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Abstract

Motivation: Transcriptome-based gene co-expression analysis has become a standard procedure for structured and
contextualized understanding and comparison of different conditions and phenotypes. Since large study designs
with a broad variety of conditions are costly and laborious, extensive comparisons are hindered when utilizing only
a single dataset. Thus, there is an increased need for tools that allow the integration of multiple transcriptomic data-
sets with subsequent joint analysis, which can provide a more systematic understanding of gene co-expression and
co-functionality within and across conditions. To make such an integrative analysis accessible to a wide spectrum of
users with differing levels of programming expertise it is essential to provide user-friendliness and customizability
as well as thorough documentation.

Results: This article introduces horizontal CoCena (hCoCena: horizontal construction of co-expression networks and
analysis), an R-package for network-based co-expression analysis that allows the analysis of a single transcriptomic
dataset as well as the joint analysis of multiple datasets. With hCoCena, we provide a freely available, user-friendly
and adaptable tool for integrative multi-study or single-study transcriptomics analyses alongside extensive compari-
sons to other existing tools.

Availability and implementation: The hCoCena R-package is provided together with R Markdowns that implement
an exemplary analysis workflow including extensive documentation and detailed descriptions of data structures and
objects. Such efforts not only make the tool easy to use but also enable the seamless integration of user-written
scripts and functions into the workflow, creating a tool that provides a clear design while remaining flexible and
highly customizable. The package and additional information including an extensive Wiki are freely available on
GitHub: https://github.com/MarieOestreich/hCoCena. The version at the time of writing has been added to Zenodo
under the following link: https://doi.org/10.5281/zenodo.6911782.

Contact: t.ulas@uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

While the newest generation of sequencing technologies has led to a
wealth of available transcriptomic datasets in the past years, the design
of these datasets is mostly focused on answering distinct scientific ques-
tions, restricting the experimental setup to the respective questions.
This is mostly due to high study costs and the lack of sample availabil-
ity, especially in the field of human biology (Dumas-Mallet et al.,

2017), where sampling depends on patient availability and their will-
ingness to engage in biomedical studies. Meanwhile, it is becoming
clear that gaining a more holistic and systematic understanding of the
gene expression landscape necessitates not only looking at single tran-
scriptome studies and datasets but also combining information from
multiple studies to increase information content while preventing the
expenses of large studies on a single research team (Moretto et al.,
2019). This illustrates the need for tools that facilitate the integration
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of numerous transcriptome datasets, allowing researchers to combine
multiple single studies into a comprehensive dataset for more holistic
knowledge discovery. The process of combining several omics datasets
that measure the same biomolecular entity—genes, in the case of tran-
scriptomics—across different sample spaces has been referred to as
horizontal data integration (Ulfenborg, 2019). A frequently discussed
issue of dataset integration is the inconsistency of dimensionalities in
both the number of samples and the number of genes measured. To fa-
cilitate the integration process, several methods have been proposed,
one of which is referred to as transformation-based integration (Ritchie
et al., 2015). Here, all datasets are first separately transformed into a
common structure which then provides the basis for the integration.
This allows for the combination of datasets that vary in their dimension
of the feature and sample space. The approach of transformation-
based integration is the method underlying the presented work.

The data integration strategy used in hCoCena is based on
weighted co-expression networks. Networks have been used exten-
sively to model biological data (Jardim et al., 2019; Langfelder and
Horvath, 2008; Lemoine et al., 2021; Marwah et al., 2018; Pavel
et al., 2021; Proost and Mutwil, 2018; Russo et al., 2018) and they
often serve as the common structure used in transformation-based
integrations. In the context of co-expression, the vertices represent
genes, while the edges represent the co-expression of a pair thereof.
In hCoCena, the edges are weighted, with the weights indicating
correlation strength. Representing genes and their relationships in
the form of networks enables the detection of underlying structures
using community detection algorithms, without extensively depend-
ing on the original data type. This makes networks especially inter-
esting in the context of multi-omics data integration.

Not only is there an increasing need for tools that enable multi-
study transcriptomic data integration, but these tools also need to be
provided in a format that facilitates application by researchers with
entry-level programming skills and computer science knowledge
while still remaining flexible and expandable for those with an
extended programming background. A commonly seen issue with
released tools and packages in the context of omics data analysis is
their polarized implementation: thorough documentation, intended
to increase user-friendliness, often comes at the cost of a linear ana-
lysis design that poorly adapts to different study layouts and re-
search questions. On the other hand, packages that allow for great
flexibility and combination with other methods are oftentimes
scarcely documented, making them difficult to use, especially for
users that are not in-depth familiar with the used programming lan-
guage. This is particularly problematic in the case of omics data
analyses since many researchers have a high-level knowledge of nat-
ural sciences, rather than computer science. hCoCena successfully
provides a balance between these poles by choosing a modularly
designed library paired with thorough documentation of functions,
in- and outputs, and a pre-implemented ready-to-use analysis work-
flow that can be easily adapted and expanded with user-written
functions and scripts to fit the analysis to the question and the data
at hand.

2 Materials and methods

Horizontal-CoCena includes and expands our previously introduced
tool CoCena2 (Aschenbrenner et al., 2021) that allows for the
analysis of a single transcriptomic dataset, using a co-expression net-
work for the identification of gene clusters and their subsequent
functional analysis. hCocena is a completely remastered, stand-
alone version of the original CoCena. It provides improved
user-friendliness, increased performance and higher computational
efficiency, due to rigorous restructuring of the code-base and opti-
mized data handling. It additionally introduces new features to the
analysis and includes the option to jointly analyse more than one
dataset (here interchangeably also referred to as a layer).

hCoCena’s ready-to-use workflow implementation is provided
as an R markdown file utilizing the package functions with minimal
code exposure and detailed descriptions of all in- and outputs as

well as function parameters. The design reflects the modular charac-
ter of the analytic process, making it easy to add new custom steps
in-between and therefore allowing advanced usage and flexibility.
To further increase user-friendliness, the corresponding GitHub re-
pository offers a full exemplary analysis showcasing the functional-
ities of the tool on real-data examples and providing guidelines for
parameter selection. The tool entails highly organized data struc-
tures to make working with multiple datasets as intuitive and struc-
tured as possible, avoiding littering of the analysis environment and
subpar variable naming. Instead, the data has been clearly organized
into an hCoCena object (hcobject), collecting data and variables
associated with specific steps in descriptive slots and giving each
analysis a unified structure. An overview of the object structure and
its contents is provided in the repository’s Wiki.

The inputs required to run hCoCena are (i) a normalized and—
optionally but recommended by Parsana et al. (2019)—batch-cor-
rected count matrix for each dataset with genes as rows and samples
as columns, (ii) an annotation file for each dataset with samples as
rows and columns containing different categories of meta informa-
tion and (iii) if the respective enrichment is desired—.gmt files for
Hallmark, Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Reactome enrichment (a ready-to-use set of
files is provided for download in the repository). Overall, the tool is
separated into a main markdown and satellite markdowns. The
main markdown forms the backbone of the analysis and is roughly
divided into three phases (see below) while the satellite markdowns
contain a collection of optional additional analysis steps that the
user can run if desired and which are easily extendable.

To address the persistent issue of reproducibility of scientific
findings (Yu and Hu, 2019), the complete analysis can be exported
to an HTML file including the results and the values of all set
parameters. Thus, only access to the data must be provided to guar-
antee the reproduction of all results, increasing the transparency and
credibility of published work. The figures produced during the
workflow are of publication-ready quality to minimize the addition-
al workload needed to close the gap between data analysis and pub-
lication. They are mostly implemented in ggplot2 (Wickham, 2016),
therefore allowing easy modification and customization.

2.1 Main phases of the hCoCena workflow
A three-step concept has been chosen for the presented tool: the pre-
integration phase, which contains pre-processing steps that are
dataset-specific, followed by the network-based integration phase
and the post-integration phase, which conducts different cross-layer
analyses (Fig. 1).

Pre-integration phase

During the pre-integration phase, each layer separately undergoes
five pre-processing steps: (i) extraction of the most variant genes, the
number of which can be set by the user for each layer independently,
optionally guided by a data-driven cut-off. This step may also be
skipped; (ii) calculation of pairwise correlations for each gene pair
per dataset, either using Pearson’s Correlation Coefficient,
Spearman’s Rank Correlation Coefficient or previously calculated
correlation values (e.g. using other tools); (iii) selection of a layer-
specific correlation cut-off, which determines the minimum
correlation required for a pair of genes to form an edge in the subse-
quently built network. The selection of this cut-off is aided by pro-
viding a series of statistical parameters that result from a variety of
possible cut-off values, including criteria such as overall network
size and the scale-free topology of the network (Carlson et al., 2006;
van Noort et al., 2004); (iv) Group Fold-Change (GFC) computa-
tion for every gene per layer (details see below); and (v)
co-expression network construction.

GFCs reflect the overall expression trend of a gene with respect
to groups of samples that form disjoint subsets of the entirety of
samples (e.g. a treatment, a disease). The calculation of the GFCs is
different depending on the absence or presence of control samples in
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the datasets. In the case of no controls, let X be the set of unique
sample labels in the dataset (e.g. disease1 and disease2), with xi 2 X
denoting the ith label and mean gxið Þ being the mean expression
value of a gene g in the group of samples with label xi, then the GFC
of that gene for each condition is calculated as

mean gxið Þ
1
Xj j �

P
xi2X mean gxið Þ

:

In the presence of control samples, let N be the total number of
datasets, xi;n the ith non-control label in the condition space of data-
set n 2 1; . . . ; N, xc;n the group of control samples in dataset n
and mean gxi;nð Þ be the mean expression value of a gene across a
group of samples with label xi in dataset n. Then the GFCs of a gene
for each non-control group i and each dataset n is calculated as

mean gxi;nð Þ
mean gxc;nð Þ

:

When using multiple datasets that are not well-matched in sample
sizes per condition or number of conditions, it is advised to use
proper controls as a reference, such that hCoCena can correct for
these differences.

Integration phase

During the integration phase, the co-expression networks con-
structed for the separate layers in the previous step are integrated.
This transformation-based integration has been chosen to avoid the
problems of differing data types and scales—as is the case when
combining, e.g. RNA-Seq and Microarray data—as well as differing
measurement inaccuracy and dataset-based batch effects. Differing
levels of measurement inaccuracy would pose a particular problem
if the data were integrated based on the original data structure.
Datasets with larger measurement inaccuracy and, thus, increased
variance due to technical rather than biological reasons, would pre-
dominate the signal from other datasets and heavily influence the
grouping of genes into clusters, leading to a technical bias. This can
be avoided by transforming the data from its original format to a
network representation before integration (Ritchie et al., 2015),
which is done here. The nodes in the networks retrieved from each
layer all represent the same type of biomolecule, that is, genes. Thus,
an overlap of nodes is likely. In order to integrate the constructed
networks, the user has the choice between two options: (i) integra-
tion by intersection, where the network of one of the datasets serves
as a reference for the others, and the analysis is geared towards how
the respective network changes in the other datasets; (ii) integration
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Fig. 1. hCoCena overview. The main steps of the analysis backbone are shown in the centre. These functions are provided in the main markdown including descriptions and

references to satellite functions. The ‘orbit’ around the central steps illustrates the available satellite functions. These are not part of the main script and can be added or left

out of the analysis as desired. The user can also add custom functions to the pool of satellites. In general, the satellite functions form two groups: data exploration functions en-

able a first impression of the data at hand, while the other functions are part of the module analysis and can only be applied once the co-expression modules have been detected

in the main analysis (Bot�ıa et al., 2017)
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by union, where the resulting network is a union of the layer-
specific networks and therefore provides a more holistic understand-
ing of gene co-expression, utilizing all the information at hand and
combining it into a single model. When choosing integration by
union, many edges are expected to exist in multiple layer-specific
networks. The user can then define if the integrated edge should
have the minimum, mean or maximum weight of the edges in the
layer-specific networks. Recommended is to choose the minimum to
approximate the true co-expression using the lower boundary and—
on a structural level—to facilitate the subsequent clustering of the
network by reducing its density. The integrated network may be
visualized using R-based layout functions or, alternatively, the net-
work can be exported to Cytoscape (Shannon et al., 2003).

Post-integration phase

The third phase is designed to functionally analyse the integrated
network. The tool offers a variety of different clustering algorithms
as provided by the R-packages igraph (Csardi and Nepusz, 2006)
and leidenAlg, based on previously published resources (Traag et al.,
2019), to detect community structures (here interchangeably
referred to as modules or clusters) in the network. The modules,
consisting of genes with very similar expression patterns across sam-
ples, can be compared across conditions—i.e. sample labels—based
on their mean GFC value and can then be further evaluated using
enrichment analyses. Two types of enrichment analyses are offered
in the main analysis workflow: (i) enrichments using public data-
bases, such as GO (Ashburner et al., 2000; The Gene Ontology
Consortium, 2021), KEGG (Kanehisa and Goto, 2000), Hallmark
molecular signatures database (Subramanian et al., 2005) and the
Reactome database (Gillespie et al., 2022) and (ii) transcription fac-
tor target enrichment using the ChEA3 tool (Keenan et al., 2019).
Additional enrichment analyses can be run optionally in the satellite
markdown, such as enrichment analyses based on user-defined gene
sets or metadata enrichment based on provided sample annotation.

2.2 Additional analysis options
The co-expression analysis from the main markdown can be further
expanded by a large variety of optional analysis steps presented in
the satellite markdowns (Fig. 1). These allow for a further in-depth
exploration of the data, letting the user go far beyond the conven-
tional analysis of differentially expressed genes by using functional-
ities such as hub gene detection, principal component analysis,
count distributions plots, meta-data correlation, gene set visualiza-
tion, importing and exporting of generated network models, tran-
scription factor querying and many others. These functions can be
run independently and in no particular order. Dependencies on the
progression through the main analysis are pointed out in the descrip-
tions and the main markdown references the satellite functionalities
at the most suitable steps throughout the workflow. The satellite
functions have been detached from the analysis backbone to allow
maximal flexibility and to easily add custom functions. All available
satellite functions can be found in the repository’s Wiki pages.

3 Results

3.1 Integration strategy showcase
To showcase some functionalities of hCoCena and most importantly
the robustness of the integration strategy, we selected two public
datasets that describe a similar experimental setup but were
sequenced using different technologies, namely Microarray and
RNA-Seq. Details on data pre-processing and dataset availability
can be found in the Supplementary Material. The integration of
Microarray data with RNA-Seq data is challenging, despite the fact
that tremendous efforts have been made to find ways of combining
their data (van der Kloet et al., 2020). Here, we demonstrate that
the network-based data integration successfully overcomes these
issues. The datasets used here comprise human samples and investi-
gate a macrophage activation assay, describing stimulation with
IFN-c and IL-4 alongside no stimulation (baseline) (Beyer et al.,

2012). Macrophage activation covers a wide spectrum of activation
states (Xue et al., 2014), but broadly speaking, IFN-c is known to
induce a pro-inflammatory phenotype, while IL-4 induces an alter-
native, anti-inflammatory phenotype. We will not go into the bio-
logical details of the activation process, but rather use this data to
showcase the reproducibility of known results while integrating data
from vastly different technologies.

To get an initial impression of the data and to detect possible
outliers, the expression-value distributions for all samples and a
Principle Component Analysis were plotted for each dataset
(Fig. 2A, Supplementary Fig. S1A). Both plots indicated no outliers
or other data irregularities in either of the datasets. The Microarray
data were filtered for the top 7700 and the RNA-Seq data for the
top 7664 most variant genes, i.e. genes with the largest variance in
expression value across samples, as suggested by the satellite func-
tion suggest_topvar() that finds a data-driven filtering threshold
based on inflection points in the ranked log-variance curve. The mo-
tivation behind this is to remove genes with very little variance in
their expression values across conditions, which implies low impact
of the conditions on the genes’ expression levels, deeming them ir-
relevant for the phenotype. Spearman’s Rank Correlation was used
to calculate the pair-wise co-expression values and the cut-off statis-
tics were calculated for 50 cut-off values in the range 0.9 to 1.0 and
visualized in the cut-off selection guides (Fig. 2B, Supplementary
Fig. S1B). Both guides presented the highest network quality at a
correlation cut-off of 0.982. The quality was evaluated by maximiz-
ing the scale-free topology (measured using the R2-value of the
logged node-degree distribution) while keeping as many genes as
possible and reducing the number of edges to avoid the ‘hairball’ ef-
fect: a too densely connected network that loses its structure and
does not allow community detection. Based on this correlation cut-
off, a co-expression network was constructed for each dataset. The
networks were then integrated using the integration-by-union prin-
ciple, hence also genes and edges that are only present in one but not
the other dataset will be present in the integrated network. This
gives not only an impression of the co-expressions that are shared
among the two datasets but also of those that are unique to one or
the other, Presenting a more wholistic picture. Multi-edges, i.e.
edges that are present in both datasets but with different correlation
weights, were simplified by using the lowest correlation value found
in either of the datasets for the corresponding gene pair. This pre-
vents over-estimating the importance of their co-expression and fur-
thermore makes the network less dense, facilitating the
identification of clusters. The integrated network consisted of 8336
nodes (i.e. genes) and 90 202 edges (i.e. correlations that exceeded
the cut-off value). The network was clustered using the Leiden algo-
rithm, yielding 19 modules. Eighteen genes were dropped because
they were assigned to clusters smaller than the set minimum size of
25 genes. The integrated network coloured by module and the mod-
ule heatmap showing the modules’ mean GFCs across conditions are
shown in Figure 2C. The network layout was generated using the
Prefuse Force Directed Layout of Cytoscape (version 3.8.2)
(Shannon et al., 2003) GFCs show clear stimulus-specific trends in-
dependent of the sequencing platform emphasizing their utility for
the integration task (Supplementary Fig. S1C). The clusters wheat,
orchid, plum and lightgreen show IL-4-specific up-regulation, while
turquoise, lightblue, gold and darkorange are up-regulated only in
IFN-c stimulated samples. These clusters were used for GO and
Hallmark enrichment analyses. The results were filtered for the 5
most significant terms with adjusted P-values �0.1 (Fig. 2D) per
cluster. If clusters are missing in the plot, then no significantly
enriched terms were found. Clusters that are up-regulated in IFN-c
stimulated samples show Hallmark enrichment of interferon re-
sponse terms, hypoxia, glycolysis, and general inflammatory re-
sponse, while these gene clusters are down-regulated in IL-4
stimulated samples, confirming the pro- and anti-inflammatory roles
of the two stimuli. A similar picture is painted in the GO-
enrichment where the IFN-c up- and IL-4 down-regulated gene clus-
ters bring up enrichment terms associated with immune response.
We further checked the cluster assignment of genes identified in the
reference analysis (Xue et al., 2014) as IFN-c-specific transcription
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Fig. 3. (A) Comparison of different network packages concerning general characteristics and included algorithms. All Pubmed and Google Scholar searches were performed at

the October 15, 2021 with exception of the GWENA search (December 17, 2021); Multiple Correlation Algorithms refer to the options provided to analyse the correlation of

genes. Multiple Community Algorithms refer to the algorithms provided to detect community structures (‘clusters’/‘modules’) in the network. Multiple Clustering Algorithms

refer to the options provided to cluster data points, e.g. samples or sample groups. aGoogle Scholar search ‘cocena2’; bPubmed search ‘WGCNA’; cPubmed search ‘networkx’

(eight results but two are not referring to NetworkX); dPubmed search ‘igraph’; eGoogle Scholar search ‘CDlib (Community discovery library)’ since 2020, not all results refer

to the CDLIB tool; fPubmed search ‘BioNetStat’; gGoogle Scholar search ‘NetSimile’; hGoogle Scholar search ‘INfORM: Inference of NetwOrk Response Modules’ (both

entries are referring to the same paper); iPubmed search ‘CoNekT’; jGoogle Scholar search ‘VOLTA (advanced molecular network analysis)’; kHamming distance can be calcu-

lated taking specific conditions into account; lin general the module detection is enabled via unsupervised clustering, by default hierarchical clustering dendrogram and branch

cutting is used; mWGCNA pipeline can be supplemented by other algorithms like k-means clustering (Bot�ıa et al., 2017); nexample for the implemented algorithms: Louvain &

Tree partitioning; othey can make use of the base R function cor(); pclustering algorithms like cluster_louvain, cluster_fast_greedy, cluster_edge_betweenness are included and

are used for community detection; qdifferent clustering approaches (like NodeClustering, FuzzyNodeClustering) are included for the standardized representation of community

structures; rGoogle Scholar search ‘GWENA Lemoine’ (11 results in total, 3 could be associated with the discussed R package). (B) Comparison of different network packages

concerning features, user-friendliness and connected data banks. aA correlation between modules and provided numerical traits can be performed, further enrichment analysis

can be performed via recommended online tools like David; bdegree centrality of the graph components can be measured; cconnecting strength of graph components can be cal-

culated; dcentrality analysis can be used to highlight key genes; enode importance can be calculated and used for evaluation; fFuzzyNodeClustering function also includes the

generation of a ‘node-community allocation probability matrix to keep track of the probabilistic component of the final non-overlapping partition’ (Rossetti et al., 2019); gpro-

vided tutorials are guiding through complete analysis pipelines, the code chunks have to be adjusted manually; hGene ontology enrichment analysis can directly be performed

within R using GO.db; ithe required data are provided using pathview R package; jINfORM can make use of GSEABase package; kGO enrichment API can be used ‘to perform

enrichment against Reactome Pathways as well as GO or the Panther Protein class’ (https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Example_of_

Enrichment.ipynb); lPCA is not performed like in hCoCena but the module eigengene can be calculated which is the first principle component of the expression matrix;
mSpectral Coarse Graining can be performed, ‘(PCA) can be viewed as a particular SCG, called exact SCG, where the matrix to be coarse-grained is the covariance matrix of

some dataset’ (igraph R manual pages); nPCA like hCoCena cannot be performed but eigenvectors can be calculated; ograph/feature matrix can be projected into the principle

component space via single value decomposition
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factors (Supplementary Fig. S1D). The majority of them were
assigned to the clusters lightblue, turquoise and gold, showing IFN-
c-specific activation. To showcase the hub-gene detection, we
selected the lightblue cluster, since most of the genes listed by Xue
et al. (2014) appeared in this cluster. hCoCena detected IRF7 and
IRF9 to be among the strongest hubs (Fig. 2E), both of which were
noted to be IFN-c-specific transcription factors in the reference ana-
lysis (Xue et al., 2014).

The transcription factor enrichment analysis performed with
hCoCena confirms their role in IFN-c stimulation further (Fig. 2F).

These results show that biological findings that have previously
been made on Microarray data only, can be reconstructed while
integrating data from RNA-Seq and Microarray, two vastly differ-
ent data collection techniques, despite the low sample size (n¼9) in
each dataset. This showcases the strength of the network-based inte-
gration approach and its ability to filter out biological signals and
overcome dataset-specific differences.

To additionally demonstrate the advantage offered by data inte-
gration as compared to single dataset analysis, we integrated the
data from a COVID-19 cohort with that of a sepsis cohort. Details
regarding the datasets as well as their preprocessing are available in
the Supplementary Material. In the early stages of the COVID-19
pandemic, phenotypic parallels became apparent between severe
COVID-19 cases and sepsis (Li et al., 2020). Data integration of
gene-expression data allows more detailed insight into this initial
observation, as we can show here. The parameters set in the analysis
can be found in the Supplementary Material. The patients from the
COVID-19 cohort were grouped based on disease severity: COVID
1 are the most severe cases, with severity decreasing until COVID 5,
which are considered as mild cases. COVID 6 is the healthy control
group. Supplementary Figure S2A shows the module heat-map cre-
ated by hCoCena for the integrated network. The dendrogram on
the top clusters severe COVID-19 cases (Group 1) together with
deathly sepsis cases while the mild cases (Group 5) cluster most
closely with samples from uncomplicate sepsis cases. The second
most severe COVID-19 cases (Group 2) are most closely linked to
severe sepsis and septic shock and the intermediate COVID-19 cases
cluster together. The healthy controls (Group 6) are distinctly differ-
ent from all disease cases. However, despite the proximity of the ra-
ther severe COVID-19 cases with sepsis, there are nonetheless
distinct differences on the transcriptional level, as has been shown
previously (Aschenbrenner et al., 2021). Cluster plum is up-
regulated in both, severe COVID-19 (Groups 1 and 2) and sepsis
with a deadly outcome. The Hallmark enrichment (Supplementary
Fig. S2B) shows inflammatory response terms for this cluster.
However, cluster orchid, which is also associated with inflamma-
tion, comprises genes specifically up-regulated in the group ‘sepsis
death’. Thus, the integration of the two datasets highlighted the
phenotypic commonalities of the two diseases but was also able to
identify groups of genes that differed between severe COVID-19
cases and severe sepsis cases.

3.2 Comparison to other tools
A plethora of different network analysis tools exist that can be used
to investigate gene co-expression networks and more are released
frequently (Csardi and Nepusz, 2006; Falousos, 2012; Hagberg,
2008; Jardim et al., 2019; Langfelder and Horvath, 2008; Lemoine
et al., 2021; Marwah et al., 2018; Pavel et al., 2021; Proost and
Mutwil, 2018; Rossetti et al., 2019). To facilitate the comparison
between existing tools and to emphasize the large variety of analysis
options provided by hCoCena, Figure 3 provides an overview in
tabular format comparing the main features of these tools and the
programming languages that they are implemented in, the input and
output format of data, if data integration is available and if so,
which strategy has been used, and many other aspects. It becomes
evident that although so many tools are available, they are comple-
mentary rather than exhaustive in their offered functionalities.
hCoCena, however, unites an unprecedented number of analysis
options into one single tool.

4 Conclusion

The wealth of transcriptomic datasets that has been accumulated
over the past years and continues to increase has demanded the de-
velopment of tools that allow the integrative analysis of this data.
With hCoCena, we offer a solution to this problem, by combining
different transcriptomic datasets using a network-based integration
approach. The tool further provides the user with a wide variety of
downstream analysis applications and makes it easy to add addition-
al functionalities specifically designed for the data at hand.

hCoCena is the first steps to what is intended to become a tool
suite for omics data analysis offering options for single- and multi-
set analyses—as now provided by hCoCena—as well as planned
extensions for single-cell data, multi-omics-data integration, and
clinical study-oriented analysis. The suite is intended to assist
researchers in easily tailoring an analysis workflow to their experi-
mental setup, especially in the prospect of increased utilization of
multi-omics technologies and the combined evaluation of the
retrieved data.
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