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Abstract

The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75%
of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during
aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays
an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we
examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to
probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse
samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like
(T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that
the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more
populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in
greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater
proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are
primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and
its regulation could lead to important insights on how the cells in these animals handle increased stress and protein
damage to maintain a longer health in their tissues and ultimately a longer life.
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Introduction

The naked mole-rat, Heterocephalus glaber, is the longest-lived

rodent on record, with a maximum lifespan greater than 30 years

[1]. Not only does this animal live 8 to 10 times longer than

similar-sized mice but this species also shows prolonged mainte-

nance of cancer-free good health and reproductive potential well

into its third decade [2]. In contrast, mice live half as long as

predicted on the basis of body size [3] and start showing age-

related changes after only one year of life [4]. The recently

completed naked mole-rat genome [5] has revealed that several

gene families associated with protein degradation are expanded.

Furthermore, RNA sequence analysis has also shown that many

genes associated with protein homeostasis including chaperones,

ubiquitin conjugating enzymes and proteasome subunits are

overexpressed relative to mice [5,6]. Young naked mole-rats (2

year old) show 2-8-fold higher levels of oxidative damage to

proteins, lipids and DNA than physiologically age-matched mice

(4 months) and similar levels of damage to that observed in

chronologically age-matched (2-yr old) mice [7]. Despite high

levels of oxidative damage even at a young age, ubiquitinylated

proteins are maintained at lower levels than mice at both young

and old ages [8], suggestive of less accumulation of damaged or

misfolded proteins. Collectively, these findings may be indicative

of a highly efficient ubiquitin-proteasome system (UPS) in the

naked mole-rat.

The UPS is responsible for the regulated degradation of proteins

[9]. As such, the proteasome is generally regarded as an integral

component in the maintenance of protein quality control. This in

turn may play a critical role in the maintenance of healthspan and

longevity. The UPS is complex, highly specific and tightly

regulated involving several hundred specific proteins. Proteasomes

recognize ubiquitinylated substrates, and cleave the polypeptide

substrate into smaller peptides for the overall purpose of

maintaining cell homeostasis [10,11]. The substrates degraded

fall into two classes: a) short-lived proteins usually involved in cell-

cycle control, growth or transcription which are mostly found in

the cytosol and nucleus and b) misfolded or damaged proteins
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[12,13]. Removal of long-lived, damaged proteins occurs in the

cytosol, while quality control of newly synthesized proteins takes

place near the endoplasmic reticulum. The subcellular distribution

of the proteasome varies depending on the tissue and stage of the

cell cycle, but in general 60 to 90% of active intact proteasomes

reside in the cytosol. This subcellular fraction includes roughly

50% of proteasomes that interact with the cytosolic side of the

endoplasmic reticulum and co-purify with the microsomes during

differential centrifugation. [14–16]. The remaining 10% to 40%

localize in the nucleus [14,15] where proteasomes are responsible

for the turnover of transcription factors, proteins involved in DNA

repair, sister chromatid exchange, and DNA-damage checkpoint

control [11,17–19].

The proteasome consists of a core particle and one or two

regulatory particles. In eukaryotes, the 20S core particle is

composed of 28 subunits arranged into a cylinder built from four

stacked heteroheptameric rings. The core has a molecular mass of

approximately 700 kDa. The two internal rings contain three pairs

of catalytic subunits (b1, b2, b5) that form six N-terminal

threonine-based catalytic centers. The two outer rings consist of

the alpha subunits and form gated channels leading into the

catalytic chamber [20–22]. The core particle degrades polypep-

tides and unfolded proteins by cleaving peptide bonds on the

carboxyl side of hydrophobic, basic or acidic residues. Action at

these specific loci are referred to as ‘‘chymotrypsin-like’’ (ChT-L),

‘‘trypsin-like’’ (T-L) and peptidylglutamyl peptide hydrolyzing

activity (also known as ‘‘caspase-like’’/PGPH) and are carried out

at the b5, b2, and b1 subunits respectively [23]. The 19S

regulatory complex attaches to the 20S core on one or both sides.

This ‘‘cap’’ regulates substrate uptake into the proteasome and is

also responsible for deubiquitinylation allowing the substrate to

unfold and spool through the catalytic core [9,11]. The double-

capped core is known as the 26S proteasome and is primarily

responsible for proteolytic activity in a healthy cell. The 20S core

without the regulatory particle is usually latent in cells because the

N-termini of several a-subunits form a gate that most of the time

blocks the entrance of substrates into the proteolytic chamber.

Also, the core particle cannot recognize ubiquitin modifications or

unfold protein substrates for degradation [24,25]. However, in vivo

the 20S core can degrade untagged proteins that are structurally

unstable. Moreover in vitro, the 20S proteasome can degrade

synthetic substrates in an ubiquitin-independent manner especially

when the substrates are oxidatively damaged [26–28]. Recently,

nuclear factor erythroid-derived 2 (Nrf2), a transcription factor

controlling the cytoprotective signaling pathway, has been shown

to upregulate proteasome activity and content in response to

oxidative or electrophilic stress and may be responsible for both

constitutive and stress induced transcription of proteasome genes

[29].

Vertebrates also possess modified proteasomes in which the

‘‘housekeeping’’ beta catalytic subunits are replaced by structurally

similar but not identical subunits (i.e. b1 to b1i/LMP2, b2 to b2i/

MECL1 and b5 to b5i/LMP7). Both b1i and b5i are encoded

within the major histocompatibility complex (MHC) class II region

linking their function to antigen presentation and giving rise to

their designation as immunoproteasomes [30,31]. Immunoprotea-

somes are commonly produced in the spleen and thymus, but may

also be found in lower levels in non-immunogenic tissues e.g.

retina or liver [16,32]. Canonically, the immunoproteasome

regulates peptidolytic activity that results in a more efficient

turnover of many MHC class I epitopes and other stress proteins

[33]. Another multi-protein complex, proteasome activator 28

(PA28) can interact with the 20S core particle, forming 20S-PA28

or a hybrid proteasome (19S-20S-PA28) [34]. This PA28 is

thought to be involved in the regulation of the immunoproteasome

and upregulation of PA28 subunits reportedly protects against

oxidative stress [35,36]. Interestingly, higher levels of PA28 were

reported in livers of young mice than in old mice [16].

Furthermore, with an experimentally induced immunoproteasome

deficiency (i.e. either RNAi depletion or knockout animal studies)

proteasomes present in the mouse retina could not respond to

stress and were more susceptible to ‘‘oxidation- induced cell

death’’ suggesting an oxidative, stress-related, non-immunogenic

function for the immunoproteasome [37].

Given that naked mole-rats have higher levels of oxidative stress

than mice [7] yet retain a long healthspan, in this study we

evaluate possible mechanisms by which this is achieved. We

question whether naked mole-rats have more proteasomes, rely on

different catalytic subunits or subassemblies (i.e. immunoprotea-

somes) or if their proteasomes are more efficient and thereby

maintain better protein quality control. We measured peptidolytic

activity of ChT-L, T-L and PGPH peptidase activities of the

proteasomes using model substrates in a commonly studied and

well characterized tissue, the liver. This tissue was specifically

chosen for several reasons. Liver is metabolically very active and

rich in proteasomes. Proteasome activity in this organ has been

well characterized in mice [16,38,39]. Moreover naked mole-rats

show high levels of oxidative damage in liver samples [7,8]. Using

whole liver lysates as well as three subcellular fractions of these

lysates, we test the hypothesis that naked mole-rats exhibit better

quality control of both newly synthesized and/or longer-lived

proteins.

Results

Naked mole-rats have higher proteasome activity than
do mice

Peptidolytic activity of the proteasome was measured in mouse

and naked mole-rat whole liver tissue lysates using model peptide

substrates specific for each of the three catalytic sites in the

proteasome [16,40,41]. Since the peptides can be cleaved by other

proteases that exhibit chymotrypsin-, trypsin- and caspase-like

activity in the cells of these tissues, activity was assessed with and

without the proteasome inhibitor N-(benzyloxycarbonyl) leucinyl-

leucinylleucinal (MG132). The difference between these two

measurements was assumed to exclusively result from proteasome

activity. Naked mole-rats had double the rate of activity per

microgram protein for both ChT-L activity and T-L total

proteolytic activity in whole liver lysates compared to that seen

in mice (Figure 1). Similarly after inhibition with MG132

proteasome inhibitor, proteasome specific (net) ChT-L activity

was 1.5 times greater in the naked mole-rat and T-L activity was

still twice that observed in mice (Figure 1). Of the three

proteasome activities monitored, PGPH activity was the lowest

in both species. Furthermore, it showed no significant difference

between species, nor was there any distinct change between the

total and net activities (Figure 1).

High naked mole-rat proteasome activity stems from an
increased specific activity

In order to confirm the observed higher activity of the

proteasomes in the enzymatic assay and also evaluate species

differences in the subassembly composition of proteasomes, ChT-

L activity of lysates was also measured using non-denaturing

polyacrylamide gels (‘native gels’). In-gel assays confirmed the high

ChT-L activity in naked mole-rats and revealed that this

corresponded to a significantly higher activity in the 26S assembly

(Figure 2A, C left panel). The activity of 20S was also four times

Altered Proteasome in the Naked Mole-Rat
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higher (p,0.001) in naked mole-rats, (Figure 2A, C left panel).

Immunoblot analyses following transfer of proteins separated by

native gel revealed that both naked mole-rats and mice had similar

levels of a7 protein co-migrating with the activity represented by

the 26S proteasome band (Figure 2B, C middle panel). The

amounts of the a7 subunit in the region of 20S proteasome were

also about the same in both species (Figure 2B, C middle panel).

This constitutive proteasome subunit is considered a reasonable

estimate of proteasome content [16] and suggests that both species

have similar amounts of proteasomes. 19SATPase subunits

(RPT5), ‘‘regulatory caps’’ are critical in recognizing polyubiqui-

tinylated proteins [42], may also be used as a marker of 26 s

proteasome content [43] and pronounced differences between the

estimated proteasome content using a7 and RPT5 were evident

(Figure 2, 3). Naked mole-rat samples had higher RPT5 than mice

(Figure 3), suggesting the presence of more intact 26 s proteasome

subassemblies in the longer lived species. The discrepancy between

the a7 and the RPT5 levels as indicators of proteasome content

may reflect the dynamic nature of the catalytic core relative to the

regulatory caps. While antibodies may recognize the epitopes on

the regulatory caps, in an intact 26S proteasome it is possible that

some of the a7 subunits may be hidden and this yield an

underestimate of the total proteasome content.

The ratio of activity to a7 subunit content showed that 26S

proteasomes were at least 15 times more active than 20S

proteasome in both naked mole-rats and mice. Further, this ratio

shows that 26S proteasome-specific ChT-L activity is greater in

the naked mole-rat than in mice (Figure 2, C right panel). While

the content of 20S proteasome-related specific activity was also

higher in naked mole-rats, the markedly higher 26S proteasome

activity suggest that the catalytic core aside from its own modest

enzymatic functions likely also serves as a pool to maintain

adequate amounts of the catalytically more specialized 26S

proteasomes.

The contents of both immunoproteasome and 19S
regulatory subunits are higher in naked mole-rats then in
mice

There was no unincorporated a7 subunit detected in the naked

mole-rat native gel immuno-blots (Figure 2B). However, we

performed Western blot analysis under denaturing conditions

(SDS-PAGE) using a panel of anti-proteasome subunits’ antibod-

ies. This revealed that both species had similar protein levels of the

RPN7 and b2 proteasome subunits (Figure 4 A, B). Naked mole-

rats, however, had higher levels of several other constitutive

subunits, (namely a7, a4, and b4; Figure 4 A, B). Levels of a7 were

two-fold higher in naked mole-rat lysates when compared to mice

whereas a4 and b4 were three and four-fold higher in lysates from

the longer lived species (Figure 4 A, B). These diverse trends in

changes of the total content of constitutive and catalytic

proteasome subunits that should exist in relatively equal amounts

[9,44] can be explained by upstream upregulation of the genes

responsible for those protein products or by a mixed population of

proteasome assemblies. To test the latter hypothesis, the contents

Figure 1. Chymotrypsin- and trypsin-like activities, but not the caspase-like activity were higher in the whole cell lysates from
naked mole-rat than in mouse lysates. In each assay 50 mg of whole cell liver lysates from physiologically age-matched young mice (4 mo) and
naked mole rats (2 yr) were used. The samples were incubated with 100 mM of substrate specific for the type of active center of the proteasome
being measured. A saturating concentration of proteasome inhibitor N-(benzyl-oxycarbonyl) leucinyl-leucinal (MG132), determined by titration, was
added to parallel samples. The difference of the fluorescence released with and without inhibitor was used as a measure of the specific peptidolytic
activity of proteasome. Hatched lines indicate the amount of non-specific protease activity in excess of net specific proteasome activity. Values are
means 6 SE. Significant p-values are indicated in the figure.
doi:10.1371/journal.pone.0035890.g001
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of two immunoproteasome catalytic subunits b5i and b2i were also

measured. Both these immunoproteasome subunits were present

at higher amounts in the naked mole-rat lysates than in mouse

tissues (Figure 4 A, B). This increase in the content of

immunoproteasomes in liver lysates could explain the increase in

constitutive subunits with no corresponding increase in house-

keeping catalytic subunits. Similarly, the subunit of PA28a
activator associated with the immunoproteasome showed in-

Figure 2. The higher proteasome activity observed in naked mole-rats when compared to mice stemmed from an increased specific
activity of the 26S proteasomes. (A) A zymogram of the in-gel proteolytic assay revealed that naked mole-rat extracts exhibit higher 26S and 20S
activity when compared to mice. (B) Immunoblot of the same native gel transferred to a PVDF membrane and probed with an antibody specific for
the a7 proteasome subunit showed that the naked mole-rat had more 26S proteasome than mice yet both species had similar levels of 20S
proteasome. (C) Quantitation of the native gel zymogram and Western blots. Both panels A and B are representative of several experiments the
quantitation of which was conducted over 12 samples. The zymogram indicated that naked mole rats had about 3 times higher activity of 26S
proteasome and 5 times higher activity for 20S proteasome subassemblies than mice. The content of a7 subunit in both the 26S band and 20S band
was similar in both species. We also noticed that the content of a7 subunit in the 20S band was much higher than in 26S band in both species.
However, the detected low activity in this band indicated that 26S complexes displayed more than 10 times higher specific activity than 20S
complexes and specific activity in the naked mole-rat was 3 to 5 times higher for 26S and 20S activity. Histogram values shown are means 6 SE.
Significant p-values are indicated in the figures.
doi:10.1371/journal.pone.0035890.g002

Figure 3. Native gel electrophoresis also showed higher levels of a key 19S subunit. We quantitated protein levels in immunoblots of liver
tissue lysates probed with antibody against the 19S ATPase RPT5. Analysis revealed a three-fold higher (p,0.001) protein level in the naked mole-rats
compared to mice. Samples from three different individuals of each species were used.
doi:10.1371/journal.pone.0035890.g003
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creased protein levels in naked mole-rats when compared to mice.

(Figure 4 A, B).

RPN10 protein is a key component of the proteasome 19S cap,

stabilizing its structure and providing one of intrinsic ubiquitin

receptors [45]. This protein level was higher in the naked mole-rat

lysates compared to mice (Figure 4 A, B) suggesting higher levels of

26S proteasome. Both the high levels of RPN10 and RPT5 in

naked mole-rat lysates than that in mice support the 26S findings

from the native gel (Figure 3; Figure 4 A, B).

The source of higher proteasome activity in naked mole-
rats comes from the cytosolic fraction

In both species, the highest overall peptidolytic activities were

observed in the microsomal fractions whereas the lowest overall

activity was evident in the nucleus. The largest differences between

species were observed in the cytosolic fraction (Figure 5). Both

cytosolic ChT-L and T-L activity were 36and 66higher in naked

mole-rat liver lysates than in mouse lysates, whereas PGPH

activity was higher in mice than in naked mole-rats (Figure 5). This

also amounted to a dramatic difference in the percent contribution

of activity in the various fractions. For ChT-L the percentage

contribution of the cytosolic fraction to overall activity was 46%

and 17% in mole-rats and mice respectively, while for T-L activity

the percentage contribution of the cytosolic fraction amounted to

32% for naked mole-rats versus 7% for mice (Figure 6). Naked

mole-rat PGPH activity comprised less than five percent of the

total activity in the cytosolic fraction, whereas in mouse lysates, it

was closer to 25% (Figure 5, left panel; Figure 6). Nuclear

proteasome activity also was low in comparison to the activities

seen in the other fractions and in both species contributed about

10% of the total activities (Figure 6). Significantly higher nuclear

ChT-L and PGPH activities were observed in mice; indeed in the

nuclear fraction only T-L was higher in the naked mole-rat

(Figure 5, right panels; Figure 6).

The common transcription factors regulating
immunoproteasome upregulation are increased in naked
mole-rats when compared to mice

Since high levels of immunoproteasome activity were evident in

naked mole-rats liver lysates, markers for an inflammatory

Figure 4. Analysis of proteasome subunit composition showed that naked mole-rats had higher protein content of 19S and
immunoproteasome subunits than mice. (A) Representative Western blots with PVDF-transferred proteins were probed with antibodies specific
for 20S, 26S and immunoproteasome subunits. Different content of various subunits revealed an upregulation of particular proteasome
subassemblies. Samples from three different animals from each species were used per experiment and the experiment was repeated with samples
from different animals at least one additional time to verify the outcome. The blots are representative of these sets. Actin was used as a loading
control for our analyses. For immunoproteasome subunits, lysates from mouse spleen tissue (MsSp) were also used as a positive control. (B)
Quantitation of Western blots grouped by 20S, 19S or immunoproteasome. Not only did naked mole-rats have higher content of constitutive non-
catalytic subunits, but they also tended to have more immunoproteasome components (b2i, b5i, PA28a) than did mice. Naked mole-rats also had
increased protein content of two critical 19S subunits (RPT5, RPN10). Values represent the mean 6 SE with significant p-values highlighted in the
figure.
doi:10.1371/journal.pone.0035890.g004
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response (nuclear factor kappa-light-chain-enhancer of activated B

cells (NFkB) and tumor necrosis factor-alpha (TNFa) were also

measured. Both NFkB and TNFa had a higher protein expression

in healthy naked mole-rat liver tissue than in mice as determined

by Western blot analyses (Figure 7).

Discussion

This study set out to test the hypothesis that long-lived naked

mole-rats have more proteasome activity than do short-lived mice

and revealed several key and/or surprising findings: 1) Compared

to mice, naked mole-rats show similar amounts of proteasome (a7)

content yet have higher rates of ChT-L and T-L activity cleaving

both the hydrophobic and basic model substrates, respectively. In

contrast, cleavage of the acidic substrate was similar in both

species and appeared to play a minor role in protein degradation.

2) The higher proteasome activity observed in naked mole-rat

tissue extracts over mouse tissue extracts was due to a higher 26S

activity per unit of proteasome in the naked mole-rat. 3) The

immunoproteasome was more active in liver tissue in healthy

young naked mole-rats, compared to liver samples from healthy

young mice. 4) The major contributor to this increased activity

seen in naked mole-rats is the cytosolic immunoproteasome rather

than its ‘housekeeping’ counterpart. Collectively, these data reveal

that the naked mole-rat has highly efficient protein degrading

machinery and thereby maintains high levels of protein quality

control, constantly degrading misfolded and damaged proteins,

thus maintaining steady state levels throughout life [8]. These

actions contribute to the superior maintenance of protein integrity

in the naked mole-rat. As such these may be key factors leading to

their exceptional longevity and prolonged good health at ages

equivalent to human nonagenerians, despite prior evidence of

chronic oxidative stress evident even at very young ages [2].

These findings of enhanced protein degradation and concom-

itant protein turnover in an extraordinarily long-lived species

concur with data based upon recent yeast mutant studies. Deletion

of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results

in elevated Rpn4 levels, which increases UPS capacity, signifi-

cantly extending replicative aging and increasing resistance to

proteotoxic stress [46]. Further, the yeast mutant cells with this

higher proteasome capacity have higher protein turnover,

Figure 5. Specific peptidase activities in the cytosolic, microsomal, and nuclear fractions of naked mole-rat and mouse liver lysates
showed pronounced species differences. Although the microsomal proteasome subfraction had the highest activity in both species and activity
was similar in both species, marked differences were evident in the cytosolic fraction. Naked mole-rats had almost 3-fold higher ChT-L and 6-fold
higher T-L activities in these cytosolic fractions. PGPH activity showed an opposite trend in specific activity to that observed for ChT-L and TL with
mice having higher levels in the cytosolic fraction. Nuclear proteasomes showed significant differences in PGPH and ChT-L activity, but the activity
was minimal compared to the activity in the other fractions. Specific activity was calculated as a reaction rate per amount of total protein and
presented as the pmol of released AMC per 1 min per mg of total protein. A saturating concentration of proteasome inhibitor MG132, determined by
titration was added to parallel samples. The difference of the fluorescence released with and without inhibitor was used as a measure of the
peptidolytic activity of proteasome. Values shown represent the mean 6 SE. Significant differences are highlighted in the figure along with their
corresponding p-value.
doi:10.1371/journal.pone.0035890.g005
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especially of unstable and aggregation prone substrates [46].

Differential translation of UPS protein components is seen during

oxidative or other cytotoxic stress in other species. In long-lived

mutant worms, resistance to thermal stress and oxidative stress

selectively increases protein translation [47–49]. In mammalian

cells, oxidative stress signals an initial translation-independent

activation of the UPS and increase in proteasome activity. This

increased protein degradation in response to stress is then

compensated by a subsequent and progressive increase in

proteasome transcription and translation [28].

Naked mole-rats show higher rates of post-hydrophobic
peptide cleavage than mice

Hydrophobicity is one of the signals for selective degradation of

hydroxyl radical modified proteins [50], and in naked mole-rats,

increased proteasome activity is seen at the site responsible for

cleavage after hydrophobic residues (ChT-L; Figure 1). When

subjected to oxidative stress, neuronal cell crude lysates reportedly

show an increase in ubiquitinylated and oxidized proteins and a

concomitant increase in proteasome activity to eliminate damaged

proteins [38]. Moreover, studies involving rat brain and liver

preparations reveal if the degree of oxidative stress overwhelms the

UPS system (e.g., following exposure to hydrogen peroxide (H202)

and 4-hydroxynonenal), the increase in insoluble material may

impair proteasome function and inhibit activity [51]. A recent

study measuring proteasome activity in H202-treated mouse

embryonic fibroblasts, reports that cells acclimate to the increased

oxidatively-stressed environment and after an initial decline in

proteasome activity, proteasome activity is increased [28]. The

cells seemingly developed adaptability to the increased oxidatively-

stressed environment. Similarly, we show that in healthy naked

mole-rats, the increased proteasome activity is induced to most

likely compensate for higher levels of oxidative stress and maintain

protein homeostasis. Furthermore, increased proteasome activity

may prevent the accumulation of a critical mass of insoluble

protein aggregates that can also inhibit the functioning of the

proteasome.

A greater proportion of immunoproteasomes may
contribute to higher proteasome activity observed in
naked mole-rats when compared to mice

Previous studies report augmented proteasome subunit expres-

sion when oxidative stress levels are increased [28,29]. This is

attributed at least in part to the oxidative stress induced

Figure 6. The largest species differences observed were the
contribution of the cytosolic fraction for both ChT-L and T-L
activities. Percent contribution of the total activity was calculated
using the values of specific activities presented in Figure 4. In both
species proteasome activity was highest in the microsomal fraction, but
the microsomal contribution to the total activity within the lysate was
greater in mouse samples (76%) than in naked mole-rat samples (50%)
for ChT-L and this difference in % contribution was even greater for TL-
activity (87%, 53% respectively). Nuclear fractions, regardless of the
catalytic activity, only contributed 7% or less to the total activity in both
species. PGPH activity showed a similar distribution within the
subcellular fractions in both species. In sharp contrast the cytosolic
fraction of ChT-L activity of naked mole-rats showed more than double
(46%) the proportionate contribution to that of mice (18%) and this
species difference was even greater for T-L activity (32% to 7%) in
revealing that distributional differences in the observed total activity
between species could be explained by interspecific differences in
cytosolic activity.
doi:10.1371/journal.pone.0035890.g006

Figure 7. Levels of markers of an inflammatory response were
higher in naked mole-rat than in mice. We quantitated protein
levels in Western blot analyses of liver tissue lysates probed with anti
NFkB and TNFa antibodies. Both NFkB and TNFa protein levels were
more than two-fold higher (p#0.01) in naked mole-rats. Samples from
three different individuals of each species were used and the
experiment was repeated with lysates from different animals several
times to verify the outcome. The blots shown are representative of
these experiments. Actin was used as a loading control and lysates from
mouse spleen tissue (MsSp) represented a positive control for these
immune-related markers.
doi:10.1371/journal.pone.0035890.g007
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stimulation of the (Nrf2) signaling pathway. Sulforaphane, a

chemical inducer of Nrf2 signaling, triggered an increase in the

gene expression and protein levels of the catalytic subunits b1, b2,

and b5 and also, led to greater protection of murine neuroblas-

toma cells from H202-driven oxidative damage in a manner

dependent on proteasomal function [29]. Interestingly constitutive

Nrf2 protein levels in tissue samples from experimentally non-

stressed naked mole-rats are three- to ten-fold higher than

observed in samples from physiologically age-matched mice [52]

and these high levels may be instrumental in maintaining

proteasome content.

While 19S subunits show higher protein expression in naked

mole-rats than in mice, the ‘housekeeping’ catalytic subunits (b2,

b5) did not correspondingly increase. Rather, naked mole-rats

have higher levels of immunoproteasome subunits (Figure 4 A, B).

Immunoproteasomes reportedly are more efficient in degrading

damaged proteins and have higher activity per proteasome unit

than do housekeeping proteasomes [53]. Our biochemical data

support this observation (Figure 1, 5) as immunoproteasomes also

have elevated trypsin-like activity and a depressed PGPH activity

[54]. Since trypsin-like activity shows the greatest interspecies

differences (Figure 1, 5), it is likely, that these high levels in the

naked mole-rat may be due to the formation of a sub-population of

immunoproteasomes activated by heightened chronic oxidative

stress.

Formation of immunoproteasomes reportedly is primarily

triggered by a NFkB-mediated immune response or injury [32]

and expression of immunoproteasome subunits is heightened by

interferons or TNFa [53,55]. There is, however, increasing

evidence of a heterogeneous population of proteasomes in healthy

liver tissue [56] and non-immunogenic immunoproteasome

functions in that immunoproteasomes also degrade both oxida-

tively damaged nascent proteins and cytosolic proteins under

conditions of oxidative stress [28,53]. Furthermore, when the

subunit (b5i) of the immunoproteasome is knocked out and the

cells subjected to exogenous oxidative stress, the resultant impaired

immunoproteasome function caused the formation of aggresomes

[37,53]. These studies confirm the importance of the b5i catalytic

subunit in cleaving oxidatively damaged proteins and the role of

the immunoproteasome in protein homeostasis.

Both NFkB and TNFa protein expression are higher in liver

lysates of naked mole-rats when compared to mice (Figure 7). High

levels of NFkB correlate with levels of the gene encoding the

protein, inhibitor of nuclear factor kappa-B kinase subunit beta

(IKK-b) the expression of which is four times higher in naked

mole-rat liver tissue than in mice [6]. IKK-b through phosphor-

ylation and subsequent UPS-mediated degradation of the inhibitor

of NFkB (IkB), indirectly activates NFkB [57].

Nrf2 and NFkB are both also upregulated in response to

oxidative stress [58,59]. The high levels of oxidative damage in

tissues from young, captive naked mole-rats [7] may reflect their

perceived ‘‘hyperoxic response’’ to the gaseous atmosphere above

ground. Naked mole-rats, having led a strictly chthonic existence

since the early Miocene, have evolved to tolerate the hypoxic and

hypercapnic conditions commonly found in subterranean habitats

[1]. They naturally live in large social groups in plugged

underground deep burrow systems. Here gas exchange is impeded

and dependent upon soil porosity and the limited available oxygen

for respiration is shared not only with conspecifics resting together,

but also microbial organisms and plant roots [60]. This captivity-

induced oxidative stress could also explain the observed high levels

of Nrf2 [52], NFkB signaling (Figure 7) and downstream

proteasome activation.

Given the fact that Nrf2 predominantly regulates ‘housekeep-

ing’ proteasomes whereas NFkB regulates the immunoproteasome

we question whether naked mole-rat non-immunogenic tissues

contained hybrid proteasomes. The observed increase in protea-

some activation in this study is partially regulated by standard UPS

assemblies as well as immunoproteasome-related subunits since we

see a concomitant increase in 19S and 11S subunits (Figure 4).

These types of hybrid proteasomes also appear after interferon

induction in HeLa cells, and constitutively in rat liver (low, less

than 20%) and spleen (high, greater than 50%) [34]. In naked

mole-rats these hybrid proteasomes would allow both a rapid

response to oxidative stress in a non-ubiquitin dependent manner

(11S cap/20S proteasome), and also would enable phenotypic

responses to the changing microenvironment by upregulation of

critical signaling pathways associated with cytoprotection (Nrf2)

and the inflammatory response (NFkB) which is dependent on

ubiquitin (19S cap/26S proteasome).

In young animals, the cytosol is the site of proteasome-
dependent cytoprotection

Proteasomes in the cytosolic fraction are primarily responsible

for degrading regulatory proteins and those longer-lived proteins

damaged over time, particularly in response to cellular stressors

[12]. Not surprisingly, therefore, protein degradation in the naked

mole-rat predominantly occurs in this fraction and both ChT-L

and T-L activities in naked mole-rat cytosolic fractions are

markedly higher than in those of mice (Figure 5, 6). There was no

significant interspecific difference in activities in the microsomal

fractions possibly indicating that the degree of mistranslation of the

endoplasmic reticulum proteins or nascent protein misfolding is

similar in both young mice and mole-rats. Nuclear proteasome

activity was higher at two active sites in mice (ChT-L and PGPH;

Figure 5) than in naked mole-rats suggesting that mice have higher

turnover of transcription factors, and proteins involved in DNA-

repair and DNA check point control [11,17,18]. It is unlikely that

this reflects better DNA maintenance and repair in mice, although

dysfunction in these processes can lead to increased mutations and

cancer. Most strains of laboratory mice have a notoriously high

predisposition to cancers [4] whereas naked mole-rats exhibit

pronounced resistance to cancer [60]. Not only have we never

observed incidences of spontaneous cancer in our captive 30 year

maintained population [1] but naked mole-rat cells are also

resistant to oncogenic transformation by Ras and sv40T antigen,

known to induce aggressive invasive and metastatic tumors in

rodents, bovines and primates [61]. Naked mole-rats also show

significantly higher expression of several families of DNA repair

genes than observed in mice [6]. It is possible that lower

proteasome activity in the nuclear fraction leads to an extended

half- life, and steady-state levels of these repair proteins thereby

providing better maintenance of genomic integrity.

In summary
We report that naked mole-rats show high levels of proteasome

activity particularly in the cytosolic subcellular fraction where T-L

activity is six-fold higher than that observed in mice. These high

levels may reflect greater protein turnover, possibly in response to

the chronic high levels of oxidative stress observed in naked mole-

rats. Since both cytoprotective Nrf2 signaling and the NFkB-

regulated inflammatory/immune response are triggered by

oxidative stress [53], it is not surprising that the expression of

these two critical transcription factors is significantly greater in

naked mole-rats than in mice. These two signaling pathways are

known to be involved in regulating proteasome activity and are

likely modulators of naked mole-rat proteasome content and
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activity. Elevated signaling by both Nrf2 and NFkB may lead to

the formation of not only a higher intracellular proteasome

content but also more hybrid/immunoproteasomes even in liver

tissues. Taken together, these data support the premise that

regulated proteasome degradation pathways have an integral role

in protein homeostasis by both degrading toxic proteins and

modulating half-lives of key transcription factors. Future studies

will determine whether naked mole-rats, during their prolonged

apparent healthy aging, maintain efficacious high levels of removal

of damaged proteins and proteostasis and whether or not this is a

critical component of their attenuation of age-related decline and

extended healthspan relative to that observed in short-lived mice.

Methods

Animals
All procedures involving animals were approved by the

Institutional Animal Care and Use Committee at the University

of Texas Health Science Center (San Antonio, TX) using protocol

11033-07-01-A. This study used two similar sized physiologically

age-matched females from the rodent species C57BL/6 mice (4–6

months) and naked mole-rats (2–3 years). The mice were fed ad

libitum a standard NIH-31 chow and were maintained in cohorts of

four animals in microisolator mouse cages at 25uC, on a 12-h

dark/light cycle. Naked mole-rats were from the well-character-

ized colonies of Dr. Rochelle Buffenstein housed at the University

of Texas Health Science Center, San Antonio. Naked mole-rats

were housed in simulated, multi-chambered burrow systems under

constant climatic conditions that aimed to approximate their

native habitat (30uC; 50% RH). Naked mole-rats were given an ad

lib supply of fruit and vegetables supplemented weekly with a high

protein and vitamin enriched cereal (Pronutro, South Africa).

Animals were anesthetized with isoflourane, killed by cardiac

exsanguination and the liver tissue immediately excised and flash

frozen in liquid nitrogen.

Whole Tissue Lysates and Subcellular Fractionation
Mouse and naked mole-rat liver lysates were separated into

cytosolic, microsomal, and nuclear fractions using a modified

Millipore Corp. procedure (2005) as previously described [16].

Briefly, the liver from a single animal was weighed and disrupted

in a 2 mL Potter-Elvehjem homogenizer in RSB buffer (10 mM

HEPES, pH 6.2, 10 mM NaCl, 1.4 mM MgCl2) at a weight-to-

volume ratio of 1 g of tissue to 1 mL of buffer. The RSB buffer

was supplemented with the addition of 1 mM ATP, 0.5 mM

DTT, 5 mM MgCl2 to help maintain intact 26S subassemblies

[62]. After twenty strokes, an aliquot of the homogenized liver was

set aside for whole tissue lysate analysis. The rest of the

homogenate was centrifuged at 25006g for 6 min at 4uC. The

supernatant was collected and the pellet was re-homogenized and

centrifuged again under the same conditions two more times. The

resulting supernatants were pooled and centrifuged at 13,0006g

for 90 min (Ti70, Beckman Coulter, Fullerton, CA, USA). The

collected supernatant from the high-speed centrifugation was

labeled as the cytosolic fraction [16]. The final pellet from the initial

homogenization step was washed again in RSB buffer, re-dissolved

in RIPA buffer (10 mM Tris, pH 7.4, 10 mM NaCl, 5 mM

MgCl2, and 1 mM DTT also supplemented with 1 mM ATP and

5 mM MgCl2) and then mixed for 2 h at 4uC on a lab rotator.

Next, the material was centrifuged at 16,0006g for 10 min and

the supernatant was designated as the nuclear fraction [16]. The

pellet obtained in the ultracentrifugation step was re-suspended in

RIPA buffer, mixed for 2 h on a lab rotator at 4uC followed by

centrifugation at 10,0006g for 10 min. The resulting supernatant

was labeled as the microsomal fraction [16]. Protein concentration

was measured in all the fractions with the BCA Protein Assay

(Pierce, Thermo Scientific, Rockford, IL, USA). The collected

fractions were aliquoted into smaller volumes and then stored at

280uC until needed.

Peptidolytic Activity Assay
The total peptidolytic activity of all three types of the

proteasomal active sites was determined using fluorogenic model

peptide substrates (obtained from Boston Biochem (Boston, MA)

specific for each of the three classes of active centers: chymotryp-

sin-like (ChT-L), cleavage after hydrophobic residues (succinyl-

LeuLeuValTyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC));

trypsin-like (T-L), cleavage after basic residues (butoxycarbonyl-

LeuArgArg-AMC (Boc-LRR-AMC)), and post-glutamyl peptide

hydrolyzing activity (PGPH), post-acidic residue cleavage, (carbo-

benzoxy-LeuLeuGlu-AMC (Z-LLE-AMC)) as previously de-

scribed [16,40,41]. Parallel assays were run with varying

concentrations of N-(benzyloxycarbonyl) leucinyl-leucinylleucinal

(MG132) proteasome inhibitor (Calbiochem, San Diego, CA)

ranging from 10 mM to 250 mM to determine non-proteasomal

AMC release. We discovered during the course of this titration

that 20 mM (microsomal and nuclear), 50 mM (whole lysates) and

150 mM (cytosolic) ablated proteasomal activity in naked mole-rat

preparations until a plateau of effect was achieved where an

increase in MG132 concentration did not further inhibit

proteasome activity [63]. As reported previously, mouse samples

were inhibited in that manner at concentrations of 10 to 20 mM of

MG132 [16,39]. This non-specific activity was subtracted from the

rate measured in the absence of the inhibitor. To confirm the

specificity of the MG132 proteasome inhibitor [32,39], activity

was also measured in the absence and presence of adamantane-

acetyl-(6-aminohexanoyl)3-(leucinyl)3-vinyl-(methyl)-sulfone (Ada-

(Ahx)3-(Leu)3-VS; Calbiochem), another well characterized pro-

teasome-specific inhibitor [16]. The pattern of Ada-(Ahx)3-(Leu)3-

VS inhibition induced the same level of inhibition to that observed

with MG132 in our sample preparations. Specific peptidolytic

activity of proteasome was presented as pmol of released AMC in

1 min per 1 mg of total protein in the test sample. This was

determined after generating a standard curve using serial dilutions

of 1 mM AMC (Calbiochem, San Diego, CA) and measuring the

fluorescence using a SpectraMax Multi-mode microplate reader

(excitation 355 nm, emission 460 nm) (Molecular Devices, Sun-

nyvale, CA).

Native Gel Electrophoresis
Native gel electrophoresis has been used to determine if the

proteasome remains intact in a higher molecular weight form (i.e.

26S) or exists disassembled during the assay (20S) [64]. This could

reflect the physiological properties of the tissue tested or whether

or not the extraction process leads to disassembly. Fifty

micrograms of fractionated lysate from each of the sample groups

prepared as described in Subcellular Fractionation above (q.v)

were run on a 3–12% non-denaturing, gradient polyacrylamide

gel (Invitrogen, Carlsbad, CA). The gel was run at 30 V for

30 min in a 4uC cold cabinet, thereafter the voltage was increased

to 35 V for 1 hour, 50 V for 1 hr and further increased to 75 V

for three more hours [43,64]

Peptidolytic activity of proteasomes was detected after incubat-

ing the gels in a Suc-LLVY-MCA substrate dissolved in 50 mM

Tris pH 8.0, 5 mM MgCl2, 1 mM DTT, 1 mM ATP, and 0.02%

SDS for 15, 30 and 60 min at 37uC. Proteasome bands were

identified by the release of highly fluorescent, free AMC [64,65].

Following the in-gel assay, the protein from the gel was transferred
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to PVDF via a wet transfer procedure (see below) and subjected to

Western blotting analyses to identify the various proteasome

subunits and whether the proteasome remained intact or was

disassembled into 20S, 19S, or other complexes.

Western Blot Analysis of Proteasome Subunits
A wet transfer method was used to electrophoretically transfer

proteins from the native gel to a PVDF. These membranes were

then probed with antibodies specifically recognizing the a7 and

RPT5 subunits (Enzo Life Sciences, Plymouth Meeting, PA, USA).

In addition liver tissue lysates were fractionated in 12% SDS-

PAGE (Biorad Life Sciences, Hercules, CA) and transferred to

PVDF membranes (Biorad Life Sciences, Hercules, CA). The

membranes were probed with antibodies against the following

proteasome subunits: a4 (mouse mAb, 1:1000, PW8120), a7

(mouse mAb, 1:1000, PW8110), b2 (mouse mAb, 1:1000,

PW9300), MECL1 (b2i) (rabbit pAb, 1:1000, PW8350), LMP7

(b5i) (mouse mAb, 1:1000, PW8845), b4 (rabbit pAb, 1:1000,

PW8890), Rpn7(rabbit pAb, 1:1000, PW8225), Rpn10 (mouse

mAb, 1:1000, PW9250), Rpt5 (mouse mAb, 1:1000, PW8770)

(Enzo Life Sciences, Plymouth Meeting, PA, USA), and PA28a
(goat pAb, 1:500, sc-21267) (Santa Cruz Biotechnology, Santa

Cruz, CA, USA). Antibodies against NFkB (rabbit pAb, 1:1000,

ab16502) (abcam, Cambridge, MA, USA) and TNFa (rabbit, pAb,

1:1000, NB600-587) (Novus Biologicals, Littleton, CO, USA) were

also used. Actin (mouse mAb, 1:5000, CP-01) was used as a

loading control (Calbiochem/EMD Biosciences, Rockland, MA).

HRP-conjugated secondary antibodies for rabbit (1:5000), mouse

(1:5000), or goat (1:10,000) (Santa Cruz Biotechnology, Santa

Cruz, CA) were used to visualize the immune-reaction using the

ECL Prime Western Blotting Detection Reagent, a chemilumi-

nescent substrate (Amersham, Buckinghamshire, UK). Immuno-

blots were quantified using the Typhoon 9410 variable mode

imager (GE Healthcare) and the ImageJ public domain Java image

processing program (http://rsbweb.nih.gov/ij/).

Statistical Analysis
Livers from twelve naked mole-rats and twelve mice were

analyzed. A two-tailed Student’s T-test on two different statistical

platforms (Microsoft Excel 2010; SigmaPlot v. 11) was used to

determine significant differences in the means for the peptidolytic

assays. One-way ANOVA was used in the subcellular fraction

experiments to analyze the variances between fractions and species

(SigmaPlot v. 11) Statistical significance was set at the p,0.05

level.
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