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A bacterial biofilm is a cluster of cells residing within a
self-produced matrix of extracellular polymeric substance
(EPS) containing primarily proteins, polysaccharides and
extracellular-DNA (Hoiby et al., 2015). Biofilm formation
begins when planktonic cells attach to biotic or abiotic
surfaces to form a microcolony, followed by EPS secre-
tion. The biofilm matures into a three-dimensional struc-
ture that is difficult to penetrate or degrade in a process
governed by bacterial quorum sensing (QS) via sig-
nalling molecules in accordance with population density
(Miller and Bassler, 2001). Ultimately, the cell cluster is
dispersed to release planktonic cells back into the envi-
ronment to continue the cycle (Jamal et al., 2018).
Bacterial biofilms negatively impact human health in

two notable areas. In medical settings, they are associ-
ated with chronic infections of tissues and organs (e.g.
cystic fibrosis and wounds) or implanted medical devices
(e.g. catheters, endotracheal tubes, tissue fillers), where
the biofilms effectively hide bacteria from the host
immune system and render them up to 1000-fold less
susceptible to antibiotics than in their planktonic state
(Gilbert et al., 2002). Attempts to treat biofilm infections
with antibiotics negatively impact the environment due to

their prolonged use and continuous discharge, since
chronic exposure to antibiotics, even at sublethal con-
centrations, can promote a pool of resistance genes in
natural bacterial communities (Sengupta et al., 2013,
Andersson and Hughes, 2014). In food and drink manu-
facturing settings, bacterial biofilms can contaminate
plant pipelines, resulting in production losses, economic
damage and the potential for infections in consumers
(Galie et al., 2018; Wang, 2019). However, not all bio-
films are harmful; they can be useful for catalysing
specific biotransformations and for bioremediation of
toxic compounds (Benedetti et al., 2016).
Due to the emergence of antibiotic resistance around

the globe, many alternative strategies have been devel-
oped to eradicate biofilm formation, including physical
(heat and ultrasound) (Cai et al., 2017; Ricker and Nux-
oll, 2017; Wang et al., 2018), chemical (organic acids)
(Ryssel et al., 2009; Ban et al., 2012; Singla et al.,
2014) and biological (bacteriophage) (Tkhilaishvili et al.,
2018; Gupta et al., 2019) methods. However, there are
some limitations to existing treatment methods. For
example, the use of chemical disinfectants can trigger
bacteria to activate acid tolerance responses or accumu-
late mutations to survive the low-pH environment (Bear-
son et al., 1997; De Biase and Lund, 2015).
Alternatively, the application of host-specific bacterio-
phages is currently limited by a narrow host range, the
emergence of phage resistance and phage inactivation
by the human immune system (Donlan, 2009).
With the advent of synthetic biology, which aims to

develop living organisms with genetically programmed
responses, there has been wide interest in engineering
commensal bacteria to address biofilms. Studies have
primarily relied on the detection of QS molecules
because they are reliable signals of biofilm formation
and a wealth of genetic parts exist that can be used for
engineering. Early work demonstrated the potential use
of engineered E. coli to sense and kill Pseudomonas
aeruginosa, by the production of protein toxins upon
detection of QS autoinducers (Saeidi et al., 2011; Gupta
et al., 2013). Despite the successful demonstration, the
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system relies on the diffusion of the toxins to the patho-
gen, making biofilm penetration a key issue. Later,
Hwang et al. (2014) demonstrated improved targeting of
P. aeruginosa by reprogramming the expression of the
chemotaxis protein CheZ (phosphatase-activating pro-
tein) to cause E. coli to swim towards the pathogen in
response to secreted QS molecules. As a result, the
engineered E. coli cells were able to kill both planktonic
and biofilm-residing cells. However, this system still
relies on diffusion of the QS molecules, which may limit
the distance over which it is effective.
An alternative way to localize engineered E. coli to

biofilms would be via direct detection of the EPS compo-
nents themselves. These large macromolecules would
be difficult to detect via genetic regulators such as acti-
vators or repressors due to their slow diffusion and
inability to cross the cell membrane. However, to facili-
tate adhesion of engineered E. coli cells to biofilms, one
possible option could be the display of recombinant anti-
bodies (Abs) or Ab fragments such as ‘nanobodies’
(Nbs) on the surface to physically bind the cells to the
EPS. Nbs are single-domain antibodies derived from the
heavy chain Abs of camelids, which, unlike classical
Abs, are devoid of the light chain and the CH1 constant
domains (Deffar et al., 2009; Muyldermans, 2013). Nbs

have emerged as next-generation Abs for an array of
diagnostic and therapeutic applications due to their small
size (~15 kDa), high binding affinity, pH and thermal sta-
bilities, hydrophilicity, ease of production in prokaryotic
and eukaryotic hosts and low immunogenicity in vivo
(Khodabakhsh et al., 2019; Salvador et al., 2019). A
handful of Nbs against proteins involved in biofilm forma-
tion, e.g., biofilm-associated protein (Bap) (Payandeh
et al., 2014) and flagellin (Adams et al., 2014), have
already been discovered, and it is feasible to imagine
that Nbs against new targets could be selected from
libraries (McMahon et al., 2018) or via immunization.
Nbs against chemical targets have been selected before
(Kim et al., 2012; Bever et al., 2016). Therefore, they
are capable of binding to small molecules.
Salema et al. (2013) demonstrated E. coli surface dis-

play of Nbs by fusing them to the N-terminal b-intimin
domain and an extracellular Ig-like domain (D0) (Fig. 1).
The intimin-Nb fusion constructs have been successfully
used to select specific Nbs against different targets
(Salema et al., 2016a,2016a,2016b) and to serve as the
detection element in whole-cell biosensors (Kylilis et al.,
2019). In addition, they can act as synthetic adhesins to
specifically attach to surface antigens on target cells
such as solid tumours (Pinero-Lambea et al., 2015).

Fig. 1. Design of QS-dependent engineered E. coli via nanobody surface display for battling biofilm infections. The system consists of three
modules: the surface co-expressions of specific Nbs for pathogen identification and biofilm-degrading enzymes (localizing), the constitutive
expression of LuxR (sensing) for forming complex molecules with diffusible QS signals from pathogens and those complexes bind to plux pro-
moter regulating the gene expression exhibiting antimicrobial and antibiofilm activities (killing). D0, extracellular Ig-like domain; Enz, biofilm-de-
grading enzyme; GOI, gene of interest; Nb, nanobody; OM, outer membrane; sp, signal peptide.
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Recently, Glass and Riedel-Kruse (2018) demonstrated
the use of the intimin-Nb fusions to programme multicellu-
lar morphologies, which could be possibly further applied
towards engineering synthetic cell consortia for micro-
biome therapy (Timmis et al., 2019). To date, there are
no reports of surface display of enzymes via the b-intimin
domain (Salema et al., 2013), but other fusion partners
have been previously used successfully in E. coli (Schu-
urmann et al., 2014; Qu et al., 2015; Zhang et al., 2018).
Here, we propose BeQuIK (Biosensor Engineered

Quorum Induced Killing), a design for battling recalcitrant
biofilms. BeQuIK is composed of three genetic modules
introduced into E. coli cells in order to (i) target and
degrade biofilms, (ii) sense the presence of pathogenic
organisms and (iii) activate the production of toxins to
kills these organisms. The novelty of BeQuIK lies in first
module, which aims to solve the problems of previous
‘seek-and-destroy’ engineered cells by aiding in the tar-
geting and penetration of biofilms. To achieve this, cells
would display one or more biofilm-targeting Nb (to recog-
nize and bind to components of the EPS or biofilm-medi-
ated proteins) (Ardekani et al., 2013; Adams et al.,
2014; Payandeh et al., 2014) and one or more biofilm-
degrading enzyme domains. The latter could consist of
glucohydrolase enzymes, DNaseI, cellulase, etc. (Stiefel
et al., 2016) and would allow for more effective diffusion
of the QS signals needed to activate the killing mecha-
nism as well as facilitating entry of the therapeutic
agents meant to destroy the pathogenic bacteria. The
proteins could either be displayed separately on the cell
surface or as a fusion protein (Fig. 1).
Our design represents a new perspective for treating

biofilm infections effectively by improving target localiza-
tion based on physical linking between Nbs and specific
antigens in the EPS. The engineered E. coli cells would
also target planktonic cells for the prevention of biofilm
formation leading to pathogen eradication. With accessi-
ble resources of Nbs and other materials, we envision
that it is a feasible alternative for application to both bio-
tic and abiotic surfaces, especially as a cleaning-in-place
method for medical devices and industrial pipes. Further-
more, the sensing module and a responsive promoter in
the killing module can be tailored to target any patho-
gens via its characteristic QS molecules for achieving an
improved ‘seek-and-destroy’ system.
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