.00

Bio13/mm 120.0–	364.5 175.1

Bio3/% 23.4–	36.9 29.6

Bio15/mm 48.2–	146.1 106.7

Alt/m −52.3–	1602.7 15.6

Bio4/°C 4.5–	13.9 10.4

Bio19/mm 1.3–	298.8 134.6
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above	1602.7	m	will	not	be	suitable	for	the	distribution	of	S. guani. 
Studies	have	found	that	the	adults	and	pupae	of	S. guani can with-
stand	 the	 low	 temperature	 of	 −24°C	 and	 can	 overwinter	 in	 the	
area	 at	 an	 altitude	 of	 1200–	1450 m,	 but	 above	 1700 m,	S. guani 
cannot	 survive	 the	winter	 due	 to	 the	 low	 temperature	 (Chen	&	
Cheng, 2000).	This	is	consistent	with	the	results	of	this	research.

Scleroderma guani	 ecological	 suitability	 distribution	map	 based	
on	 the	MaxEnt	model	 showed	 that	 the	high	 suitability	areas	were	
predominantly	distributed	in	the	southern	and	northern	regions	of	
China,	mainly	 in	the	Northeast	China	Plain,	the	North	China	Plain,	
the	Sichuan	Basin,	and	the	middle-	lower	Yangtze	Plain.	The	climate	
of	 these	 regions	 respectively	 belongs	 to	 temperate	 monsoon	 cli-
mate,	 subtropical	monsoon	climate,	and	 tropical	monsoon	climate,	
and	 the	 annual	 rainfall	 is	 400–	3000 mm,	 and	 the	 annual	 accumu-
lated	temperature	 is	over	3000°C.	They	are	characterized	by	high	
temperatures	and	rainfall	in	summer,	wet	and	hot	periods,	cold	and	
dry	winter,	and	four	distinct	seasons.

The	 temperature	 and	 humidity	 in	 these	 areas	 are	 in	 line	 with	
the	 living	habits	of	S. guani.	The	unsuitable	distribution	areas	of	S. 
guani	 are	 predominantly	 distributed	 in	 northwest	 China	 and	 the	
Qinghai-	Tibet	 region,	 mainly	 including	 the	 Qinghai-	Tibet	 Plateau,	
Xinjiang,	 Gansu,	 and	Qinghai.	 It	 may	 be	 that	 the	 climate	 in	 these	
regions	has	the	characteristics	of	strong	solar	radiation,	large	tem-
perature	difference	between	day	and	night	and	low	temperature	(Liu	
et al., 2013),	which	 is	not	conducive	 to	 survival	of	S. guani.	Under	
different	RCP	combinations,	the	scope	of	the	total	suitable	area	of	
S. guani	showed	an	overall	expansion	trend	in	the	2050s	and	2090s,	
and	the	incremental	change	was	not	particularly	evident,	which	may	
be	related	to	the	wide	ecological	range	of	S. guani, which could adapt 

to	a	variety	of	external	environments.	Under	the	high	emission	sce-
nario	(RCP	8.5),	the	high	suitable	area	of	S. guani	will	have	an	obvious	
expansion	trend,	with	an	increase	range	of	3.06%–	22.46%	(Table 5).	
In	the	future,	the	suitable	range	in	Qinghai	Tibet	region	will	decline,	
while	that	in	the	northwest	of	China	will	increase.	Climate	warming	
is	driving	the	expansion	of	S. guani	suitable	habitat,	and	it	is	antici-
pated	that	the	suitable	habitat	will	shift	to	higher	altitude	and	higher	
latitude	in	the	future.

As	 the	 dominant	 natural	 enemy	 of	 stem	 borers,	 S. guani has 
been	 widely	 used	 in	 biological	 control	 (Yang	 et	 al.,	 2014; Zhang 
et al., 2021).	Large-	scale	and	low-	cost	breeding	of	S. guani	has	be-
come	one	of	the	research	hot	topics	 in	the	field	of	biological	con-
trol	applications	 (Liu	et	al.,	2011).	The	suitable	distribution	area	of	
S. guani	 was	 relatively	 extensive,	 and	 the	 distribution	 of	 the	 host	
will	 affect	 its	 distribution.	 There	 are	many	 kinds	 of	 hosts	 for	 the	
wasp,	but	Monochamus alternatus and Batocera horsfieldi, which have 
caused	 great	 economic	 losses,	 are	 its	 main	 hosts	 in	 China	 (Chen	
et al., 2008; Zhou et al., 2020).	 The	distribution	of	hosts	was	ob-
tained	by	surveying	relevant	literature,	books,	and	the	GBIF	website,	
and it is shown in Figure 8.	The	blue	dots	represented	M. alternatus, 
and the green represented B. horsfieldi.	The	host	distribution	area	
was	included	in	the	current	predicted	potential	distribution	area	of	S. 
guani.	According	to	the	research,	M. alternatus	is	mainly	distributed	
in	Shandong,	Henan,	Anhui,	Guangxi,	and	Guizhou	(Xu	et	al.,	2020),	
and B. horsfieldi	mainly	distributed	in	Jiangsu,	Hebei,	Anhui,	Hubei,	
and	Sichuan	 (Shi	et	al.,	2013).	These	results	 indicated	that	 the	en-
vironmental	conditions	suitable	to	the	two	above-	mentioned	hosts	
and to S. guani	extensively	overlap,	and	it	was	viable	to	utilize	S. guani 
for	biological	control.

F I G U R E  8 Actual	distribution	of	
two	host	species	of	Scleroderma guani, 
Monochamus alternatus	(blue	dots)	and	
Batocera horsfieldi	(green	dots),	overlaid	on	
the	map	showing	predicted	suitability	for	
S. guani under current conditions.
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The	 ENMs	 only	 describe	 the	 basic	 ecological	 requirements	 of	
species,	not	the	actual	ecological	requirements.	When	ENMs	are	con-
ducted	to	predict	the	potential	distribution	of	species,	a	variety	of	bio-
logical	and	non-	biological	factors	affecting	the	distribution	of	species	
are	easily	overlooked	(Xu,	Liu,	et	al.,	2021; Xu, Tang, et al., 2021).	Up	to	
now,	ROC	curve	analysis	has	been	widely	adopted	in	the	evaluation	of	
discrimination	performance	when	modeling	the	potential	distribution	
of	species,	and	it	reveals	the	performance	of	the	MaxEnt	model	(Zhang	
et al., 2021).	The	MaxEnt	model	has	general	advantages	in	predicting	
the	potential	distribution	of	species,	but	still	has	some	limitations	(Xu	
et al., 2019).	The	feedback	curve	only	shows	the	influence	of	a	single	
environmental	factor,	ignoring	the	interaction	between	variables.	It	is	
impractical	to	consider	all	environmental	factors	comprehensively	in	a	
particular	model	analysis,	so	it	may	be	more	efficient	to	treat	the	model	
as	a	base	niche	model	(Chakraborty	et	al.,	2016).	Distribution	and	mod-
eling	results	are	also	influenced	by	other	intrinsic	factors	(distance	and	
rate	of	dispersal	of	species	and	time	of	formation)	and	extrinsic	factors	
(human	activities	and	natural	enemies)	(Gao	et	al.,	2021).	The	work	em-
ployed	limited	occurrence	data	and	considered	only	the	environmental	
factors	associated	with	temperature	and	rainfall	and	did	not	take	into	
account	the	influence	of	biological	factors	such	as	host	distribution	and	
diffusion,	predators,	and	other	environmental	factors	such	as	human	
interference,	which	may	have	an	 impact	on	the	accuracy	of	the	pre-
diction	results.	Hereafter,	biological	and	non-	biological	factors	such	as	
human	activities	and	host	 types	can	be	 incorporated	 into	 the	model	
when	studying	the	suitable	area	of	S. guani	in	order	to	improve	the	ac-
curacy	of	model	predictions.

5  |  CONCLUSIONS

This	 research	applied	MaxEnt	model	and	ArcGIS	 technology	 to	suc-
cessfully	calculate	the	current	and	future	suitable	habitat	distribution	
of	S. guani	 in	China,	according	to	the	known	distribution	information	
and	climate	factors.	The	results	revealed	that	the	suitable	areas	were	
distributed	 in	 low-	altitude	 areas,	 and	 the	 high	 suitable	 areas	 were	
mainly	concentrated	in	the	coastal	area	of	northeast	plain,	North	China	
plain	 and	 Sichuan	 Basin.	 The	 vital	 environmental	 variables	 that	 im-
pacted	the	distribution	were	precipitation	of	warmest	quarter	(bio18),	
mean	temperature	of	coldest	quarter	(bio11),	precipitation	of	wettest	
month	 (bio13),	 and	 isothermality	 (bio3).	 The	 distribution	 range	of	S. 
guani	in	high	suitable	areas	showed	a	trend	of	further	expansion.	This	
study	will	provide	reference	for	expanding	current	knowledge	about	
the	environmental	drivers	of	S. guani	distribution,	so	as	to	facilitate	its	
use	as	biological	control	agent	against	stem	borers	and	other	pest	spe-
cies.	This	study	explored	the	impact	of	the	Maxent	model	on	the	eco-
logical	distribution	of	S. guani,	and	further	research	will	be	carried	out	
in	the	future	combining	more	ENM	and	more	environmental	factors.
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