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Filtration mapping as complete Bell 
state analyzer for bosonic particles
A. V. Kozubov1,2*, A. A. Gaidash1,2, A. D. Kiselev2,3 & G. P. Miroshnichenko4

In this paper, we present the approach to complete Bell state analysis based on filtering mapping. 
The key distinctive feature of this appoach is that it avoids complications related to using either 
hyperentanglement or representation of the Bell states as concatenated Greenber–Horne–Zeilinger 
(C-GHZ) state to perform discrimination procedure. We describe two techniques developed within the 
suggested approach and based on two-step algorithms with two different types of filtration mapping 
which can be called the non-demolition and semi-demolition filtrations. In the method involving 
non-demolition filtration measurement the filtration process employs cross-Kerr nonlinearity and the 
probe mode to distinguish between the two pairs of the Bell states. In the case of semi-demolition 
measurement, the two states are unambiguously discriminated and hence destroyed, whereas 
filtraton keeps the other two states intact. We show that the measurement that destroys the single 
photon subspace in every mode and preserves the superposition of zero and two photons can be 
realized with discrete photodetection based on microresonator with atoms.

Entanglement is one of the most curious and exciting phenomena in the quantum world. Its applications can be 
found in different areas of the quantum information theory. It has been widely used in a variety of related fields 
such as the theory of quantum channels, quantum key distribution (QKD)1,2, quantum  teleportation3, dense 
 coding4, quantum secure direct  communication5–12, distributed secure quantum machine  learning13, quantum 
 repeaters14–16 and quantum  computation17–19. The well-known Bell states being a conceptually important simple 
example of maximally entangled two-qubit states play a crucial role in understanding of entanglement as a valu-
able resource that may be utilized to perform novel information processing tasks.

In this paper we deal with the problem of unambiguous identification of the Bell states which is one of the 
central problems concerning the Bell states. In particular, the related procedure of unambiguous identification 
is among the key factors that determine the performance of such protocols as measurement-device-independent 
QKD, quantum teleportation and dense coding. An important point is that all these protocols are mostly based 
on photonic qubits.

It is well known that in the case of photonic systems one cannot distinguish all the four Bell states unambigu-
ously using only linear optical elements and  detectors20,21. The reason is that photons obey the Bose–Einstein 
statistics. Thus efficiency of the above listed protocols appears to be crucially reduced. The most common Bell 
states analyzer for the photonic states was proposed  in22 and is known as the Innsbruck scheme. As is estimated 
 in23, for this type of the Bell states, it is impossible to get more than 50% success rate using tools of linear optics.

The auxiliary-photon-enhanced scheme suggested  in24 to improve the probability of discrimination uses a pair 
of ancillary entangled photons to increase the probability up to 75%. More generally, according  to25, introducing 
2N − 2 ancillary photons may enhance the success rate of linear-optic measurements up to 1− 1/2N.

Bell state analysis has also been the subject of intense studies as part of quantum information processing 
assisted by nonlinear  interactions26.  In27, the process of optical sum frequency generation was utilized to convert 
two-photon polarization Bell states into single-photon states and unambiguously detect them. Though this tech-
nique is quite elegant, it still leads to a rather inefficient protocol. Nondestructive discrimination between the 
singlet state and the triplet Bell states after their conversion on a beam splitter was demonstrated  in28 using the 
nonlinear cross-Kerr effect. Typically, in real crystals, nonlinear interactions are weak and one of the common 
difficulties faced by applications of the methods based on optical nonlinear processes is their poor efficiency. 
The method to get around this problem suggested  in29 is based on electromagnetically induced transparency 
that yields giant resonantly enhanced Kerr nonlinearity.
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The optical Kerr effect has also been used in devices performing quantum nondemolition (QND) 
 measurements30,31. QND detectors using cross-Kerr nonlinearity lie at the heart of the QND method employed 
 in32 to construct a nearly deterministic controlled-CNOT gate.  In28, this method was used for the Bell-state 
analysis. It was extended to the cases of Greenberger–Horne–Zeiglinger (GHZ) state and hyperentangled Bell 
state analyzers  in33,34, respectively. Similar  to32,33, the method for complete polarization logic Bell-state analysis 
developed  in35 uses the parity-check QND measurements constructed by the cross-Kerr nonlinearity. Another 
possible way to realize QND measurement and utilize it for Bell state analyzer was proposed  in36.

The approach using the Bell states embedded in a larger Hilbert that represent the so-called hyperentangled 
states which are entangled in more than one degree of  freedom37 allows to distinguish the four Bell states by 
means of linear optic  elements38. For instance, the experimental setup  of39, in addition to the polarization degree 
of freedom, employed intrinsic time–energy correlations of the down-converted pairs of photons. Alternatively, 
the photons may additionally be entangled in the wave vector (linear momentum) giving the direction of propa-
gation from a nonlinear crystal during spontaneous parametric down-conversion40–42. Nonlinear optical proper-
ties of a quantum dot-cavity system was utilized for generation of hyperentangled spatially polarized photons 
 in43. The dense-coding experiment where the channel capacity was greatly improved using the two-photon states 
that are simultaneously entangled in spin and orbital angular momentum was reported  in44.

Various methods for complete analysis of hyperentangled Bell states assisted by nonlinear interactions and 
auxiliary entanglement were reported in recent  studies45–48. Hyperentanglement-assisted versions of the GHZ 
state analysis are developed  in49–55.

In this paper we show how to construct the bosonic Bell state analyzer using the approach based on filtration 
mapping. Our goal is to explore the possibility of complete discrimination the four two-photon polarization Bell 
states without recourse to additional degrees of freedom. The latter is the distinguishing feature of our protocol 
as compared to a variety of the above discussed hyperentanglement  protocols34,39–42,45–48. We also describe two 
different types of filtration leading to different realizations of the two-step procedure for completely deterministic 
Bell state measurement of the polarization qubits.

Results
Filtration mapping. It is well-known that Bell states form the orthogonal basis. Thus these states should be 
distinguished unambiguously and the mathematical representation of the corresponding measurement poses no 
problem. From the above discussion, owing to the bosonic nature of the photonic Bell states, complete analysis of 
such states requires methods that go beyond the scope of linear optics such as approaches using either non-linear 
elements or additional degrees of freedom.

In this section, we shall present the new approach that provides a two-step algorithm capable of discriminating 
all four bosonic Bell states without introducing additional degrees of freedom. Mathematical structure underlying 
the two-step procedure can be illustrated in the simple and elegant way using the polar decomposition of positive 
semi-definite operators. It can be described as a completely-positive trace-preserving (CPTP) map determined 
by a family of positive semi-definite operators {Ax}x∈X:

The corresponding Kraus operators should meet the condition K†
x Kx = Ax and are not uniquely defined. The 

polar decomposition for these operators

involves a unitary operator Ux that can be chosen at will.
In our case, the amplitude part of Kx , 

√
Ax  , represents the filtration process that extracts the classical bit of 

information. The kernel of the filtration operators is spanned by the pair of Bell states which are not allowed 
to pass the filter. The unitary Ux in its turn provides additional unitary transformation needed to discriminate 
between the states inside the pair passed the filter. In what follows we describe two different techniques that can 
be viewed as an implementation of the general two-step method.

Bell state analyzer with non-demolition filtration. A probe light field prepared in the coherent state 
is known to acquire the phase shift induced by the cross-Kerr nonlinear  interaction26,28,32. In our scheme this 
nonlinear phase shift underlies the parity-check QND measurements used for filtration of the Bell states.

In previous  studies34,46,48 such measurements were employed for complete analysis of hyperentangled Bell 
states. By contrast, our method does not rely on hyperentaglement. Instead of using QND measurement for 
exact identification of the Bell states, we perform it only during the filtration process to separate two pairs from 
each other according to the parity information obtained from homodyne detection of the probe (auxiliary) 
beam prepared in the coherent state. The filtration idea is similar to one proposed  in36. However, the approach 
proposed  in36 utilizes the QND measurement (based on the Faraday effect) that differ from the one in the paper. 
The method suggested  in36 requires tuning the signal photon into precise resonance with the quantum dot lev-
els. By contrast, the Kerr effect utilized in our approach is not resonant and can be applied to Bell state photons 
with different frequencies. After separating two pairs of the Bell states from each other, the filtration procedure 
leaves the passed states intact and yields the classical bit of information. This bit defines the unitary operation 
subsequently applied at the second step to accomplish discrimination task. In a sense such approach bears some 
resemblance to the protocol used for teleportation of quantum states.

Thus our method involves the two following steps: 

(1)I =
∑

x∈X
Ax .

(2)Kx = Ux
√
Ax ,
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1. Filtration step. The states are only allocated pairs from each other providing the classical bit of information.
2. Unitary transformation. According to the classical bit obtained from the filtration we choose the appropriate 

unitary transformation which allows to discriminate between states inside the pair.

State preparation. The two-photon polarization Bell states to be distinguished can be written in the following 
form:

where a†H1
, a†V1

 and a†H2
, a†V2

 are the creation operators for the horizontal and vertical modes of the first and the 
second spatial modes, respectively; |0� is the vacuum state. In order to successfully distinguish between the four 
states it would be convenient to introduce spatial (rail) coding notation and express the latter states in it; this 
transformation can be done using two separate polarization beam splitters located in each of the two initial spatial 
modes. We apply corresponding unitary transformations at the output of the polarization beam splitters (by a 
set of wave plates) so that photons at the four output spatial modes (rails) have the same polarization. Thus we 
obtain the four spatial modes labelled by the integers ranged from 1 to 4:

By using the rail notations for the Fock states

the Bell states can be conveniently rewritten in the following form:

Filtration. Let us introduce the filtering operation that discriminates between the two pairs: 
{|B1�, |B2�} ∈ span(|114�, |123�) and {|B3�, |B4�} ∈ span(|113�, |124�) . The relations describing the corresponding 
filtering operators, F̂12 and F̂34 , are given by:

Mathematically, these equations imply that linear combinations of the states |B3� and |B4� ( |B1� and |B2� ) form 
the kernel of the operator F̂12 ( ̂F34):

Since the kernels of this operators do not overlap, the pairs of the Bell states can be identified unambiguously. 
In other words, filtering operators F̂12 and F̂34 unambiguously identify the pairs of states |B1� and |B2� , |B3� and 
|B4� . Thus,

Filtration operations can be performed by the parity-check measurements using the cross-Kerr nonlinear-
ity. These QND measurements involve the probe (auxiliary) beam prepared in the coherent state |αp� assuming 
that the Kerr-induced dynamics of the states of the combined signal-probe system, |Bi� ⊗ |αp� , is governed by 
the unitary (see, e.g.,26)

(3)|�±� = 1√
2
(a†H1

a†V2
± a†V1

a†H2
)|0�,

(4)|�±� = 1√
2
(a†H1

a†H2
± a†V1

a†V2
)|0�,

(5)a†H1 = a†1, a†V1 = a†2, a†H2 = a†3, a†V2 = a†4.

(6)a†i |0� ≡ |1i�, a†i a
†
j |0� ≡ |1ij�, (a†i )

2|0� ≡ |2i�,

(7)|�+� =|B1� =
1√
2
(a†1a

†
4 + a†2a

†
3)|0� ≡

1√
2
(|114� + |123�),

(8)|�−� =|B2� =
1√
2
(a†1a

†
4 − a†2a

†
3)|0� ≡

1√
2
(|114� − |123�),

(9)|�+� =|B3� =
1√
2
(a†1a

†
3 + a†2a

†
4)|0� ≡

1√
2
(|113� + |124�),

(10)|�−� =|B4� =
1√
2
(a†1a

†
3 − a†2a

†
4)|0� ≡

1√
2
(|113� − |124�).

(11)F̂12|B1� = |B1�, F̂12|B2� =|B2�, F̂12|B3� = F̂12|B4� = 0,

(12)F̂34|B3� = |B3�, F̂34|B4� =|B4�, F̂34|B1� = F̂34|B2� = 0.

(13)ker F̂12 = span(|B3�, |B4�), ker F̂34 = span(|B1�, |B2�).

(14)F̂†12F̂12 =|B1��B1| + |B2��B2|,

(15)F̂†34F̂34 =|B3��B3| + |B4��B4|.
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where n̂i = a†i ai and n̂p = a†pap is the photon number operator for the probe mode. Without loss of generality we 
may assume that the presence of photons in the channels 1 and 3 produces identical phase shifts of the coherent 
state amplitude: �1 = �3 = θ/2 , whereas the phase shift for the photons in the channels 2 and 4 is of opposite 
sign: �2 = �4 = −θ/2 . So, we have

Homodyne detection can be utilized as the well-known standard method to measure phase sensitive prop-
erties of the probe  field56. In this method the probe field is combined with sufficiently intense reference field 
known as the local oscillator by a beam splitter and the fields in the two output arms are collected by the two 
photodetectors. The balanced homodyne scheme represents the case where the measured signal is proportional 
to the difference of photocurrents registered in the arms after a lossless 50:50 beam splitter. This scheme generally 
amounts to measurements of the values of the quadrature-component operator x̂p(ϕ) = a†pe

iϕ + ape
−iϕ , where 

the quadrature phase ϕ is determined by the phase difference between the probe field and the local oscillator.
It can be shown that, for the X quadrature-component operator x̂p(0) ≡ x̂p = a†p + ap with ϕ = 0 , the pro-

jection of the probe field coherent states |αpe±iθ � on the eigenvector |xp� of x̂p ( ̂xp|xp� = xp|xp� ) is given  by56:

Clearly, for the Gaussian probability density distribution fG(xp; θ) = |�xp|αpe±iθ �|2 , the mean value is 
�xp�(θ) = 2αp cos θ and xm = αp(1+ cos θ) is the midpoint of the interval ranged from 〈xp〉(θ) to 〈xp〉(0) . When 
θ = 0 (the measured value of xp is above xm ), the states of the first pair after the homodyne measurements are 
filtered to |B̃1,2� = |B1,2� , whereas in the opposite case with nonvanishing θ (the measured value of xp is below 
xm ) the filtered states of the second pair undergo a unitary transformation

that can be easily compensated provided the phase � is known from the measurements of xp . The probability 
of filtration errors can be estimated from the midpoint xm and the tails of the Gaussian distributions fG(x; 0) 
and fG(x; θ) giving Perr = erfc(

√
2αp sin

2(θ/2))/2 . It turns out that Perr is below 3× 10−5 at αp sin2(θ/2) > 2.
Note that the idea of parity-check measurement is widely used in different areas of quantum information 

theory. For example, similar technique was implemented for non-local Bell state  measurement26,57. Moreover, 
introduced in this paper consideration of filtering operation is similar to the Fock filtering introduced  in58. 
However, an important point is that, in contrast  to58, we do not use the nonlinearity for identification of exact 
Bell state. In our scheme it is just the preparatory step before the final discrimination.

Unitary transformation. After filtration, our task performed at the second step is to discriminate between 
the states of the filtrated pairs. Let us begin with the discrimination between the Bell states of the first pair 

(16)ÛKerr = exp

{

4
∑

i=1

�i n̂in̂p

}

,

(17)ÛKerr(|B1,2� ⊗ |αp�) =|B1,2� ⊗ |αp�.

(18)ÛKerr(|B3,4� ⊗ |αp�) =
1√
2

{

|113� ⊗ |αpeiθ � ± |124� ⊗ |αpe−iθ �
}

.

(19)�xp|αpe±iθ � = (2π)−1/4e−(xp/2−αp cos θ)
2
e±i�, � = αp sin θ(xp − αp cos θ).

(20)|B̃3,4� = Ûij(�)|B3,4�, Ûij(�) = e
i�(n̂i−n̂j), i ∈ {1, 3}, j ∈ {2, 4},

Figure 1.  Principle scheme for Bell state measurement with filtration operation based on non-demolition 
filtration. With grey and white colours polarization and 50:50 beam splitters are denoted respectively. The 
filtering operation is described with Eqs. (11)–(12), respectively. The unitary transformations for the states 
|B1�, |B2� (a) and |B3�, |B4� (b) according to the classical bit of information are presented.
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{|B1�, |B2�} . Referring to Fig. 1 (left), there are two 50:50 beam splitters connecting the channels 1 and 2, 3 and 4, 
respectively. From the well-known relations between input and output creation operators for the beam splitters

the states |B1� and |B2� transform as follows:

Similarly, for the second pair, in order to discriminate the states |B3� and |B4� we can introduce the beam 
splitters connecting the channels 1 and 4, 2 and 3, respectively (see Fig. 1 (right)). The input–output relations

can now be used to obtain the transformed states

The states (22) and (24) now have different photon distributions between modes and thus can be unambigu-
ously discriminated using standard quadratic photodetectors. The important thing about it is that we still have 
four channels in our model and we only change the unitary operator.

Bell state analyzer with semi-demolition measurement. An alternative method of discrimination 
can be described using the well-known Innsbruck scheme for Bell state  measurement22 and semi-destructive 
measurement. Though this approach bears some resemblance to the one described in the previous sections, it is 
based on the different type of filtration. In brief the algorithm is as follows: 

1. Filtering step. This filtering operation is quite different compared to the one above. It also provides the classical 
bit of information: classical bit “0” define the states |B1� and |B2� , and the classical bit “1” shows the second 
pair of states. These two classical bits are used to define the additional unitary operations which are required 
to discriminate between the states in pairs.

2. Unitary transformation. In this method, the unitary transformation is applied only if appropriate bit was 
obtained on the filtration step. When the classical bit is “0”, the states |B1� and |B2� are already distinguished 
and thus destroyed. In the case of classical bit “1” one should apply appropriate unitary operation.

State preparation and filtration. According to the Innsbruck scheme of Bell state analyzer the states before first 
measurement can be described as  follows22:

This transformation can be realized utilizing consistently one 50:50 and two polarization beam splitters as 
it is shown on Fig. 2

The prime objective of the filtering protocol is to generate the value of the classical bit “0” if the filter has 
determined a pair of states |D1� and |D2� , and values “1” for the detected pair of states |D3� and |D4� . By contrast 
to the previous protocol, the filter operators are assumed to be of the following form:

Clearly, in the subspace span(|D1�, |D2�, |D3�, |D4�) , the completeness condition

is satisfied. From Eq. (29), the filtration operators act as:

(21)
(

a†1
a†2

)

 →
(

b†1
b†2

)

= C

(

a†1
a†2

)

,

(

a†3
a†4

)

 →
(

b†3
b†4

)

= C

(

a†3
a†4

)

, C = 1√
2

(

1 − 1
1 1

)

(22)

|B1� �→
1√
2
(b†2b

†
4 − b†1b

†
3)|0� =

1√
2
(|124� − |113�), |B2� �→

1√
2
(b†1b

†
4 + b†2b

†
3)|0� =

1√
2
(|114� + |123�).

(23)
(

a†1
a†4

)

 →
(

b†1
b†4

)

= C

(

a†1
a†4

)

,

(

a†3
a†2

)

 →
(

b†3
b†2

)

= C

(

a†3
a†2

)

,

(24)|B3� �→
1√
2
(|134� − |112�), |B4� �→

1√
2
(|113� − |124�),

(25)|�+� → |D1� =
1√
2

(

a†3a
†
4 − a†1a

†
2

)

|0�,

(26)|�−� → |D2� =
1√
2

(

a†1a
†
4 − a†3a

†
2

)

|0�,

(27)|�+� → |D3� =
1

2
√
2

(

a†23 − a†21 + a†24 − a†22

)

|0�,

(28)|�−� → |D3� =
1

2
√
2

(

a†23 − a†21 − a†24 + a†22

)

|0�.

(29)F1 = |0��D1|, F2 = |0��D2|, F3 = |D3��D3| + |D4��D4|.

(30)I =
3

∑

k=1

F†k Fk



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14236  | https://doi.org/10.1038/s41598-021-93679-7

www.nature.com/scientificreports/

Other states are destroyed under the action of these operators. The operators F1 and F2 discriminate the cor-
responding states |D1� and |D2� by converting them to the vacuum. The states are discriminated between each 
other according to the configuration of detection clicks. In case when detectors 1 and 2 or 3 and 4 click state |D1� 
is discriminated. Otherwise, when detectors 1 and 4 or 2 and 3 click state |D2� is discriminated The operator F3 
discriminates the pair |D3� and |D4� from |D1� and |D1� without state demolition. This event is assigned the value 
of the classic bit “1”. According to described property we call proposed measurement semi-demolition. The 
measurement in principle can be performed using discrete photodetection based on microresonator with  atoms59.

More specifically, the detector represents a microresonator containing a cluster of N atoms. The centers of 
mass of atoms are localized at points rn and are at rest. The microresonator contains a quantum radiation mode 
and is assumed to be single-mode. The interaction of atoms in the detector with the mode can be described by 
the Bonifacio  model60. The primary goal of the detector is to discriminate between one- and two-photon states.

For our purposes, it is sufficient to find the atom-reduced Kraus evolution operators (transformers)61 describ-
ing the transformation of the reduced density matrix of the mode conditioned by the result of measuring the 
energy state of the packet atoms. The detectors are adjusted by tuning the interaction time t = Tint , the number 
of atoms in a packet N, and the interaction parameter � . According  to59, the operators are as follows:

To choose the appropriate construction of the following operators there are two conditions

that have to be satisfied. Before performing the instant selective measurement of the states of probe atoms in the 
packet one should keep the entangled photons in microresonators during the interaction time t = Tint . Under 
conditions (36), the detection of an atom in the excited state indicates unambiguously that the one-photon mode 
state was present in the resonator at the measurement moment. So, the above conditions give the proposed semi-
demolition measurement.

We can now choose the parameters so as to meet the condition

and substitute Eq. (37) into Eq. (36) to obtain the relation

(31)F1|D1� =|0�, F2|D2� = |0�,

(32)F3|D3� =|D3�, F3|D4� = |D4�

(33)
K0 =|0��0| + cos(�

√
Nt)|1��1|

+
(

N

2N − 1
(cos(�

√
4N − 2t)− 1)+ 1

)

|2��2|

(34)K1 =− i

(

sin(�
√
Nt)|0��1| +

√

N

2N − 1
sin(�

√
4n− 2t)|1��2|

)

(35)K2 =
√
N(N − 1)

4N − 2
(cos(�

√
4N − 2t)− 1)|0��2|

(36)
{

cos(�
√
4N − 2t) = 1,

cos(�
√
Nt) = 0

(37)�t
√
N = π

2
(1+ 2m), m = 0, 1, 2, ...

Figure 2.  Principle scheme for Bell state measurement with filtration operation based on semi-demolition 
measurement. With grey and white colours polarization and 50:50 beam splitters are denoted, respectively. The 
measurement (a) and filtering (b) operations are described with Eq. (29), respectively.
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The condition is fulfilled for large N:

From Eq. (37), the product of the parameters � and t is given by

The parameter � which is the interaction strength of an atom with the mode in the strong coupling regime 
can be estimated as a few tens of gigahertz. In  papers62–66 the experimental results were obtained and the theory 
of interaction of a microresonator mode with atoms located inside the resonator is proposed. Assuming that 
� = 2π × 10 GHz and N = 10000 the estimate for t is t ≈ 10−8 s. Thus, in the limiting case, where N → ∞ and 
Eq. (36) is satisfied, the Kraus operators from Eqs. (33)–(35) can be expressed as follows:

In other words this means that probability of finding two exited atoms vanishes. Filter operators can now be 
constructed from the operators that measure the photon numbers in each spatial mode on each of the four chan-
nels. We will label the operators with an additional index k = 1, 2, 3, 4 , which denotes the number of the channel. 
So, in what follows we will use the notation K (k)

0 ,K
(k)
1 ,K

(k)
2  . The condition K (k)

2 = 0 denotes that under the chosen 
interaction conditions, two excited atoms are not observed in the channel. Operators K (k)

0  and K (k)
1  act as follows:

Thus the filtration operators for the introduced measurement can be described as follows:

Clearly, the operator F1 acts on the state |D1� as follows:

and the probability of the result is given by

As a result, this measurement is unambiguous and, in this case, other events cannot be observed.

Unitary operation. As is shown in Fig. 2, the second step of the protocol is executed depending on the value of 
the classical bit. When the bit equals zero, no further unitary operations are required. In the opposite case where 
the value of the bit is unity, an additional unitary operation should be applied.

In our case, this unitary operation can be realized using two 50:50 beam splitters connecting the channels 1 
and 2, 3 and 4, respectively.

Relation describing the state transformation under the action of filtration and an appropriate unitary opera-
tion is now given by

After the unitary rotation one can apply again the allocation of single photon subspace and unambiguously 
discriminate between the states |B3� and |B4� . Thus, according to the proposed two-step Bell state measurement 
scheme, one can discriminate all four of them unambiguously.
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Discussion
In this paper we have proposed the filtration mapping realizing complete Bell state analyzer of photonic qubits. 
The key distinctive feature of our approach is that it avoids using either hyperentanglement or the representation 
of the Bell states as concatenated Greenber–Horne–Zeilinger (C-GHZ) state to provide the discrimination. In 
addition, the approach is flexible so that the method can be implemented in different ways. We have described 
the two different realizations of such filtration mapping for complete Bell state measurement. In non-demolition 
measurement, we separate two pairs of the states from each other as the filtration process utilizing of the cubic 
(Kerr) nonlinearity and the probe mode. In semi-demolition measurement, the two states are unambiguously 
discriminated and thus destructed, whereas the other states passes the filter without modification. It can be 
organized as follows. The measurement destroys the single photon subspace in every mode and preserves the 
superposition of zero and two photons. It can be realized with discrete photodetection based on microresona-
tor with  atoms59. It can be considered as quadratic nonlinearity just as any particular kind of photodetection.

We conclude with the remark that previously, even in principle, it was impossible to provide the deterministic 
discrimination of polarization qubits without their special transformation or utilization of auxillary degrees 
of freedom to other quantum states due to the fact of that photons are bosonic particles and thus “bunching 
together”. The result offers unique opportunity to perform deterministic realizations of various quantum pro-
tocols, e.g. quantum teleportation, dense coding, quantum repeaters, measurement-device-independent QKD.

Received: 20 April 2021; Accepted: 21 June 2021

References
 1. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503. https:// 

doi. org/ 10. 1103/ PhysR evLett. 108. 130503 (2012).
 2. Long, G.-L. & Liu, X.-S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002).
 3. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. 

Lett. 70, 1895–1899. https:// doi. org/ 10. 1103/ PhysR evLett. 70. 1895 (1993).
 4. Guo, Y., Liu, B.-H., Li, C.-F. & Guo, G.-C. Advances in quantum dense coding. Adv. Quantum Technol. 2, 1900011 (2019).
 5. Deng, F.-G., Long, G. L. & Liu, X.-S. Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair 

block. Phys. Rev. A 68, 042317 (2003).
 6. Zhang, W. et al. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017).
 7. Zhou, L., Sheng, Y.-B. & Long, G.-L. Device-independent quantum secure direct communication against collective attacks. Sci. 

Bull. 65, 12–20 (2020).
 8. Zhou, Z. et al. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 1–6 

(2020).
 9. Niu, P.-H. et al. Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018).
 10. Gao, Z., Li, T. & Li, Z. Long-distance measurement-device-independent quantum secure direct communication. Europhys. Lett. 

125, 40004 (2019).
 11. Li, T., Gao, Z. & Li, Z. Measurement-device-independent quantum secure direct communication: Direct quantum communication 

with imperfect measurement device and untrusted operator. Europhys. Lett. 131, 60001 (2020).
 12. Gao, Z., Li, T. & Li, Z. Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astronomy 

63, 1–8 (2020).
 13. Sheng, Y.-B. & Zhou, L. Distributed secure quantum machine learning. Sci. Bull. 62, 1025–1029 (2017).
 14. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009).
 15. Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N. & Pan, J.-W. Experimental realization of entanglement concentration and a quantum 

repeater. Phys. Rev. Lett. 90, 207901 (2003).
 16. Wang, T.-J., Song, S.-Y. & Long, G. L. Quantum repeater based on spatial entanglement of photons and quantum-dot spins in 

optical microcavities. Phys. Rev. A 85, 062311 (2012).
 17. Penrose, R. Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 356, 

1927–1939 (1998).
 18. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).
 19. Cohen, I. & Mølmer, K. Deterministic quantum network for distributed entanglement and quantum computation. Phys. Rev. A 

98, 030302 (2018).
 20. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300. https:// doi. 

org/ 10. 1103/ PhysR evA. 59. 3295 (1999).
 21. Vaidman, L. & Yoran, N. Methods for reliable teleportation. Phys. Rev. A 59, 116–125. https:// doi. org/ 10. 1103/ PhysR evA. 59. 116 

(1999).
 22. Bouwmeester, D. & Zeilinger, A. The physics of quantum information: Basic concepts. In The Physics of Quantum Information 

1–14 (Springer, 2000).
 23. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon. 9, 

641–652. https:// doi. org/ 10. 1038/ nphot on. 2015. 154 (2015).
 24. Wein, S. et al. Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections. Phys. Rev. A 

94, 032332. https:// doi. org/ 10. 1103/ PhysR evA. 94. 032332 (2016).
 25. Grice, W. P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331. https:// doi. 

org/ 10. 1103/ PhysR evA. 84. 042331 (2011).
 26. Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: A new route to optical quantum computation. New J. Phys. 7, 137–137. 

https:// doi. org/ 10. 1088/ 1367- 2630/7/ 1/ 137 (2005).
 27. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. 

Lett. 86, 1370–1373. https:// doi. org/ 10. 1103/ PhysR evLett. 86. 1370 (2001).
 28. Barrett, S. D. et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302. 

https:// doi. org/ 10. 1103/ PhysR evA. 71. 060302 (2005).
 29. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 

1936–1938. https:// doi. org/ 10. 1364/ OL. 21. 001936 (1996).
 30. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. 

Phys. Rev. A 32, 2287–2292. https:// doi. org/ 10. 1103/ PhysR evA. 32. 2287 (1985).

https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevA.59.3295
https://doi.org/10.1103/PhysRevA.59.3295
https://doi.org/10.1103/PhysRevA.59.116
https://doi.org/10.1038/nphoton.2015.154
https://doi.org/10.1103/PhysRevA.94.032332
https://doi.org/10.1103/PhysRevA.84.042331
https://doi.org/10.1103/PhysRevA.84.042331
https://doi.org/10.1088/1367-2630/7/1/137
https://doi.org/10.1103/PhysRevLett.86.1370
https://doi.org/10.1103/PhysRevA.71.060302
https://doi.org/10.1364/OL.21.001936
https://doi.org/10.1103/PhysRevA.32.2287


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14236  | https://doi.org/10.1038/s41598-021-93679-7

www.nature.com/scientificreports/

 31. Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542. https:// doi. 
org/ 10. 1038/ 25059 (1998).

 32. Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502250502. https:// 
doi. org/ 10. 1103/ PhysR evLett. 93. 250502 (2004).

 33. Qian, J., Feng, X.-L. & Gong, S.-Q. Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization 
parity detection. Phys. Rev. A 72, 052308. https:// doi. org/ 10. 1103/ PhysR evA. 72. 052308 (2005).

 34. Sheng, Y.-B., Deng, F.-G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 
82, 032318. https:// doi. org/ 10. 1103/ PhysR evA. 82. 032318 (2010).

 35. Sheng, Y.-B. & Zhou, L. Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453. https:// doi. org/ 10. 1038/ srep1 
3453 (2015).

 36. Li, T. et al. Resource-efficient analyzer of bell and Greenberger–Horne–Zeilinger states of multiphoton systems. Phys. Rev. A 100, 
052302052302 (2019).

 37. Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184. https:// doi. org/ 10. 1080/ 09500 34970 82318 77 (1997).
 38. Kwiat, P. G. & Weinfurter, H. Embedded Bell-state analysis. Phys. Rev. A 58, R2623–R2626. https:// doi. org/ 10. 1103/ PhysR evA. 58. 

R2623 (1998).
 39. Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 

190501. https:// doi. org/ 10. 1103/ PhysR evLett. 96. 190501 (2006).
 40. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum 

state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125. https:// doi. org/ 10. 1103/ PhysR 
evLett. 80. 1121 (1998).

 41. Walborn, S. P., Pádua, S. & Monken, C. H. Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313. https:// doi. 
org/ 10. 1103/ PhysR evA. 68. 042313 (2003).

 42. Barbieri, M., Vallone, G., Mataloni, P. & De Martini, F. Complete and deterministic discrimination of polarization Bell states 
assisted by momentum entanglement. Phys. Rev. A 75, 042317. https:// doi. org/ 10. 1103/ PhysR evA. 75. 042317 (2007).

 43. Ren, B.-C., Wei, H.-R., Hua, M., Li, T. & Deng, F.-G. Complete hyperentangled-Bell-state analysis for photon systems assisted by 
quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677. https:// doi. org/ 10. 1364/ OE. 20. 024664 (2012).

 44. Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 
282–286. https:// doi. org/ 10. 1038/ nphys 919 (2008).

 45. Wang, T.-J. & Wang, C. Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level �-type system. 
Sci. Rep. 6, 19497. https:// doi. org/ 10. 1038/ srep1 9497 (2016).

 46. Liu, Q., Wang, G.-Y., Ai, Q., Zhang, M. & Deng, F.-G. Complete nondestructive analysis of two-photon six-qubit hyperentangled 
Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016. https:// doi. org/ 10. 1038/ srep2 2016 (2016).

 47. Wang, G.-Y., Ren, B.-C., Deng, F.-G. & Long, G.-L. Complete analysis of hyperentangled Bell states assisted with auxiliary hyper-
entanglement. Opt. Express 27, 8994–9003. https:// doi. org/ 10. 1364/ OE. 27. 008994 (2019).

 48. Zeng, Z. & Zhu, K.-D. Complete hyperentangled state analysis using weak cross-Kerr nonlinearity and auxiliary entanglement. 
N. J. Phys.https:// doi. org/ 10. 1088/ 1367- 2630/ aba465 (2020).

 49. Song, S., Cao, Y., Sheng, Y.-B. & Long, G.-L. Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. 
Quantum Inf. Process. 12, 381–393. https:// doi. org/ 10. 1007/ s11128- 012- 0375-x (2013).

 50. Fan, L.-L., Xia, Y. & Song, J. Complete hyperentanglement-assisted multi-photon Greenberger–Horne–Zeilinger states analysis 
with cross-Kerr nonlinearity. Opt. Commun. 317, 102–106. https:// doi. org/ 10. 1016/j. optcom. 2013. 12. 028 (2014).

 51. Zeng, Z. Self-assisted complete hyperentangled bell state analysis using quantum-dot spins in optical microcavities. Laser Phys. 
Lett. 15, 055204 (2018).

 52. Zhi, Z., Chun, W. & Xi-Han, L. Complete n-qubit Greenberger–Horne–Zeilinger states analysis assisted by frequency degree of 
freedom. Commun. Theor. Phys. 62, 683 (2014).

 53. Zeng, Z. & Zhu, K.-D. Complete hyperentangled bell state analysis assisted by hyperentanglement. Laser Phys. Lett. 17, 075203 
(2020).

 54. Zhou, L. & Sheng, Y.-B. Complete logic bell-state analysis assisted with photonic faraday rotation. Phys. Rev. A 92, 042314 (2015).
 55. Gao, C.-Y., Ren, B.-C., Zhang, Y.-X., Ai, Q. & Deng, F.-G. Universal linear-optical hyperentangled bell-state measurement. Appl. 

Phys. Express 13, 027004 (2020).
 56. Welsch, D.-G., Vogel, W. & Opatrný, T. Homodyne detection and quantum-state reconstruction. In Progress in Optics Vol. 39, Chap 

2 (ed. Wolf, E.) 63–211 (Elsevier, 1999). https:// doi. org/ 10. 1016/ S0079- 6638(08) 70389-5.
 57. Juan, B. et al. Implementation of nonlocal Bell-state measurement and quantum information transfer with weak Kerr nonlinearity. 

Chin. Phys. B 20, 120307 (2011).
 58. Paris, M., Plenio, M., Bose, S., Jonathan, D. & D’Ariano, G. Optical Bell measurement by Fock filtering. Phys. Lett. A 273, 153–158. 

https:// doi. org/ 10. 1016/ S0375- 9601(00) 00477-1 (2000).
 59. Miroshnichenko, G. Discrete photodetection for protocols of linear optical quantum calculations and communications. J. Exp. 

Theor. Phys. 112, 923–931 (2011).
 60. Bonifacio, R., Schwendimann, P. & Haake, F. Quantum statistical theory of superradiance. i.. Phys. Rev. A 4, 302 (1971).
 61. Kraus, K., Böhm, A., Dollard, J. D. & Wootters, W. States, effects, and operations: Fundamental notions of quantum theory. Lectures 

in mathematical physics at the university of Texas at Austin. Lect. Notes Phys. 190, 20 (1983).
 62. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
 63. Klimov, V., Ducloy, M. & Letokhov, V. Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric 

microsphere: Quantum-mechanical consideration. Phys. Rev. A 59, 2996 (1999).
 64. Srinivasan, K. & Painter, O. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. 

A 75, 023814 (2007).
 65. Shen, J.-T. et al. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. 

Phys. Rev. A 79, 023837 (2009).
 66. Shen, J.-T. et al. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator 

containing a two-level atom. Phys. Rev. A 79, 023838 (2009).

Acknowledgements
Sections of the article about measurement with non-demolition filtration and filtration mapping were written 
by A. Kozubov and A. Gaidash, Section about semi-demolition measurement by A. D. Kiselev and G. Miro-
shnichenko. The work of A. Kozubov and A. Gaidash is supported by the Russian Science Foundation under 
Grant No. 20-71-10072 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. The 
work of A. D. Kiselev was financially supported by the Russian Ministry of Education (Grant no. 2019-0903).

https://doi.org/10.1038/25059
https://doi.org/10.1038/25059
https://doi.org/10.1103/PhysRevLett.93.250502
https://doi.org/10.1103/PhysRevLett.93.250502
https://doi.org/10.1103/PhysRevA.72.052308
https://doi.org/10.1103/PhysRevA.82.032318
https://doi.org/10.1038/srep13453
https://doi.org/10.1038/srep13453
https://doi.org/10.1080/09500349708231877
https://doi.org/10.1103/PhysRevA.58.R2623
https://doi.org/10.1103/PhysRevA.58.R2623
https://doi.org/10.1103/PhysRevLett.96.190501
https://doi.org/10.1103/PhysRevLett.80.1121
https://doi.org/10.1103/PhysRevLett.80.1121
https://doi.org/10.1103/PhysRevA.68.042313
https://doi.org/10.1103/PhysRevA.68.042313
https://doi.org/10.1103/PhysRevA.75.042317
https://doi.org/10.1364/OE.20.024664
https://doi.org/10.1038/nphys919
https://doi.org/10.1038/srep19497
https://doi.org/10.1038/srep22016
https://doi.org/10.1364/OE.27.008994
https://doi.org/10.1088/1367-2630/aba465
https://doi.org/10.1007/s11128-012-0375-x
https://doi.org/10.1016/j.optcom.2013.12.028
https://doi.org/10.1016/S0079-6638(08)70389-5
https://doi.org/10.1016/S0375-9601(00)00477-1


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14236  | https://doi.org/10.1038/s41598-021-93679-7

www.nature.com/scientificreports/

Author contributions
Sections of the article about measurement with non-demolition filtration and filtration mapping were written 
by A.K. and A.G., Section about semi-demolition measurement by A.D.K. and G.M.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.V.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Filtration mapping as complete Bell state analyzer for bosonic particles
	Results
	Filtration mapping. 
	Bell state analyzer with non-demolition filtration. 
	State preparation. 
	Filtration. 
	Unitary transformation. 

	Bell state analyzer with semi-demolition measurement. 
	State preparation and filtration. 
	Unitary operation. 


	Discussion
	References
	Acknowledgements


