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Abstract: The surge in the number of earth observation satellites being launched worldwide is placing
significant pressure on the satellite-direct ground receiving stations that are responsible for systematic
data acquisition, processing, archiving, and dissemination of earth observation data. Growth in the
number of satellite sensors has a bearing on the ground segment payload data processing systems
due to the complexity, volume, and variety of the data emanating from the different sensors. In this
paper, we have aimed to present a generic, multi-mission, modularized payload data processing
system that we are implementing to optimize satellite data processing from historical and current
sensors, directly received at the South African National Space Agency’s (SANSA) ground receiving
station. We have presented the architectural framework for the multi-mission processing system,
which is comprised of five processing modules, i.e., the data ingestion module, a radiometric and
geometric processing module, atmospheric correction and Analysis Ready Data (ARD) module,
Value Added Products (VAPS) module, and lastly, a packaging and delivery module. Our results
indicate that the open architecture, multi-mission processing system, when implemented, eliminated
the bottlenecks linked with proprietary mono-mission systems. The customizable architecture enabled
us to optimize our processing in line with our hardware capacities, and that resulted in significant
gains in large-scale image processing efficiencies. The modularized, multi-mission data processing
enabled seamless end-to-end image processing, as demonstrated by the capability of the multi-mission
system to execute geometric and radiometric corrections to the extent of making it analysis-ready.
The processing workflows were highly scalable and enabled us to generate higher-level thematic
information products from the ingestion of raw data.
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1. Introduction

The systematic data acquisition, processing, archiving, and dissemination of satellite data is
a fundamental task performed by most satellite ground receiving stations across the world [1–5].
These ground segment activities are critical in ensuring data utilization and directly impact the success
of satellite missions. Core ground segment functions such as data reception, processing, valorization,
archiving, discovery, access, and dissemination are evolving with time to meet the increasing demands
of modern image processing [1–8]. Direct receiving stations (DRS) receive raw data from the satellite
through ground antennas before it is down-converted and demodulated and transferred for systematic
processing [6–8]. This procedure also involves converting the raw, unitless relative reflectance digital
numbers of the original bands into true measures of radiance. Satellite data are increasingly being
used to support a wide range of scientific and operational activities related to infrastructure mapping,
crop monitoring, water resources assessments, urban monitoring, land use and land cover mapping,
natural resources monitoring, and vegetation assessments. There has been a significant rise in the
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number of satellite launches in the last two decades to meet the ever-increasing demand for medium-
and high-resolution earth observation data [9–11]. Technological advancements in satellite engineering
are increasingly making it feasible to design satellites with very high spatial, spectral, temporal,
and radiometric resolutions. These changes are inadvertently exerting significant pressure on the data
ground stations charged with processing, archiving, cataloguing, and disseminating these colossal
datasets [12]. The variety and sheer size of satellite datasets pose significant operational efficiency
challenges to traditional image processing systems.

Remotely sensed data are prone to several systematic and random effects that combine to degrade
the quality of satellite imagery received on the ground by DRS. Image restoration procedures are
therefore required to rectify these degradation effects. In most cases, ground receiving stations
focus their attention on two fundamental image pre-processing procedures, known as geometric and
radiometric rectification [13–16]. Radiometric rectification seeks to eliminate or minimize distortions in
the values recorded for image pixels due to atmospheric effects, striping, random noise, and scan line
dropouts. Atmospheric haze is known to systematically elevate pixel values due to the preferential
scattering of shorter wavelength bands, particularly in the visible region of the electromagnetic
spectrum. Random noise normally results from the unpredictable and unsystematic performance
of the satellite sensor or data transmission. Image striping is mainly a result of detector calibration
problems, while scan line dropouts are caused by signal losses from specific detectors. Geometric
rectification aims to register satellite imagery within a specific geographic reference system and to
eliminate the systematic distortions resulting from image displacements by applying systematic high
order transformations. Three important requirements used in evaluating the geometric performance
of satellite systems are absolute geodetic accuracy, band-to-band registration, and image-to-image
registration. Image-to-image registration ensures that geometrically corrected images taken at different
times are able to be registered to a defined level of accuracy that enables multi-temporal analysis [13–16].

Radiometric and geometric processing is normally done by sensor-specific product generation
systems that pre-process that data to various processing levels. For instance, the Landsat Missions use
the Landsat product generation system (LPGS). In the case of Landsat 7, Level 1 data products are
radiometrically and geometrically corrected and the processing level is dependent on the availability of
ground control points (GCP), a digital elevation model (DEM), and the payload correction data (PCD)
collected by the satellite. The LPGS processes three Level 1 products, and these include precision
and terrain correction (L1T), systematic terrain correction (L1Gt), and the systematic correction (L1G)
products. L1T products are radiometric and geometrically corrected using GCPs and by integrating
a DEM to correct for relief displacements. L1Gt products are systematically corrected to attain
radiometric and geometric accuracy and use a DEM to compensate for the terrain displacements. L1G
products are systematically, radiometrically, and geometrically corrected using PCD. Landsat 7 Level
1 products are delivered as digital numbers (DN), and can easily be rescaled to spectral radiance
or top-of-the-atmosphere (TOA) reflectance. The Landsat 8 Level 1 processing system has similar
radiometric and geometric processing protocols. The processing algorithms incorporate ancillary data
processing, sensor geometric model creation, sensor LOS generation and projection, input/output space
correction grid generation, systematic terrain correction and resampling, geometric model precision
correction using GCPs, and terrain-corrected image resampling functionality [17–20].

The naming conventions for the processing levels differ across sensors. For instance, Sentinel-2
data are systematically processed from Level-0 to Level-1C using the instrument data processing
functionality of the payload data ground segment. Level-0 data processing is done to package the raw
satellite data, and consolidates them with its ancillary raw data for long-term archiving and forward
processing to Level-1A, which decompresses the relevant mission source packets. Sentinel-2 Level-1B
data are radiometrically corrected using dark signal, crosstalk, and pixel response non-uniformity
corrections. The radiometric rectifications are done on Level-1C also include identification of defective
pixels as well as deconvolution and denoising of high spatial resolution bands and binning on
low-resolution spectral bands. Sentinel-2 Level-1C processing involves radiometric and geometric
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rectification that includes high accuracy ortho-rectification and spatial registration on a global reference
system. Level-2A processing involves the generation of a scene classification and atmospheric correction
to a TOA Level-1C product to generate a bottom-of-atmosphere (BOA)-corrected reflectance orthoimage
product [21]. The processing levels for CBER-4 are divided into five processing levels, excluding the
raw data from the telemetry data received from the downlink. Level-0 is frame synchronized and
decommutated digital data, while Level-1 is radiometrically and geometrically corrected raw data.
Level-2 is radiometrically and geometrically corrected using a systematic model with GCPs, whereas
Level-3 and Level-4 processing use GCPs and a digital terrain model for terrain parallax correction,
respectively. Level-5 processing is focused on thematic classification.

Our assessment of the Landsat 7, Landsat 8, Sentinel-2, and CBERS-4 ground segment data
processing systems clearly shows the importance of radiometric and geometric subsystems. We further
identified the importance of the process control subsystem for scheduling and monitoring the process
workflows, a quality assessment subsystem, and a data management subsystem for data management
services for efficient operational image pre-processing in our review. The success of earth observation
satellite missions is equally dependent on the remote sensing and geographical information systems
(GIS) software that enable users to extract information from satellite imagery and use it for analysis
and modeling. The Sentinel missions have several open and free remote sensing software packages on
the Sentinel Application Platform (SNAP) that offer visualization and the analytical and processing
capability necessary to enable the full utilization of Sentinel data.

The processing of satellite data from multiple payloads using single-sensor approaches is
inefficient, cumbersome, and poses significant operational challenges. The architectural designs of
traditional payload data processing systems are often rigid and tightly coupled to the extent that they
inhibit system integration, adaptability, and scalability. To overcome these constraints, large-scale
satellite image processing data centers are increasingly developing modularized, multi-mission open
architectural designs to process images from multiple missions. There is an increasing tendency to
apply multi-mission, modular open architectural designs that are easily adaptable and share a range
of interoperable services and tools. The concept of multi-mission ground data systems is not new.
Green [4] presented NASA’s advanced multi-mission operations (AMMOS) multi-mission ground data
system and outlined its architectural form and functionality. Using AMMOS as a case study, Barnes [1]
provided an in-depth analysis of the development of software architecture. The DLR successfully
implemented a generic multi-mission modularized data processing known as a data information
management system (DIMS) that has end-to-end processing functionality for acquisition, processing,
post-processing, archiving, ordering, and delivery [7,22]. DIMS’s flexible, modular system designs,
service components, and workflows allow individual components to efficiently execute processing,
ordering, publishing, and delivering tasks [6,8,23,24] presented an automatic multi-mission processing
system known as CATENA. Built-up by the DLR, CATENA uses integrated grid computing and was
grown for processing large volumes of optical satellite data from different sensors such as Landsat,
SPOT, Rapideye, Worldview, and Pleiades. This multipurpose, modularized data processing can be
integrated into the DIMS system or can be run as a standalone system, and considers the integration of
various processing chains from the different modules.

The increasing demand for remotely-sensed satellite data and earth observation services has seen
an upsurge in the number of direct reception satellite at the South African National Space Agency’s
(SANSA) ground receiving station at Hartebeeshoek, South Africa. Built in the 1950s, the key functions
for the ground receiving station include satellite tracking, telemetry and command, in-orbit testing,
charge control, space navigation, and direct response to earth observation satellite imagery. It has
a wide range of antenna systems that encompass the L, S, and C, Ext C, X, Ku, DBS, S, and Ka
frequency bands, of which seven are full-motion Telemetry, Tracking and Command (TT&C) antennas.
The X-band antenna dedicated to earth observation data reception has a wide reception footprint
that covers the southern African continent from 3◦ to 50◦ south. The station has received satellite
data from Landsat missions since 1972. To date, the following sensors have been directly received at
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the Hartebeeshoek ground station: Landsat 2–5, 7, and 8; ERS-1 SumbandilaSAT; SAC-C; CBERS-2B,
CBERS-4 (MUX, WFI, P5M, and P10); SPOT 1–7; and RadarSAT-2 satellites. This number is on an
upward trajectory if one considers potential sensors that are going to be received through the Brazil,
Russia, India, China and South Africa (BRICS) virtual constellations agreements, African Resource
Management constellation, and the Sentinel data collaborations. The processing of data being received
from sensors currently, such as Landsat 7, Landsat 8, MODIS Aqua and Terra, SPOT 6/7, CBERS-4,
and Radarsat-2 already poses significant processing challenges and efficiency issues. In this paper,
we aimed to present a generic, multi-mission, modularized payload data processing system that we
are implementing to optimize satellite data processing from historical and current sensors directly
received at SANSA’s ground receiving station.

2. Current Status

The most significant challenge in receiving and processing data from multiple sensors is the different
hardware and software configurations that need to be installed and maintained separately for each mission.
This causes operational challenges requiring an additional technical staff complement. In addition to
technical staff, hardware lifetime has been greatly reduced by the rate of technological advancements,
and this often results in a lack of support for older hardware systems. This usually results in the inability
to reprocess any received mission data for some missions if hardware failures are encountered. To mitigate
all the above-mentioned issues, organizations are exploring the use of multi-mission processing pipelines
that are both sensor- and hardware-independent [1,2,4,25,26]. The goal is to have a single, portable
processing codebase that supports decommissioned, current, and future missions.

As mentioned before, radiometric and geometric corrections constitute the bulk of the processing
requirements. These corrections are universal to all sensors and can thus be standardized for all multi-mission
processing. While differing sensor optics might present challenges in standardizing pre-processing, further
downstream processing has reached a maturity level where standardization can be implemented, for example,
in the use of the V6S atmospheric correction model for all medium- to high-resolution sensors.

The next section discusses the work that has commenced in implementing a multi-mission
processing system at SANSA. By implementing generic algorithms for various processing stages,
the concept of a multi-mission processing system has been, to a greater extent, realized. Figure 1 below
illustrates the multi-mission concept that has been adopted.
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The idea behind the multi-mission concept is to develop generic sensor-independent algorithms
that are easily adaptable to different sensors, either by providing sensor-specific parameters or using a
generic model that is universally accepted for sensors (e.g., V6S models). Each sensor will provide the
algorithm with custom parameters that will be used in processing the sensor.

3. Implementation Architecture

The framework proposed here does not assume a pre-defined input image level for processing.
The system is designed to ingest images at different levels of processing. Depending on the required
output, only the required algorithms are triggered as the image moves through the processing pipeline.
To allow for multi-sensor storage in a standardized data management system, data cubes are used to
allow for further processing using generic algorithms that are non-sensor-specific. The diagram below
shows a more detailed framework with all the different modules that constitute the entire system.
Figure 2 illustrates the processing framework that has been implemented thus far. The framework is
comprised of four modules. Each module is sensor-independent and the task of each is described below.
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Figure 2. Implementation of the multi-mission processing system, which is comprised of four
processing modules.

While there has been a drive to develop multi-mission systems, most of the solutions are proprietary.
In addition, due to the emergence of different hardware requirements and evolving technologies
and software, the drive has been to develop custom solutions while keeping abreast of technological
advancements in high-performance computing. The SANSA multi-mission system (MMS) aims
to leverage open source software and libraries in delivering a cost-effective solution. While other
solutions exist, the SANSA MMS aims to leverage new automated systems for scaling applications
in High-Performance Computing (HPC) environments. The MMS presented here uses a Kubernetes
system, which had not been developed when other legacy systems such as DIMS and CATENA were
launched and which uses open source and customized software for end to end processing. Further to
this, the SANSA MMS integrates architectural concepts such as the data cube that have not yet been
reported in DIMS, CATENA, and AMMOS.
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3.1. Technical Implementation of the Multi-Mission Processing System

The multi-mission data processing system was developed in the C++ programming language with
additional programming languages such as Python and JavaScript. On its backend, the data processing
system uses my PostgreSQL object-relational databases that are integrated into the PostGIS extension
to enhance its spatial intelligence. To optimize processing efficiency, the algorithms were customized
for parallel processing using the open multi-processing (OpenMP) Application Programming Interface
(API). OpenMP provides a simple and flexible interface necessary for supporting parallel processing
applications using shared memory multi-processing running on multiple servers. Deployed on
CENTOS 7 server operating systems, the multi-mission data processing system utilizes the open-source
Slum Workload Manager for job scheduling and cluster management.

We utilized the Geospatial Data Abstraction Library (GDAL) generic open-source platform
as a mechanism to read and write common satellite image file formats. GDAL is a powerful
and widely used translator library for raster and vector geospatial data formats (https://gdal.org/).
Our implementation uses GeoNetwork as a catalogue application for the management of geospatial
data sources. GeoNetwork provides metadata editing and search functionality and is compliant
with ISO metadata standards such as 1SO 19115:2003—Metadata, ISO 19115-2 for Gridded Imagery
Extension, ISO 19,110—Feature Catalo, ISO 19,119—Services, and ISO 19115-1-Metadata Fundamentals
(https://geonetwork-opensource.org). Current developments involve integration of the generic iCOR
atmospheric correction algorithm, which has been proven to work effectively with Landsat-8/OLI and
Sentinel-2/MSI data and is independent of scene and sensor [27]. The multi-mission data processing
also integrates insight toolkit (ITK) open-source libraries with potential algorithms for registering,
segmenting, analyzing, and quantifying satellite data [28]. Provenance collection is an important step
in image processing in that it supports satellite data preservation and stewardship. In remote sensing
terms, provenance can be regarded as the process of documenting the lineage of the geoprocessing
undertaken on the data [29]. Provenance capturing is, therefore, a critical component of complex
satellite data processing workflows, in that it automatically captures the sequence of image processing
procedures and transformations that were executed to generate products [30,31]. In the multi-mission
data processing system, we used the Karma provenance software as a plugin to collect data provenance
from the multi-mission data processing workflows. Karma is an open-source software based on the
open provenance model (OPM), the modular architecture of which was adaptable to the architectural
setup of our multi-mission data processing. Karma has been used successfully by NASA on the
Advanced Microwave Scanning Radiometer Earth Observing System [29]. Pérez [32] provides a good
review of provenance systems for adoption.

The algorithm bank integrates several cross-platform open-source libraries that are utilized and
adopted for image processing. The multi-mission data processing also draws on generic and specialized
image processing algorithms available in the Remote Sensing and GIS Library (RSGISLib) [33],
which has over 300 algorithms for performing some low-level functions such as stacking image
bands, zonal statistics, normalizing data, segmentation, and applying filters. Generic atmospheric
and radiometric algorithms available in RSGISLib for multi-mission image processing include the
6S model, Py6s, and the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI)
algorithms. The Orfeo ToolBox (OTB) provides a rich source of algorithms that we integrated into the
data processing system, and these include the Haralick Texture and filtering algorithms used for the
classification of human settlements.

https://gdal.org/
https://geonetwork-opensource.org
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3.2. Framework Modules

3.2.1. Data Ingestion

The data ingestion module has two primary roles. The first role is to ingest data from the
demodulators and check whether all ancillary files and data from the sensor have been received in
full. All the expected data intervals are checked based on the transmission schedules for the day
and the databases are updated. Mission data are then archived with all the accompanying metadata.
The second role is to check data received from open data portals that have been processed to a higher
level than raw data. The ingestion module checks for the level of processing and tags the dataset
metadata as it moves to the next module, which will decide on the processing level required based on
the tag. The data ingestion module also updates all the relevant databases with regard to received data.

A common object model is defined for the sensors, as shown in Figure 3. Each sensor is first
converted to this common image object model, which is defined by a generic set of virtual routines that
exist for all sensors. Additionally, all sensor data are converted to the TIFF file format at ingestion.
Each sensor object then inherits the virtual routines and provides an implementation for that routine if
the bands that support the function are present, otherwise the function remains virtual. Downstream
processing modules only request data using the generic functions instead of checking what type of
sensor is being processed. Figure 3 illustrates the object model that is created for each sensor once
ingested. This common object model does not alter original downlinked data, but only created at
ingest to allow downstream processing. Input data formats that are supported by the SANSA MMS
are restricted to all Geospatial Data Abstraction Library (GDAL)-library-supported image formats.
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The image uses a common image object model to access sensor data. An example of an NDVI query
using the mode is shown above. Algorithms request data using a generic function that is customized
for each sensor through object inheritance. A high-level overview of the ingest module is shown in
Figure 4. Algorithms request for the inputs they require using the generic functions. If the sensor has
the requested data within a specified date range, as illustrated in Figure 5, the algorithm executes.
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3.2.2. Radiometric and Geometric Processing Module

Radiometric and geometric rectifications are required to correct for errors such as spectral
distortions inherent in satellite imagery due to atmospheric, terrain, and relief distortions, sun angle,
and satellite drift and positioning. Teillet [15] highlights that radiometric corrections are critical
in removing the effects that modify the spectral consistency of land cover features. Radiometric
and geometric corrections are particularly important when undertaking change detection studies
that involve multi-sensor datasets and time series analysis. In general terms, radiometric correction
methods are classified into absolute and relative categories [15,34]. Absolute corrections are aimed at
correcting radiance and reflectance using atmospheric models that use onboard sensor calibration data,
sun angles, viewing angles, and measured ground data. Relative corrections are aimed at normalizing
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multi-temporal datasets to given reference data to ensure comparability. Generic geometric rectification
is achieved using the generalized rational polynomial coefficients (RPC) sensor model, since it can
be utilized without full knowledge of the physical sensor model. For each medium- to high-level
sensor that is directly downlinked, RPCs are generated for use in geometric image rectification.
The radiometric and geometric module also integrates sensor-specific programs such as the adapted
Landsat 8 Level 1 product generation system (LPGS) and SPOT 6 custom developed pre-processing
chains for orthorectification, pan sharpening, and mosaicking.

3.2.3. Atmospheric Correction and Analysis Ready Data (ARD) Module

This module receives all the L1 imagery either from the radiometric and geometric processor,
or directly from the data ingestion module if the data has already been processed to L1. Atmospheric
corrections are then applied to the datasets, resulting in ARD data which are then ingested into a data
cube. The data cube serves as a store and data management system for all ARD data that is used to
produce value-added products that are non-sensor-specific. Generic algorithms that are implemented
are provided by, for example, ESA SNAP or MACCS V6S. The algorithm provided in the software
mentioned can be adapted to most sensors. These serve as a basis for atmospheric correction. Since the
available atmospheric corrections are limited, the correct model is required for any given sensor.
Each sensor object has a sensor ID that stores the original sensor identity. The atmospheric correction
model first queries the sensor ID for any image object and uses the appropriate model.

3.2.4. Value Added Products (VAP) Processing

This module is responsible for producing value-added products from radiometrically and
geometrically corrected data. The applications are non-sensor-specific and use data available in the
production of any product. Some of the products that are currently in production include waterbody
layers and forestry and vegetation products. An application first checks for the availability of data over
the area of interest for processing, and uses available data rather than sensor-specific data. Depending
on resolution and availability, algorithms request data using coverage only, and not the specific sensor.
Various products that have been successfully produced at SANSA can be found in References [35–38].

The algorithm library consists of a set of stable multi-sensor and non-sensor-specific algorithms
used to address a range of operational requirements. Multi-sensor algorithms that have been
successfully implemented include techniques for geometric and radiometric rectification, atmospheric
correction, image fusion, image mosaicking, vegetation indices, and morphological classification
algorithms. For the development of vegetation indices to estimate biomass and vegetation condition,
we take advantage of the fact that most vegetation indices are developed from blue, green, red,
and near-infrared channels common in the visible and near-infrared (VNIR) spectral region for most
satellite sensors. An area of interest is a key requirement when processing a VAP. The workflow shown
in Figure 5 below illustrates the requests and queries that are used when processing a VAP without
specifying a sensor name. System products are processed in this manner by the MMS. However, ad-hoc
user requests that are not systematically processed are handled by the Data Cube platform.

Our implementation thus embeds common vegetation indices such as the normalized difference
vegetation index (NDVI) (Rouse et al. 1974), simple ratio vegetation index (RVI) [39], transformed
vegetation index (TVI), and ratio vegetation index [40], which all utilize the red and near-infrared
spectral bands. Human settlements layers have been produced using the system. Classification of the
human settlements layer is based on sensor-specific adaptations of the morphological and texture-based
approaches [41–46]. The human settlements classification protocol uses a ruleset that involves the use
of Haralick textural features such as Gray level co-occurrence matrices (GLCM) and existing land cover
information. Morphological and texture-based classification techniques are increasingly being used for
land cover classification due to their stability [47]. The algorithm library currently integrates generic
automated land cover classification specifically aimed at extracting vegetation cover, surface water
bodies, and human settlements. Vegetation composites are generated using a simple NDVI computation
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highlighted earlier. Development of generic, stable, and reliable multi-sensor algorithms that are
interoperable across a range of satellite sensors is the subject of ongoing research. Examples of some of
products that are generated through the multi-mission data processing include the national vegetation
density layer (Figure 6), time-series monitoring of surface water bodies (Figure 7), national waterbody
layer (Figure 8), SPOT 6 mosaic of South Africa (Figure 9), and the human settlements layer for
Johannesburg (Figure 10). The system has also embedded functionality to compute biophysical
parameters such as leaf area indices (LAI) and fraction of absorbed photosynthetically active radiation
(FAPAR) for Landsat 8 and Sentinel-2 data [48–51]. Extraction of surface water bodies is currently
operationalized on Landsat 8 OLI, using the simple water index to generate surface water bodies
shown in Figures 7 and 8. Another simple multi-sensor algorithm for surface water body extraction
embedded in the processing system includes the normalized difference water body index (NDWI)
proposed by McFeeters [52]. Recently, Rokni [53] confirmed the robustness of the NDWI for mapping
lakes using Landsat data.
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3.2.5. Data Cube Module

All processed products either have specific users that require them continuously or need to be
discoverable to end-users. This has been achieved through FTP for large data access, a catalogue
service for searching and data discovery, and open data sharing that allows for data connection and
streaming to the third-party clients. This module prepares processed data so that it can be accessed by
any of the means mentioned in this paragraph.

The implementation of the data cube module is aimed at providing a common analytical framework
consisting of a series of data structures and software tools to enable the cataloguing and exploratory
data analysis of multiple gridded data collections [54–56]. Our design adopts the Open Data Cube
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architecture and utilizes a variety of open source tools such as the Jupyter Notebooks, Python libraries,
Open Data Cube Stats, PostgreSQL database, Open Data Cube Explorer, Command Line Tools,
and Open Geospatial Consortium (OGC) web services (www.opendatacube.org).The ODC architecture
was selected as it provides a flexible framework for accessing, organizing, querying, and analyzing large
quantities of satellite data using open source software that makes customization to the multi-mission
faster. As illustrated in the process workflow, the data cube ingests pre-processed data that have
been radiometrically and geometrically corrected with atmospheric corrections done to ensure data
interoperability. The organization of the data into the data cube is ensured by an indexing process
that first defines the products by defining common properties for a collection of data, extracting the
metadata, and lastly indexing the data by recording the metadata and its location. The ingestion
process is accomplished using ingestion configuration procedures aimed at data reformatting and
conversions, e.g., resampling and reprojections. In the short-term, the data cube module is aimed at
exploiting analysis ready data (ARD) from the Landsat 8 mission, SPOT 1-6, Sentinel-2, and CBERS-4.
The development of this module draws from the experiences of successful data cube implementations
such as the Digital Earth Australia and Swiss Data Cube. The technical implementation of the data
cube benefits from the technical support of Geoscience Australia, the co-inventors of the data cube.
The data cube concepts and lessons learned from developing Digital Earth Australia are presented by
Lewis [56]. In the same breath, Giuliani [57] highlighted the experiences of building the Swiss Data
Cube. Similarly, Dhu [55] provided some data cube practical applications using Digital Earth Australia
that included analysis of flood regimes and groundwater identification. The growing list of countries
implementing data cubes provides lessons to guide our implementation; a summary of the status of
international data cube developments has been highlighted by Killough [58].

3.2.6. Processing Architecture

The system has two levels of parallelization with regard to processing. The first level is at the
application level, where OpenMP uses single application multi-threaded support. This ensures full
utilization of available cores on a system by each application when executing a task. The number of
cores is requested at run time by each application. In turn, the applications are hosted in containerized
environments, which allows for scaling up of the system. The management and scaling of these
applications in each module is handled by Kubernetes. Chained applications for each module are
hosted in a container. If multiple instances are required for concurrent processing, multiple instances
are launched based on available resources. The diagram shown in Figure 11 below illustrates the
architecture used in the MMS to support scaling and concurrent processing.
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4. Discussion

The implementation of the multi-mission processing system has eliminated the bottlenecks
associated with proprietary mono-mission systems and has significantly optimized our large-scale
image processing, as demonstrated in this paper. The modularized multi-mission data processing
has enabled a seamless end-to-end image processing, as demonstrated by the capability of the
multi-mission system to execute geometric and radiometric corrections to the extent of making
it analysis-ready. The processing workflows also enabled the generation of higher-level thematic
information products from the ingestion of raw data. The multi-mission processing system also takes
advantage of open-source image processing algorithms that can easily be adapted and integrated into
the common algorithm bank that can be used by a variety of sensors. Proprietary mono-mission data
processing systems often have subsystems that are tightly coupled and are closed for integration and
adaptation. The modular approach used in the development of the multi-mission processing systems
ensures flexibility and easy integration of the processing chains and workflows.

The ability to customize image processing algorithms has enabled scientists to improve existing
algorithms and develop new methodologies that could easily be embedded into the multi-mission
processing system. We used the human settlements, surface water body, and vegetation extraction
algorithms to demonstrate this capability. The ability to share a common pool of resources, such as
reference data and DEMs for geometric rectification, was also valuable. The scalability of the
multi-mission data processing has been demonstrated by its adaptability to high-performance
computing methods such as parallel processing and multi-threading on single or multiple servers or
virtual machines, depending on the system performance requirements. The utility of the multi-mission
data processing system as also yielded significant cost savings through the reduction of software
licenses associated with proprietary software. The multi-sensor architecture presented in this paper
illustrates the benefits of establishing a common architecture for all missions. The flexibility offered by
open, modular architectural design enables researchers to develop algorithms that can be integrated
into the workflow as plugins upon successful testing. Moreover, multi-mission processing provides
some level of harmonization and standardization across sensors. The system is also compliant with
future data architectures such as data cubes, and can generate analysis-ready data.

In summary, multi-mission processing systems have various advantages when compared to
sensor-dependent systems. A major advantage relates to the cost savings that are realized. Multi-mission
processing systems are also hardware-independent, which eliminates the need to have specifically
dedicated hardware systems for each sensor. Additionally, the code base for the MMS can easily be
adapted to ingest a new sensor, which reduces development time.

The use of the data cube as a platform for data access has various advantages. The data are all
processed to analysis-ready data (ARD), which reduces the data preparation burden to end-users.
The data are also provided on a common platform that enforces a standard with regards to data
indexing and access. This provides end-users with the ability to share algorithms. Furthermore, the
provision of a continuous earth data records does not depend entirely on one sensor. The MMS bridges
this gap by ensuring continuous data availability on a sensor-independent platform. Time-series
applications that require continuous data records can benefit from the gap-filling capabilities that are
made possible due to the availability of various sensors. Consequently, the temporal resolution of data
is reduced and the impacts from atmospheric effects such as haze and cloud are minimized.

5. Conclusions

The ideal goal for the future would be to have a multi-mission processing standard and API that
can be shared and adopted by satellite image providers. Customizable and sharable API will alleviate
the need to host various hardware and software configurations for ground segments that have multiple
data reception licenses. Research and implementation of a product request module from end-users are
currently underway. This aims to add extra functionality to the system by allowing user requests for
various products.
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The presented multi-mission data processing system has several advantages. Firstly, the use of
multiple datasets bridges critical spatial and temporal gaps needed in time-series studies. The use of
many sensors also improves the revisit times in areas of interest and mitigates the impact of cloud cover.
Its modular design also enables the easy integration of higher-level value-added processing algorithms
for the production of higher-level products such as NDVI, water body, and human settlements layers,
ensuring shorter delivery time to customers. The use of parallel processing, OpenMP, and Kubernetes
described earlier enables concurrent processing, scaling, and optimum utilization of computing
resources. Moreover, the integration of the data cube enables effective data structuring and cataloguing
to support long term environmental studies.

The number of earth observation satellites of which the data are being directly received at the
Hartebeeshoek ground receiving station has risen significantly in the last decade, necessitating a
multi-mission approach in terms of systematic data processing from ingestion to the generation of
higher-level products. In this study, we have presented a functional modularized approach that
can be used to systematically pre-process data using generic geometric and radiometric algorithms.
Generic atmospheric models such as the 6S models are used to atmospherically correct moderate and
high spatial resolution satellite data. The scalable and flexible architecture enables the system to be
adaptable when adding new functionality, such as the integration of new algorithms and processors to
generate value-added products. The multi-mission approach provides a common architecture for all
missions and allows for harmonization and standardization of interfaces. Other advantages of the open
multi-mission architecture presented include the ability to plug in processors that are mission-specific,
and the re-utilization of mature algorithms and other proven open-source plugins.
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