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Surfactant protein C (SP-C) is an important player in enhancing the interfacial adsorption
of lung surfactant lipid films to the alveolar air-liquid interface. Doing so, surface tension
drops down enough to stabilize alveoli and the lung, reducing the work of breathing.
In addition, it has been shown that SP-C counteracts the deleterious effect of high
amounts of cholesterol in the surfactant lipid films. On its side, cholesterol is a well-
known modulator of the biophysical properties of biological membranes and it has
been proven that it activates the inflammasome pathways in the lung. Even though
the molecular mechanism is not known, there are evidences suggesting that these two
molecules may interplay with each other in order to keep the proper function of the
lung. This review focuses in the role of SP-C and cholesterol in the development of
lung fibrosis and the potential pathways in which impairment of both molecules leads
to aberrant lung repair, and therefore impaired alveolar dynamics. From molecular to
cellular mechanisms to evidences in animal models and human diseases. The evidences
revised here highlight a potential SP-C/cholesterol axis as target for the treatment of
lung fibrosis.

Keywords: surfactant protein C, pulmonary fibrosis, alveolar dynamics, lipid metabolism, alveolar macrophages,
cholesterol, metaflammation

WHY IS CHOLESTEROL PRESENT IN THE LUNG?

As recently reviewed by Zuniga-Hertz and Patel (2019), 2.32 billion years ago, the atmospheric
oxygen raised (Bekker et al., 2004) leading to many changes in life. One of these changes may
have been the appearance of sterols, around 2.7 billion years ago (Brocks et al., 1999; French
et al., 2015) after the GOE (Great Oxygen Event) as suggested by fossil evidences. However, which
is the connection between oxygen and sterols? It has been proposed that sterols emerged as an
evolutionary strategy to reduce oxygen diffusion through cellular membranes, probably in a world
where organisms were not ready to respond to oxidative stress yet. Interestingly, sterol biosynthesis
is highly dependent on oxygen (DeBose-Boyd, 2008).

How can sterols, such as cholesterol, regulate oxygen diffusion through biological membranes?
The molecular mechanism by which cholesterol can influence small solute permeation and
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diffusion through lipid membranes is not well understood.
However, it has been proposed that the interactions between
cholesterol and the acyl carbon chains in phospholipids
(stabilized by Van der Waals’ forces) (Wennberg et al., 2012)
create tightly packed arrangements that limits small molecule
diffusion (Zocher et al., 2013). By decreasing trans-gauche
rotation of the phospholipid acyl chains, membrane rigidity
increases (Cassera et al., 2002; Molugu and Brown, 2019) leading
to less free volume and free pockets which may accommodate
oxygen, therefore reducing its flux (its partition and diffusion)
through membranes (Zuniga-Hertz and Patel, 2019).

Mammals developed sophisticated organs to optimize the
uptake of oxygen during the life essential breathing cycle.
From conducting airways to the second biggest surface
exposed to the environment, the alveolar human surface
(Ochs et al., 2004). In addition, the first membrane that
oxygen encounters in the mammalian lungs is a complex
mixture of lipids (mainly phosphatidylcholines (PC), such as
dipalmitoylphosphatidylcholine (DPPC), up to a 90%) and
proteins (10%) with a 5–10% of cholesterol (14–20% mol) (Zuo
et al., 2008; Bernhard, 2016), called lung surfactant (surface active
agent). Interestingly two surfaces in the human body present
with abnormally higher cholesterol molar ratio, and both of
them are in contact with the environment tightly regulating the
uptake of oxygen. On the one hand, as previously explained,
lung surfactant presents around a 14–20% mol cholesterol in its
composition. On the other hand the eye lens surface contains
up to 35% mol of cholesterol (Raguz et al., 2008; Mainali et al.,
2013), compared to a normal cell plasma membrane with a 0.5
phospholipid to cholesterol molar ratio (van Meer et al., 2008;
Widomska et al., 2017). Although the main function of lung
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diphosphate; AEC, alveolar epithelial cell; AE1C, alveolar epithelial type 1 cell;
AE2C, alveolar epithelial type 2 cell; ALI, acute lung injury; AM, alveolar
macrophages; AMP, adenosine monophosphate; ApoA1, apolipoprotein A1;
ApoE, apolipoprotein E; ARDS, acute respiratory distress syndrome; Arg-1,
arginase 1; ASC, apoptosis speck-like protein; ATP, adenosine triphosphate;
BALF, bronchoalveolar lavage fluid; Ca2+, calcium; caAMs, classically activated
alveolar macrophages; CARD, caspase recruitment domain; chILD, Children
Interstitial Lung Disease; DAMPs, damage associated molecular patterns; DLCO,
diffusion capacity for carbon monoxide; DPPC, dipalmitoylphosphatidylcholine;
EC, extracellular; ECM, extracellular matrix; EMT, epithelial to mesenchymal
transition; ER, endoplasmic reticulum; FEV1, forced expiratory pressure in
1 second; FRC, forced residual capacity; GOE, great oxygen event; HCl, chloride
acid; HPS, Hermansky–Pudlak syndrome; HRCT, high resolution computed
tomography; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; LA,
large aggregate; LAP-1, latency associated peptide 1; LDL, low-density lipoprotein;
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metalloprotease 13; MyD88, myeloid differentiation primary response 88; NFκβ,
necrosis factor-kappa-beta; NLRP3 NOD-, LRR- and pyrin domain-containing
protein 3; NOS-2, inducible nitric oxide synthase; NRDS, neonatal respiratory
distress syndrome; PAP, pulmonary alveolar proteinosis; PC, phosphatydilcholine;
PEEP, positive end-expiratory pressure; P2XR7, P2X purinoreceptor 7; P2 × 4R,
P2X purinoreceptor 4; P2Y2R, P2Y purinoreceptor 2; Relm-α, resistin-like alpha;
ROS, reactive oxygen species; RSV, respiratory syncytial virus; SA, small aggregate;
SHH, sonic hedgehog; SP-B, surfactant protein B; SP-C, surfactant protein C;
SFTPC, surfactant protein C gene; TGF-b1, transforming growth factor beta 1;
TIMP1, tissue-metalloprotease inhibitor 1; TLC, total lung capacity; TLR-4, Toll-
like receptor 4; TNF-α, tumor necrosis factor alpha; UIP, unusual interstitial
pneumonia; VILI, ventilation induced lung injury; YM1, chitinase-like protein 1.

surfactant has not been related to oxygen flux control, it has
been described to accelerate oxygen diffusion through a water
layer (Olmeda et al., 2010), reflecting the importance of lung
surfactant as potential oxygen flux regulator. The main function
of lung surfactant is to reduce surface tension in order to prevent
alveolar collapse during expiration and therefore stabilizing open
alveoli allowing oxygen to diffuse through the lung tissue to the
blood (Knudsen et al., 2017; Bates and Smith, 2018; Knudsen and
Ochs, 2018). Alveolar parenchyma is thin enough to allow oxygen
diffusion and is composed of a minimum of three components:
(1) alveolar epithelium, where alveolar epithelial type I cells
(AE1C) cover 60% of the surface with a small cytoplasm but
in a long and thin disposition, whereas alveolar type II cells
(AE2C) are in charge of synthesizing, secreting and regulating
surfactant composition; (2) both cells sit on a very thin basal
membrane; (3) to which a thin endothelium is attached on the
opposite side, creating a thin but extensive air-blood barrier. The
last step oxygen encounters in its way to the rest of the organs
is the erythrocyte membrane. Red blood cells present a rather
high cholesterol content, which comprises a 1:1 phospholipid to
cholesterol ratio (Zuniga-Hertz and Patel, 2019). In addition, it
has been described that oxygen diffusion through red blood cell
membranes is decreased in the presence of increased cholesterol
content (Buchwald et al., 2000). And therefore, reduction of
cholesterol content in those membranes (such as after the use
of Simvastatin for 12 weeks) improves oxygen diffusion rate
(Menchaca et al., 1998).

In the long way of oxygen through the human body this
review focuses on the first barrier, lung surfactant and how its
components may impact the normal function of the lung. There
is a particular interest in the relevance of the role of cholesterol,
and more specifically, in the long described potential relation
between surfactant protein C (SP-C) and cholesterol content in
lung surfactant. Here, we described the state of the art at the
molecular level, contrasting with data from animal models and
human patients, where lung mechanics and alveolar dynamics is
affected during SP-C deficiency related disease.

IS THERE A RELATIONSHIP BETWEEN
SP-C AND CHOLESTEROL?

Known Functions of SP-C
SP-C is the smallest (4.2 kDa) and most hydrophobic protein
in lung surfactant. It accounts for ∼1% of lung surfactant
mass, becoming the most abundant protein in molar terms.
SP-C appeared relatively late in evolution and its sequence
has remained highly conserved among species (Potter et al.,
2007). The lack of any known homologous protein and its
confined expression (Korfhagen et al., 1990), makes it a
specific marker associated with the differentiation of lung tissue,
and particularly of AE2C. SP-C exists as a 35 amino acid
transmembrane protein expressed as a larger precursor (21 kDa)
in AE2C cells. Structurally, it adopts a metastable α-helical
structure, although its high proportion of branched residues
makes it prone to adopt β-sheet structures and fibrillogenic
amyloid-like aggregates (Johansson, 2001; Johansson et al., 2004;
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Chou and Fasman, 2006), a common feature in several interstitial
lung diseases such as pulmonary fibrosis. SP-C greatly alters
lipid packing in membranes influencing lipid motion and lateral
distribution (Morrow et al., 1993; Dico et al., 1997). As described
before, this may also influence the availability of free volume
and free pockets, which may accommodate oxygen. However,
a direct study of SP-C content and oxygen diffusion through
surfactant membranes has not been assessed so far. SP-C also
increases membrane permeability (Plasencia et al., 2004; Parra
et al., 2011, 2013) and promotes interfacial lipid adsorption
and lipid transfer among different lipid structures (Creuwels
et al., 1993; Possmayer et al., 2001; Wang et al., 2005). SP-
C is responsible for the reversible formation of multilayered
stacks connected to the interfacial monolayer (Amrein et al.,
1997; Wang et al., 2005). Doing so, it allows the capture of
surfactant material presumably squeezed out during exhalation
(area compression) and surfactant re-spreading upon inhalation
(area expansion). In this process, protein palmitoylation seems
to be relevant to sustain protein association to the highly
compressed interfacial films reached during exhalation (Plasencia
et al., 2001; Lukovic et al., 2012).

SP-C-associated functions overlap in many cases with
surfactant protein B (SP-B) activity, at least when assayed
in different in vitro models. This includes facilitating lipid
adsorption (Creuwels et al., 1993; Possmayer et al., 2001; Wang
et al., 2005) into the air-liquid interface or generating 3D
structures that serve as a surfactant reservoir (Amrein et al.,
1997; Wang et al., 2005), which store newly secreted surfactant
complexes and surfactant molecules squeezed out from the
interface upon compression. In this context, SP-C could be
figured as a supporting molecule for SP-B function rather than
an element competent by itself to assist specific features of
the complex and dynamic surfactant functionality. Nevertheless,
considering the extensive processing of SP-C to its mature form,
its extremely conserved sequence and tissue-specific localization,
and the difficulties that a cell must overcome to produce and
store such a hydrophobic molecule, it is unlikely that this peptide
appeared evolutionarily just as an alternative strategy to assist
SP-B activities.

SP-C and Cholesterol Relationships in
the Lung Surfactant Context
Surfactant cholesterol represents a paradox regarding its origin
(Orgeig and Daniels, 2001; Lopez-Rodriguez et al., 2017). Some
works have suggested that it is supplied by the low and high-
density lipoproteins present in blood circulation (Olmeda et al.,
2017). However, other studies have failed to prove that circulating
cholesterol ends up forming part of surfactant complexes (Orgeig
and Daniels, 2001; Milos et al., 2016), suggesting that other
possible sources must be taken into account. It is remarkable
that cholesterol levels in surfactant are tightly regulated to ensure
a proper breathing function, and they are able to increase and
decrease extremely fast in response to changes in temperature
or breathing rate (Doyle et al., 1994; Orgeig et al., 2011). This
seems to imply that a cholesterol reservoir might exist in order
to provide cholesterol at fast rates when an increase is required.

A specific cell type, the lipofibroblast, has been suggested as a
reservoir of cholesterol (Besnard et al., 2009; Torday and Rehan,
2011), although further validation is required to confirm its
presence through different organisms and whether it constitutes
a surfactant cholesterol storage. AE2C cells are able of producing
cholesterol in peroxisomes (Batenburg and Haagsman, 1998),
but alveolar macrophages (AMs) also exhibit enzymes involved
in cholesterol synthesis (Baker et al., 2010b). Elucidating how
cholesterol levels are regulated in the context of surfactant
physiology is key to understand responses associated with
several respiratory pathologies, especially those characterized
by the incorporation in surfactant of abnormal cholesterol
amounts such as the acute respiratory distress syndrome (ARDS)
(Vockeroth et al., 2009) or pulmonary alveolar proteinosis (PAP).

The presence of cholesterol induces a marked segregation
of fluid phases in surfactant (Bernardino de la Serna et al.,
2004; Keating et al., 2007), and variations in cholesterol levels
are known to adapt surfactant structures extremely fast to
defined physiological situations (Doyle et al., 1994; Orgeig
and Daniels, 2001). This evidence highlights cholesterol as a
structural modulator of surfactant membranes and films. Besides,
mechanisms involved in cholesterol sensing and mobilization
may be evolutionary conserved to regulate cholesterol levels in
surfactant. On the other hand, some studies suggest that SP-C
might be involved in cholesterol regulation (Gómez-Gil et al.,
2009a,b; Baumgart et al., 2010; Roldan et al., 2016, 2017), which
could also be linked to the role of SP-C in lung homeostasis.
Therefore, the role of SP-C in cholesterol mobilization and
dynamics could be tracked back to a combined effect of protein-
and cholesterol-induced alterations on membrane structure. In
fact, an increase in cholesterol motion was described upon
incorporation of SP-C into lung surfactant-derived vesicles
(Roldan et al., 2016), an effect potentially associated to SP-C-
promoted membrane-fragmenting effect (Parra et al., 2011, 2013;
Roldan et al., 2016). Besides, SP-C and cholesterol have been also
related to modulating membrane architecture responding in a
coordinate manner to temperature changes (Roldan et al., 2017),
suggesting that SP-C is involved in cholesterol mobilization
by altering membrane structure (Roldan et al., 2016). In
addition, taking into account that SP-C supplementation
restores the functionality of cholesterol-containing films in a
dynamic context (Gómez-Gil et al., 2009b; Baumgart et al.,
2010), we could hypothesize that SP-C could be related to
the compositional refinement of lung surfactant films from
less surface-active molecules, involving cholesterol and other
unsaturated phospholipids. Interestingly, observations made by
Leonenko et al. (2007) could support this hypothesis. The
incorporation of increasing amounts of cholesterol in a surfactant
clinical preparation resulted in structurally and functionally
different interfacial films (Gunasekara et al., 2005; Leonenko
et al., 2007). Compression-expansion isotherms allowed the
determination of lipid loss from the interfacial film upon
compression, which were considerably low for physiological
cholesterol amounts, permitting the re-establishment of a
functional interfacial film (Gunasekara et al., 2005; Leonenko
et al., 2007). Shifting that to SP-C function, lipid loss occurring
for physiological cholesterol levels could be associated with a
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SP-C-dependent cholesterol refinement, in which SP-C-induced
lipid reorganizations could be involved. However, lipid loss
increased substantially for cholesterol concentrations beyond
physiological levels, showing a markedly different film structure
and impaired functionality (Gunasekara et al., 2005; Leonenko
et al., 2007). For these supra-physiological cholesterol levels, the
SP-C amount present in a clinical surfactant preparation like the
one tested in this study (∼1 wt%), could be likely insufficient
to overcome cholesterol impairing effects and the irreversible
film collapse. Supplementation of these films with different SP-
C amounts would provide valuable information to confirm SP-C
effects on cholesterol mobilization.

SP-C/cholesterol relationships might be involved in surfactant
refinement with a homeostatic purpose in the lung. Both,
cholesterol-loaded vesicles, as well as their combination with SP-
C, led to a higher lipid engulfment by AMs (Ruwisch et al., 2020).
Increased cholesterol content, however, seemed to increase lipid
uptake by AMs regardless of the presence of SP-C. Vesicle size
and membrane fluidity can affect lipid uptake by AMs (Justice
et al., 2014), and thus, the combined effect of cholesterol and
SP-C on membrane structure and fluidity (Roldan et al., 2016,
2017) is a factor that must be taken into account. The study of
the transcriptional response of MH-S cells to lipid administration
revealed that genes associated to lipid metabolism and cholesterol
transport were altered upon lipid uptake. Changes in gene
expression appear to depend on lipid composition, including
the presence or absence of SP-C and/or cholesterol. However,
specific effects of cholesterol and SP-C require a thorough and
extensive analysis, which also warrant a deeper exploration of the
poorly studied pathways for cholesterol synthesis, degradation
and mobilization in AMs.

SP-C could then be considered as a pivotal molecule linking
cholesterol and lipid homeostasis, lung immunity, lung surfactant
biophysical activity and potentially oxygen diffusion regulation,
which would explain its particular features, lung tissue specific
localization and sequence conservation along evolution. Several
questions remain to be answered, including how SP-C effects
are coordinated with SP-B function to modulate surfactant
activity; which are the molecular mechanisms and SP-C structural
determinants involved in membrane reorganizations and how
cholesterol levels in surfactant are sensed and regulated regarding
SP-C function by both AE2C and AMs. Future research assessing
these questions would constitute an essential piece to understand
the molecular mechanisms ruling lung surfactant behavior and
its implication in respiratory pathologies, generating valuable
information useful to improve the current clinical preparations
applied for surfactant replacement therapy.

SP-C, CHOLESTEROL AND ALVEOLAR
MICROMECHANICS

SP-C Deficiency Predisposes to Alveolar
Instability
According to LaPlace law, the intra-alveolar pressure of and
idealized isotropic alveolus is inversely proportional to its radius.

Therefore, at end-expiration, the breathing stage in which
the intra-alveolar volume reaches its minimum (ignoring rare
occurring phenomena like Pendelluft; Tabuchi et al., 2016), the
intra-alveolar pressure reaches its maximum. Under physiologic
conditions, end-expiratory pressure is homogenously distributed
among the alveoli and surface tension is low enough preventing
alveolar collapse. To maintain alveolar pressure throughout
the lung constant, surface tension also changes accordingly to
alveolar radius (Figure 1).

However, during expiration the surfactant film collapses and
thus, end-expiratory surface tension may drastically increase
and lead to higher intra-alveolar pressures as well as a rather
heterogeneous inter-alveolar pressure distribution. As the intra-
alveolar pressure is per se higher in small-radius alveoli (relative
to its larger neighbors) by its anatomy, this may increase the
likelihood of alveolar collapse. Hence, it has been described
that the result of surfactant dysfunction in a murine model of
AE2C apoptosis is ductal airspace over distension together with
alveolar collapse (Mouded et al., 2009). On the one hand, this
may explain the increased vulnerability of small subpleural alveoli
to surfactant dysfunction. On the other hand, points toward
an essential role of alveolar collapse in fibrotic remodeling, as
collapsing alveoli was proposed to be the initiating hotspot in
pulmonary fibrogenesis (Mai et al., 2016; Knudsen et al., 2017;
Petroulia et al., 2018).

Alveolar Collapse – The Springboard for
Lung Mechanic Impairment
The central role of alveolar collapse in the development of
diseases such as lung fibrosis is not a novel finding and was
already stated by Myers and Katzenstein (1988). Moreover,
alveolar collapse induced by surfactant dysfunction has also been
well described in the field of ARDS and acute lung injury (ALI)
(Bates and Smith, 2018; Nieman G.F. et al., 2018). Although
the increase in surface tension and alveolar instability is much
more pronounced in ARDS (Smith et al., 2017; Autilio and
Pérez-Gil, 2018) than under SP-C deficiency, leading to a rather
acute than chronic respiratory pathology, ARDS as well as rather
chronic lung fibrosis may be associated with a similar underlying
disease mechanism. This is highlighted by the fact that alveolar
collapse, respiratory distress and concomitant ventilation in-
homogeneities haven been demonstrated to be present in patients
from both diseases (Todd et al., 2015; Al-Saiedy et al., 2018;
Autilio and Pérez-Gil, 2018; Petroulia et al., 2018). Moreover,
pulmonary fibrosis is also seen in later disease stage of ARDS
patients, resembling an aberrant pulmonary repair mechanism
in response to lung injury (Hasan et al., 2017), which has also
been stated to be the major mechanism of disease in idiopathic
pulmonary fibrosis (IPF) patients (Snijder et al., 2019).

Atelectrauma and volutrauma are two mechanism
contributing to tissue injury in ARDS (Figure 2). In the
injured lung, repetitive alveolar collapse (atelectrauma) is caused
by increased surface tension (induced by various agents). During
the inspiration phase, the transpulmonary pressure gradient
increases until the alveolar pressure of the closed (de-recruited)
alveolus is exceeded and is re-opened (recruited). If the maximal

Frontiers in Physiology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 386

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00386 September 12, 2020 Time: 10:35 # 5

Sehlmeyer et al. SP-C/Cholesterol Relationships in Alveoli

FIGURE 1 | Schematic model of Young-La Place law in the acinar airways. The inner pressure of an idealized spherical alveolus is defined by the Young-La Place law
as 1P = 2γ/r. Therefore, alveoli with small radius (alveolus 1) comprise higher internal pressures in relation to alveoli with larger radius (alveolus 2). Accordingly,
alveolus 1 would tend to collapse toward alveolus 2 under the absence of a functional surfactant film, what permits alveolar size heterogeneity (left panel). However,
in the presence of surfactant, surface tension is reduced as intermolecular forces are homogenously generated between water-water- and water-air phase, avoiding
bending of the air-liquid interface and avoiding alveolar collapse (right panel). LS, lung surfactant.

generated transpulmonary pressure fails to exceed the intra-
alveolar pressure, the alveolus remains collapsed and its alveolar
walls stay adjacent to each other. This model is supported
by findings of Bachofen and Schürch, who described alveolar
wall stretching and ductal airspace over distension on electron
microscopic images resulting from surfactant inactivation-
induced alveolar collapse (Bachofen and Schürch, 2001).
Considering the mechanism of atelectrauma, the alveolar lining
fluid should not be neglected. Weibel and Gil first described the
alveolar lining lavage as an interfacial film and sub-interfacial
liquid reservoir defined as the hypophase (Weibel and Gil, 1968).
As the alveolus deflates during expiration, its defining septa
start to fold. The folding septal branches are continuously filled
with this alveolar lining fluid during expiration (Rühl et al.,
2019). Under increased surface tensions the alveolus is further
de-recruited leading to more pronounced septal folding and
enhanced inter-septal liquid accumulation. During inspiration,
an increasing transpulmonary pressure is generated by the
respiratory muscles (Mead et al., 1970; Gattinoni et al., 2017). As
soon as this pressure exceeds the end-expiratory intra-alveolar
pressure, a bubble of air is forced through the lining fluid
between the septal folds in order increase alveolar volume by
forcing septal de-folding. During this process mechanical axial
shear stresses are generated with the air-bubble moving toward
the lining fluid, leading to injurious deformation of AEC2 (Bilek
et al., 2003). Of note, the cell damaging force vectors strongly
increase with rising surface tension at the interface of the lining
fluid, as the speed of the bubble is highly reduced (Cassidy
et al., 1999; Ghadiali and Gaver, 2008). Meanwhile, AEC2
injury impairs the epithelial functional integrity resulting in

accumulation of alveolar edema and reduced rates of surfactant
production. Thus, starting a vicious cycle leading to continuously
increasing surface tension and epithelial injury, resulting in
AEC2 hyperplasia and fibrosis (Fehrenbach, 2001; Mouded et al.,
2009; Sisson et al., 2010) (Figure 2).

In the healthy parenchymal lung architecture, tissue stress
and stretch occurring during breathing are homogenously
distributed. However, if certain alveolar regions become
atelectatic, homogenous ventilation is significantly impaired.
Alveolar collapse leads to microscale air redistribution, resulting
in an inhomogeneous alveolar size distribution before inspiration
(Mead et al., 1970). According to alveolar anatomy, single septal
walls usually build the parenchymal border of two neighboring
alveoli, also known as alveolar interdependence (Knudsen and
Ochs, 2018). If one of these alveoli collapses, septal distortion
of the adjacent alveoli leads to rising mechanical stresses (Mead
et al., 1970). Hence, atelectatic alveoli act as stress concentrators
and amplify the applied stresses and strains of their neighbors
(Bates and Smith, 2018). During inspiration and increasing
lung volumes, this phenomenon becomes even more relevant:
transpulmonary pressures generated during inspiration will
initially rather lead to over inflation of the already enlarged,
distorted alveoli than reopening the atelectatic ones. This causes
further alveolar over distension during inspiration. During
over distension, an alveolus is first fully de-folded before its
wall is stretched. Therefore, the effective septal deformation
(= strain) strongly depends on the inspired/applied tidal volume
and the alveolar “baseline” shape during resting expiratory
position. Usually mechanical stretch primarily occurs under
rather high pressures reaching over the upper inflection
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FIGURE 2 | Surfactant dysfunction related atelectrauma and volutrauma.
According to the La Place law (Figure 1) surfactant dysfunction predisposes
alveoli for collapse. Alveolar micro-atelectasis causes septal distortion of
neighboring alveoli due septal, interalveolar architectural dependence.
Thereby the collapsed alveolus acts as a stress concentrator leading to
injurious mechanical deformation of neighboring epithelial cells (blue-red color
transition) during the breathing cycle (volutrauma). Meanwhile, every time a
bubble of air is forced into the atelectatic, lining-fluid filled alveolus during
inspiration, as a result of increasing transpulmonary pressures, extremely
damaging shear stresses are generated on the epithelium (atelectrauma),
further potentiating damage of the alveolar epithelium (Bates and Smith, 2018;
Rühl et al., 2019).

point of the pulmonary pressure-volume curve (Knudsen and
Ochs, 2018). However, when inflating a healthy lung beyond
total lung capacity (TLC) of 80% the extracellular matrix
components of the alveolar septa, collagen and elastin, become
the major stress bearing components, thus mechanical forces
start acting on the septal interstitium (Bachofen et al., 1987;
Knudsen and Ochs, 2018). Moreover, single vulnerable alveoli
in proximity to stress concentrators, may already get stretched
at physiologic low tidal volumes (Mead et al., 1970). In line with
this, Kollisch-Singule et al. (2015) found pulmonary injury in
surfactant depleted pig lungs already at physiologic tidal volumes
(6 ml/kg bodyweight), while pigs with maintained surfactant
function, required a drastically higher degree of volutrauma
to induce relevant lung injury (30 ml/kg bodyweight). In the
ARDS lung atelectrauma and volutrauma act synergistically
to induce vascular leakage. Smith et al. (2013, 2017) elegantly
demonstrated that initial epithelial injury by atelectrauma
predisposes septal walls for volutrauma, leading to significant
leakage of the gas-blood barrier. Ventilated mice lungs only
developed high concentrations of BALF protein levels, an
indicator for gas-blood barrier integrity, when ventilated at PEEP
(positive end-expiratory pressure) of 0cmH2O (atelectrauma)
in combination with mid or high tidal volumes (volutrauma)
(see Figure 2). Meanwhile, neither atelectrauma nor volutrauma
alone were sufficient to induce pulmonary edema (Smith

et al., 2017). As alveolar epithelial cell (AEC) damage has been
demonstrated to precede edema formation (Rühl et al., 2019), the
absence of alveolar edema in the SP-C deficient lung (Ruwisch
et al., 2020), does not rule out the relevance of this protein
in preventing alveolar collapse and alveolar over distension,
which commonly lead to microscale tissue injuries. Interestingly,
hyperplastic AEC2 are present in a global SP-C knock out
(KO) mouse model, which may resemble a reaction to chronic
mechanical stress (Glasser et al., 2003; Ruwisch et al., 2020).
Moreover, surfactant dysfunction in a chronic murine model
of AEC injury impressively demonstrated the long-term effects
of chronic airway instability to cause microarchitectural air re-
distribution resulting in an emphysema-like phenotype, which
is characterized by collapsed alveoli and enlarged alveolar ducts
(Mouded et al., 2009). Furthermore, repetitive insults during
dynamic strain have been related to more harmful properties
on AEC integrity than constant high static strains (Nieman G.
et al., 2018). This may further emphasize the relevance of
airway instabilities, in the absence of volutrauma, in a rather
chronic setting, as occurs in IPF patients, where recruitment/de-
recruitment cycles take place over a long period of time. In line
with this, “velcro-crackles” have been often described to precede
computer tomographic changes in IPF lungs. Indeed, they are
considered the auditory correlate of damaging energy-rich
alveolar re-openings during inspiration, supporting the clinical
relevance of impaired alveolar micromechanics in fibrosing lung
diseases (Vyshedskiy et al., 2009).

At the lung mechanical macroscale level, alveolar collapse and
surfactant dysfunction exhibit notable influence on the lung’s
viscoelastic properties. Collapsed airways require high amounts
of energy to be reopened, while dysfunctional surfactant increases
the hysteresis effect in inflating lungs by rising surface tension.
This effect results in parenchymal stiffening, increasing levels
of pulmonary tissue elastance (Smith et al., 2013; Birkelbach
et al., 2015). During inspiration, the energy applied is rather
dissipated creating injurious axial force vectors on the airway
epithelium than being stored in the septal elastic fiber network.
Therefore, pulmonary tissue damping rises accordingly. In line
with this, data from our group demonstrated a significant
increase in tissue damping and tissue elastance in 10 weeks
old SP-C deficient mice in contrast to age-matched control
mice, supporting the concept of alveolar collapse as an initial
trigger (Ruwisch et al., 2020). During aging, redistribution of
air as well as ECM (Extracellular Matrix) remodeling may alter
lung mechanics consistent with findings of Glasser et al. (2001,
2003). Indeed, this work emphasized aberrant tissue hysteresivity
(the quotient of energy dissipative forces and lung elastance)
at low PEEP, a condition where alveoli are prone to collapse.
At those low lung volumes, surfactant becomes the major
defining factor of pulmonary breathing mechanics (Bachofen
et al., 1987). Moreover, pressure-volume loops demonstrated an
increased pulmonary hysteresis, which also reflects increased
energy dissipation during inflation of the lung. Gattinoni
et al. (2017) already suggested this energy to be potentially
harmful for the pulmonary tissue, as it is not reused for
elastic recoil properties. Persistent septal micro injury may be,
in turn, a relevant factor for altered AEC2 biology, aberrant
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wound repair, pulmonary inflammation and interstitial fibrotic
remodeling. Phenomena described in a number of children
suffering interstitial lung disease (chILD), who showed reduced
or absent levels of mature SP-C (Cong et al., 2017), as described
in the next sections.

Establishing Injurious Mechanical Stress
as a Driving Factor for Fibrogenesis
Under healthy conditions and homogenously distributed lung
stress, plasma membrane injury of AEC is normally seen. Indeed,
AEC are highly capable of Ca2+ and lysosome dependent
repair mechanisms as well as membrane folds for preventing
cellular damage (Cong et al., 2017). However, lysosomal stress
as seen in Hermansky-Pudlack Syndrome (HPS) patients may
impair cellular repair, favoring profibrotic wound repair and the
development of unusual interstitial pneumonia (UIP) (Ozyilmaz
et al., 2013; Kook et al., 2016). Moreover, if high parenchymal
stress leads to plasma membrane defects of more than 1 µm,
aberrant AEC wound repair cascades are induced (Cong et al.,
2017). Very high strains induced by pressure above 40cmH2O
have been shown to be sufficient to cause membrane blebbing and
cellular apoptosis (Dreyfuss et al., 1999).

Typically, AEC injury response includes signaling of several
mechano-transduction pathways including the transforming
growth factor β1 (TGF-β1), Wnt β-catenin, sonic hedgehog
(Shh), and the Notch-midkine signaling pathways as well as
induction of endoplasmic reticulum (ER) stress. Interestingly,
all these pathways have been interlinked with the induction of
profibrotic genes, epithelial-to-mesenchymal transition (EMT)
or increased ECM deposition. Moreover, ER stress is known to
compromise the secretory capacity of AEC2, impairing surfactant
metabolism, which initiates a vicious cycle of alveolar instability
and stress-mediated AEC injury (Cong et al., 2017). In a murine
model of chloride acid (HCl) induced surfactant depletion,
impaired lung mechanics was characterized by increased tissue
elastance. This was followed by an increased expression of various
mesenchymal markers, such as α-smooth muscle actin (α-SMA)
and vimentin in AEC2, whereas the expression of epithelial
cell markers, including pro-SP-B, were reduced (Cabrera-Benítez
et al., 2012; Mao et al., 2017). Consequently, EMT may be a potent
second hit even further compromising: (1) surfactant function
and; (2) the regenerative capacitiy of the pulmonary epithelium
further directing the damage response toward fibrosis. TGF-β1
is expressed by both AECs as well as resident inflammatory
cells like AM (Saito et al., 2018). In addition, a large pool of
latent-inactive TGF-β1 is located as a complex with latency
associated peptide 1 (LAP-1) and latency TGF-β1 binding
protein-1 (LTP-1) in the ECM (Hinz and Suki, 2016; Saito
et al., 2018). In the healthy lung, during inspiration, ECM fiber
stretching is not sufficient to release active TGF-β1 from its
inhibitory binding complex. However, as soon as pulmonary
tissue stiffening occurs, interstitial fibroblasts are primed toward
myofibroblast differentiation by expressing contractile actin-
myosin elements (Zhou et al., 2013). This drastically increases
the likelihood of TGF-β1 release upon parenchymal strain,
as myofibroblast are able to bind LAP-1 via αV-integrins
(Hinz, 2012; Hinz and Suki, 2016). Interestingly, increased

epithelial injury resulted in increased expression of epithelial
αVß6-integrins, further potentiating the release of TGF-β1 by
mechano-transduction (Sheppard, 2015). In line with this, Froese
et al. (2016) showed increased expression and release of TGF-
β1 in fibrotic IPF lungs, which are characterized by parenchymal
stiffening. Importantly the pressures generated by Froese and
his team rather reflected gradients comparable to pressure
induced by spontaneous breathing than high unphysiological
gradients, emphasizing the role of spontaneous breathing as
a relevant source of mechanical stress-released active TGF-β1
(Hinz and Suki, 2016). Nevertheless, the role of non-fibrotic but
rather collapse-induced parenchymal stiffening in the context
of extracellular (EC) TGF-β1 release to date has not been
clarified. Finally, TGF-β1 overexpressing mice have been shown
to develop surfactant dysfunction and high surface tension
(Lopez-Rodriguez et al., 2016) including down-regulation of SP-
C expression, by interfering with its transcription factor activity.
In this context, considering the afore mentioned section, it
becomes clear that an EC TGF-β1 pool bears the potential of
an additional devastating loop by further compromising lung
mechanics, potentiating epithelial injury.

Inflammatory Response Under Impaired
Lung Mechanics – Where Sterols Come
Into Play
The role of inflammation and inflammatory cells in fibrogenesis
has been controversial over the last decades. Although anti-
inflammatory medications have produced devastating clinical
results in a IPF clinical trials (Raghu et al., 2006; Idiopathic
Pulmonary Fibrosis Clinical Research Network et al., 2012),
the role of immune cells, like AMs, in lung fibrogenesis and
pulmonary tissue repair has been repetitively underscored (Wynn
and Barron, 2010; Wynn et al., 2013; Romero et al., 2014; Jin et al.,
2018; Smigiel and Parks, 2018; Puttur et al., 2019). A promising
link between mechanical stretch and inflammatory response may
be the release of adenosine triphosphate (ATP) (Cong et al., 2017;
Hasan et al., 2017). Physiologically, mechanical stretch of AEC1
transmits the release of ATP via P2XR7, functioning as a stretch
sensor (Patel et al., 2005; Mishra et al., 2011). However, under
prolonged alveolar injury concentrations of ATP and its related
nucleotides sharply rise, finally overwhelming the degradative
enzymatic machinery. Hence, levels of ATP continuously stay
high in the early exudative stage of ARDS until the expression of
its degrading ecto-enzyme catches up (Hasan et al., 2017). Under
these circumstances, ATP and its metabolites act as damage
associated molecular patterns (DAMPs). This results in pro-
inflammatory signaling on the one hand, but interestingly also in
the induction of various profibrotic pathways on the other hand.
In fact, high levels of EC ATP enhanced TGF-β1 expression and
deposition of collagen 1 and fibronectin in fibroblasts via P2XR7
signaling in vitro (Wang et al., 2003; Qu et al., 2009). Meanwhile,
ATP signaling via the same receptor enhanced the release of
profibrotic tissue-metalloprotease inhibitor 1 (TIMP1), which
attenuates the function of ECM-degrading enzymes, resulting
in increased interstitial amounts of ECM, a hallmark of lung
fibrosis (Gu and Wiley, 2006). Interestingly, elevated levels
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of TIMP1 have also been observed in bronchoalveolar lavage
fluid (BALF) of IPF patients, whereas expression of Timp1 was
induced in 10 weeks old SP-C deficient mice (Beeh et al., 2003).
In addition, both Ca2+ and ATP are well-known stimulating
agents of surfactant secretion (Voyno-Yasenetskaya et al., 1991;
Dico et al., 1997; Patel et al., 2005; Dietl et al., 2012). This may
reflect a counteracting response, where surfactant secretion may
be enhanced during high release of ATP and Ca2+, during injury.

Alternatively activated alveolar macrophages (aaAMs) are
mainly characterized by expression of resistin-like alpha (Relm-
α), chitinase-like proteins (YM1), inducible nitric oxide synthase
(NOS-2) or arginase 1 (Arg-1) (Wynn and Barron, 2010).
Their profibrotic potential derives primarily through expression
of TGF-β1 and the activation of latent TGF-β1 via matrix-
metalloproteases (e.g., MMP-9) (Xing et al., 1997; Schmid-Kotsas
et al., 1999; Cameron et al., 2001; Karlmark et al., 2009; Lin
et al., 2009). Moreover, aaAMs haven been shown in topographic
proximity to myofibroblasts, being highly capable of collagen
secretion (Ramm et al., 1998; Leicester et al., 2004; Thompson
et al., 2008). Finally, aaAMs prime the alveolar micromilieu
toward fibrosis by secreting various pro-fibrotic cytokines
including IL-4, IL-10, IL-13 and the rather pro-inflammatory
cytokine IL-1β. Of note, induced expression of YM1, a chitinase-
like protein 1 (Bargagli et al., 2007; Terèelj et al., 2009; Wynn
and Barron, 2010), but also in SP-C deficient mice (Glasser et al.,
2003). Increased accumulation of macrophages with induced
TGF-β1 expression was seen in bleomycin-challenged SP-C
deficient mice in areas with significant parenchymal distortion.
This further emphasizes the link between mechanical stress and
macrophage regulation (Lawson et al., 2005). Interestingly, this
misbalance between classical and alternative differentiation was
not solely dependent on SP-C deficiency, but also specific to the
genetic 129/Sv6 background. The 129/Sv6 strain is characterized
by an increased dietary cholesterol accumulation and has been
described to develop foamy, lipid-laden macrophages with
highly induced YM1 expression with age (Jolley et al., 1999;
Hoenerhoff et al., 2006). Curiously, SP-C deficient mice as
well as patients suffering mutant SP-C derived interstitial lung
diseases (ILDs) related to mutations of SP-C, showed similar
foamy macrophages in BALF and tissue as well as abundant
cholesterol clefts (Glasser et al., 2003; Hamvas et al., 2004; Abou
Taam et al., 2009; Ruwisch et al., 2020). Taken together, this
suggests a SP-C deficiency and cholesterol induced axis resulting
in dysregulated macrophage metabolism and in misbalanced
alternative differentiation (Figure 3). Cholesterol clefts are
present in aging 129/Sv4 mice (Hoenerhoff et al., 2006), SP-C
deficient mice (Glasser et al., 2003; Ruwisch et al., 2020) or aaAMs
in human herpes virus (HHV)-induced lung fibrosis (Mora et al.,
2006). Hence, this may be a potential morphological biomarker
of dysregulated alternative activation and an indicator for lung
fibrosis. However, the exact interplay between cholesterol and
SP-C and macrophage regulation has not been yet elucidated.
Nevertheless, studies from our group, suggested SP-C to be
necessary for maintaining cholesterol homeostasis in an AM cell
line (MHS cells) (Ruwisch et al., 2020). In line with this, Romero
and colleagues recently proposed the profibrotic potential of a
lipid related paracrine axis between macrophages and epithelial

cells (Romero et al., 2014). Interestingly, their team demonstrated
the presence of foamy, lipid-laden macrophages overexpressing
YM1 and TGF-β1 in bleomycin induced lung injury, which
has been already associated with reduced expression of the
Sftpc and Sftpb gene (Schmidt et al., 2004; Lutz et al., 2015).
Romero’s team further showed oxidized phospholipids to be
another crucial inductor of foam cell formation and alternative
differentiation. The role of oxidized lipid species to induce foam
cell formation in macrophages has been extensively studied
in the field of atherosclerosis (Ertunc and Hotamisligil, 2016).
Circulatory macrophages located in atherosclerotic plaques are
frequently challenged with oxidized low-density lipoprotein
(LDL), oxysterols or cholesterol. These lipids are endocytosed
via various receptors, including CD36 and scavenger receptors.
Accumulation of toxic lipid species decompensates the metabolic
capacity of those macrophages, leading to cholesterol cleft
formation and induction of necrotic factor kappa beta (NFκB)
related cellular stress pathways. One central element in the so
called “metaflammatory” process. This is the formation of the
NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)
inflammasome, resulting in the production of pro-inflammatory
cytokines including IL-1β and IL-18 (Duewell et al., 2010; Ramji
and Davies, 2015). Importantly, macrophage derived IL-1β and
inflammasome activation have been referred to as key features in
various forms of lung fibrosis including IPF (Zhang et al., 1993;
Kolb et al., 2001; Gasse et al., 2007; Wynn and Barron, 2010;
Eldridge et al., 2017).

In addition, cholesterol-induced “metaflammation” in
macrophages may also be not only important in development of
atherosclerosis but seems to be also highly relevant in the lung.
For example, AMs are central elements in surfactant catabolism
(comprehensively reviewed in Lopez-Rodriguez et al., 2017), and
are continuously challenged with various phospho- and neutral
lipids. Therefore, knocking down cholesterol transporters,
such as ATP binding cassette transporter A1 (ABCA1) and
G1 (ABCG1) leads to impaired cellular cholesterol efflux and
cholesterol accumulation. In addition, those animal models
showed respiratory distress, impaired surfactant metabolism
and cholesterol cleft containing, lipid-laden AMs (Thomassen
et al., 2007; Baker et al., 2010a; Chai et al., 2017; Fessler,
2017). Moreover, impaired reverse cholesterol transport in
apolipoprotein E (ApoE) and apolipoprotein A1 (ApoA1)
deficient mice was also linked to increased pulmonary oxidative
stress and inflammation (in ApoE KO mice) as well as to foam
cell formation and lung fibrogenesis (in ApoA1 KO mice)
(Yao et al., 2016). Interestingly, surfactant function as well as
metabolic integrity of AM was restored after application of
cyclodextrin, a cholesterol sequestering-drug, underlining the
injurious potential of cholesterol for surfactant function and
pulmonary lipid homeostasis (Gunasekara et al., 2010). The
finding of cholesterol clefts and lipid laden macrophages in
patients with SP-C mutations suggests impaired cholesterol
homeostasis to be of relevance for development of lung disease
in these patients (Hamvas et al., 2004; Abou Taam et al., 2009;
Mechri et al., 2010; Cottin and Cordier, 2011; Litao et al., 2017).

Cholesterol overloaded macrophages exhibited an increased
Toll-like receptor 4 (TLR-4) signaling mediated immune

Frontiers in Physiology | www.frontiersin.org 8 May 2020 | Volume 11 | Article 386

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00386 September 12, 2020 Time: 10:35 # 9

Sehlmeyer et al. SP-C/Cholesterol Relationships in Alveoli

FIGURE 3 | Schematic role of SP-C in pulmonary metaflammation. (Left panel) comparison between the status of AE1C in the presence (healthy alveolus, top
panel) or absence (damaged alveolus, bottom panel) of SP-C. (Right panel: 1) Priming signal: TLR4 signaling is abrogated under the presence of mature SP-C.
On the one hand, SP-C interferes with the complex formation of LBP and CD14 potentially attenuating TLR4 mediated NLPR3 priming in response DAMP/PAMP
stimuli. This ant-inflammatory effect may be further potentiated by the N-terminal segment of SP-C transferring TLR4 activators either into neighboring phospholipid
microsomes or directly to the cytoplasmic compartment of the macrophage (Chaby et al., 2005; Garcia-Verdugo et al., 2009). Moreover, maintained surfactant
homoeostasis/surfactant catabolism counteracts the accumulation/formation of oxidized lipid species and cholesterol clefts on the one hand, and minimizes atelec-
and volutrauma on the other hand (Ruwisch et al., 2020), likely diminishing the release of DAMPS like ATP on the other hand. Together this prevents the buildup of
inflammasome oligomerizing stimuli, what may at least partly explain the aberrant inflammatory response of SP-C KO mice to various inflammatory stimuli in contrast
to WT mice (Glasser et al., 2008, 2013a). (Right panel: 2) Activating signal: NLRP3 inflammasome comprises an initial NFκβ related priming phase, preceding a
secondary activation signal (Swanson et al., 2019): In the first step various proinflammatory DAMPS (oxysterols, oxidized PL species) or PAMPS (LPS) activate
macrophages via TLR-4 signaling via an either LPS binding protein (LBP)/CD14 dependent or independent way (Chaby et al., 2005; Garcia-Verdugo et al., 2009).
Thereby, LBP facilitates the binding of e.g., LPS to CD14, what accelerates LPS related TLR4 signaling. TLR4 signaling in turn drives NFκB-mediated expression of
NLRP3, pro-IL-β1 and proIL-18 (Priming phase) (Gasse et al., 2007; Swanson et al., 2019). In the second step, multiple potential hits including PAMPS like
extracellular ATP (Mariathasan et al., 2006; Swanson et al., 2019), intracellular cholesterol clefts (Ertunc and Hotamisligil, 2016), oxysterols and oxidized phospholipid
derived mitochondrial oxidative stress (Fessler, 2017; Manon et al., 2018) induce previously synthetized NLRP3 to form oligomers with caspase 1 and ASC leading
to mature inflammasome formation. Thereby, increased level of extracellular ATP may be derived from mechanically stressed AEC1 (Hasan et al., 2017), leading to an
inflammasome activating K+ efflux via P2X7R. Meanwhile, SP-C deficiency related dysfunctional surfactant catabolism and surfactant dysfunction may favor the
generation of oxidized PL species and the formation of cholesterol clefts (Fessler and Summer, 2016; Ruwisch et al., 2020). Likewise, these cholesterol crystals
cause lysosomal stress, which in turn resembles another potent driving factor of inflammasome formation via induction of a K+ efflux. Finally, the active NLRP3
inflammasome converts inactive proIL-1β and proIL-18 into their active form IL-1β and IL-18. IL-1β promotes fibrotic remodeling (Gasse et al., 2007; Cassel et al.,
2008; Wree et al., 2014; Lv et al., 2018). Meanwhile, another effect of accumulation of injurious lipid species inside the macrophages may also prime their hosts
toward a profibrotic aaAM-phenotype (Romero et al., 2014) via induction of several aaAM related genes including, chitinase-like-3 (YM1), which has also been
described to form electron dense crystals in various alternative activation of macrophages-disease models (Hoenerhoff et al., 2006; Mora et al., 2006), what may
result in a profibrotic feed-forward loop (Smigiel and Parks, 2018).

response as well as elevated expression levels of IL-1β,
emphasizing a potential role of NLRP3 inflammasome activation
in pulmonary macrophages (Fessler, 2017). The NLRP3-
inflammasome consists of three elements including the NLRP3,
procaspase 1 and the apoptosis speck-like protein (ASC)
containing a caspase recruitment domain (CARD), which links
NLRP3 with procaspase 1 (Robert et al., 2016). In order to
generate full activation of the inflammasome complex usually two
independent signals are needed (Figure 3): (1) a NFκβ priming
signal TLR-4 signaling [enhanced by lipopolysaccharide (LPS)
or oxidized phospholipid species] or the presence of cholesterol

crystals (Bauernfeind et al., 2009; Ertunc and Hotamisligil, 2016;
Fessler and Summer, 2016; Nakayama, 2018; Saito et al., 2019)
and; (2) purinergic signaling as may result from mechanical stress
induced AEC1 injury (Hasan et al., 2017). Elevated levels of ATP
have been found in BALF of patients with lung fibrosis, further
supporting the idea of EC ATP as a potential inflammasome co-
activator (Riteau et al., 2010). Hence, the NLRP3 inflammasome
may resemble a crucial link between impaired lung mechanics
and aberrant lipid metabolism in fibrosing lung diseases.
Interestingly, IPF patients have been described to have elevated
levels of unsaturated PC, a PC variant which highly susceptible
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for oxidative stress (Fessler and Summer, 2016). In combination
with the fact, that IPF occurs predominantly in the elderly and
has been interlinked with cigarette smoking, mitochondrial stress
and cellular senescence, factors driving the generation of reactive
oxygen species (ROS). Thus, the IPF lung appears as a hotspot
for lipid oxidation (Lederer and Martinez, 2018). Elevated levels
of ROS and increased levels of cholesterol in surfactant are also
present in bleomycin-induced lung fibrosis (Allawzi et al., 2019),
highlighting the relevance of ROS, surfactant oxidation and foam
cell formation in fibrogenesis. This is further supported by the
presence foamy, Oil-Red-O positive cells in BALF of patients
not only with Sftpc mutations, but also in patients with sporadic
interstitial fibrosis (Basset-Léobon et al., 2010).

Nevertheless, SP-C deficiency may play a distinct role in foam
cell formation. Not only is SP-C crucial for stabilizing cholesterol-
containing surfactant films (Gómez-Gil et al., 2009a,b) and
maintaining physiologic mechanical lung properties but also
it seems to interfere with TLR-4 signaling. In vitro studies
demonstrated that SP-C attenuates LPS induced cytokine
production via TLR-4 signaling in a macrophage cell line,
suggesting SP-C to play a role in innate immunity (Augusto
et al., 2003). Thereby, SP-C seems to compromise the affinity of
TLR-4 to LPS via a complex interplay with CD14 (Chaby et al.,
2005). However, Garcia-Verdugo et al. (2009) also proposed a
CD14 independent mechanism, by which the transfer of LPS
into liposomes mediated by the N-terminal SP-C segment would
prevent LPS binding to TLR4. This results in a reduced cytokine
production upon LPS stimulation (Garcia-Verdugo et al., 2009).
In line with these findings, SP-C KO mice exhibited an increased
inflammatory response upon LPS challenge characterized by
increased macrophage accumulation and higher expression levels
of IL-1β, IL-6 and tumor necrosis factor alpha (TNF-α) (Glasser
et al., 2013a). Interestingly, SP-C containing phospholipid
vesicles reduced TLR-4 signaling in these mice. Noteworthy,
this immunomodulatory role of SP-C seems to not to be
restricted to LPS and bacteria-induced inflammation, as SP-C
also demonstrated an anti-inflammatory role under pathogen-
free conditions (Jin et al., 2018). Taken all together, this suggest
that SP-C may not only orchestrate the activation of TLR-4 in an
infectious setting, but it also has an impact on TLR-4 signaling
in macrophages induced by oxidized surfactant lipids, a question
that, to date, remains unclear.

Assuming this hypothesis (Figure 3), SP-C deficiency could
predispose to TLR-4 activation by various oxidized cholesterol
and PL species as well as their uptake. This results in
proinflammatory signaling and NLRP3 inflammasome activation
in macrophages (Ertunc and Hotamisligil, 2016). Impaired lung
mechanics induced by SP-C deficiency may further promote
inflammasome activation by ATP release and at the same time,
lead to accelerated surfactant aggregate conversion (Veldhuizen
et al., 1996, 1997; Vazquez De Anda et al., 2000; Maitra
et al., 2002). Reduced amounts of surface-tension lowering
large aggregates (LA) of surfactant, resulting from pronounced
aggregate conversion to inactive small aggregates (SA), were
accompanied by larger amounts of ROS susceptible phospholipid
species (Fessler and Summer, 2016). Increased uptake of
SA by AMs in combination with SP-C disrupted cholesterol

metabolism, which may partly explain the presence of foamy
macrophages in the SP-C deficient lung and lung diseases related
to SP-C mutated forms (Glasser et al., 2003; Hamvas et al., 2004;
Lawson et al., 2004; Stevens et al., 2005; Henderson et al., 2013;
Liptzin et al., 2015; Salerno et al., 2016).

The relevance of inflammasome activation and IL-1β

signaling in fibrotic parenchyma remodeling has been shown
for silica induced- ILDs (Cassel et al., 2008), bleomycin-
induced lung fibrosis (Gasse et al., 2007) and various other
organ systems (Vilaysane et al., 2010; Wree et al., 2014;
Lv et al., 2018). NLRP3 associated IL-1β release mediates
NFκβ activation via IL-1R1/myeloid differentiation primary
response 88 (MyD88) related signal transduction in fibroblasts.
This results in a misbalance between TIMP-1 and matrix-
metalloprotease 9 (MMP-9) and 13 (MMP-13) promoting
interstitial collagen deposition and fibrosis (So et al., 2007;
Ertunc and Hotamisligil, 2016). Furthermore, genetic deletion of
NLRP3-inflammasome associated genes in a ventilated-induced
fibrosis model resulted in decreased rates of stretch-induced
EMT, which was accompanied by ameliorated fibrotic lung
remodeling (Lv et al., 2018).

SP-C, CHOLESTEROL AND LUNG
MECHANICS. EVIDENCES FROM
ANIMAL MODELS AND HUMAN
PATIENTS

All the molecular and cellular mechanisms explained in the
previous sections impact the health and mechanical properties
of the lungs. We described in this section the results of deleting
the expression or mutating SP-C in animal models (Table 1). In
addition, we present here evidences from ILD patients, described
to have different mutations in SP-C (Table 2).

SP-C Modifications in Animal Models
Glasser et al. (2001, 2003) reported the generation of SP-C null
mutant mice deficient in the expression of Sftpc in a Swiss
black background. SP-C deficient mice were viable at birth and
did grow and reproduce normally with only mild alterations
in lung mechanics. In addition, in vitro studies of the SP-C
deficient derived surfactant proved reduced stability of small
bubbles but normal activity at normal bubble size using a
captive bubble surfactometer (Glasser et al., 2001, 2003). In
contrast, in 129/Sv background, SP-C deficient mice presented
with severe morphological changes including enlargement of
alveoli, AE2C hyperplasia and interstitial thickening together
with a peribronchiolar and perivascular monocyte infiltration in
some animals. Although areas of thickened alveolar septa stained
positive for alpha-smooth muscle actin and blue in trichrome
staining, septa were thinner in regions of airspace enlargement
and total lung hydroxyproline remained unaffected (Glasser et al.,
2003; Ruwisch et al., 2020). Importantly, lung structure was
normal at birth, but emphysema and remodeling developed
upon aging suggesting a process of ongoing injury and repair.
Investigation of pulmonary mechanics exhibited increased lung
volumes at higher pressures as well as increased hysteresivity
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TABLE 1 | SP-C related mouse models.

Mouse model General results Lung morphology BALF Lung
mechanics

SP-C null mutants

Glasser et al., 2001 Generation of SP-C null
mutant mice, Swiss black
background

Viable, normal growth and
reproducibility
Reduced stability of small
bubbles but normal activity
at standard bubble size

Indistinguishable from
controls

Reduced
hysteresitivity at
each
end-expiratory
pressure

Glasser et al., 2003 SP-C null mutant mice,
129/Sv background

Reduced health and
fecundity

From 2 months: enlargement
of alveoli, irregular alveolar
septation, multifocal cellular
infiltrates. From 6 month:
type 2 cell hyperplasia,
interstitial thickening,
peribronchiolar and
perivascular
monocytic infiltration
Intracellular lipid inclusions
in macrophages and AE2C,
cystoplasmic crystals
in macrophages

Increased macrophage
number

Increased lung
volumes at
higher
pressures,
increased
hysteresivity,
increased airway
resistance and
tissue damping

2nd hit models

Lawson et al., 2005 Intratracheal bleomycin
application, Swiss black
background

Higher mortality and weight
loss, more pronounced
fibrosis and delayed
resolution

Increased number of
inflammatory cells, fibrotic
foci (collagen, fibroblasts,
destroyed septa), enhanced
collagen deposition;
delayed resolution of fibrosis

Increased neutrophil counts

Madala et al., 2011 Bleomycin and rapamycin,
S129S6 background

Preventive and therapeutic
treatment with rapamycin
failed to reduce bleomycin
induced tissue inflammation
and collagen deposition

Glasser et al., 2008 Instillation of Pseudomonas
aeruginosa, 129S6 and
FVB/N strain

Reduced survival of
2-week-old mice, increased
bacterial colony counts in
2-week-old 129S6 but not
in FVB/N mice

Increased inflammation,
tissue and airway infiltrates
(neutrophils and enlarged
macrophages with
cytoplasmic inclusions)

Increased total cell counts:
neutrophils; large foamy
macrophages

Glasser et al., 2009 Respiratory syncytial virus
infection, 129S6 and FVB/N

Higher susceptibility to RSV
and delayed resolution of
induced changes in lung
morphology in both strains

More extensive interstitial
thickening, air space
consolidation, goblet cell
hyperplasia.

Increased total cell counts:
polymorphonuclear
leucocytes, lymphocytes,
enlarged foamy
mononuclear cells

Glasser et al., 2013b RSV infection, expression of
SP-C inducible by
doxycycline (on 129S6;
55.3/Sftpc-/-)

SP-C expression reduced
RSV-induced tissue
inflammation and
inflammatory cell counts
and increased viral
clearance

Diffuse alveolar and
interstitial infiltrates in
doxycycline untreated mice,
reduced inflammation in
doxycycline treated mice

Reduced total cell counts
and percentage of
neutrophil counts in
doxycycline -treated mice

Glasser et al., 2013a LPS challenge, 129S6
background

More intense airway and
airspace inflammation,
delayed resolution of tissue
inflammation

More intense cellular
infiltration, perivascular
edema, fragmentation of
alveolar septa; residual
inflammation 30 days post
LPS exposure

Increased total cell counts
without LPS challenge
(reduced by application of
Survanta)

Models with incomplete proSP-C processing

Conkright et al., 2002 Expression of SP-C24−57

HA, FVB/N
Delayed/arrested lung
development and lethal
neonatal respiratory distress
syndrome

(Continued)
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TABLE 1 | Continued

Mouse model General results Lung morphology BALF Lung
mechanics

Bridges et al., 2003 Deletion of exon 4 Not viable Fetal lung tissue: disrupted
lung organogenesis,
branching morphogenesis,
dose-dependent cell
cytotoxicity

Lawson et al., 2011 Conditional expression of
L188Q upon doxycycline;
intratracheal bleomycin

No spontaneous pulmonary
fibrosis; more extensive
fibrosis in response to
bleomycin

Increased apoptosis, total
lung collagen, higher
number of myofibroblasts
after bleomycin

Cell numbers unaltered in
bleomycin treated WT and
mutant mice

More reduced
static lung
compliance in
bleomycin
treated L188Q
mice than
challenged
controls

Nureki et al., 2018 Conditional mouse mutant,
constitutive and inducible
I73T expression (by
Tamoxifen), C57BL/6J

Increased early mortality,
spontaneous acute
alveolitis, parenchymal
injury, fibrotic remodeling

Constitutive I73T
expression: diffuse
parenchymal lung
remodeling; disrupted
embryonic lung architecture
Induced expression: acute,
diffuse lung injury after
tamoxifen, partial recovery
but development of
fibrotic phenotype

Constitutive expression:
age-dependent increases in
BALF cellularity
induced expression:
increased total cell counts,
early macrophage
accumulation, followed by
polymorphonuclear cells
and eosinophilia, milder
increase in total
lymphocytes

Induced
expression:
restrictive
pattern (PV
loops),
decreased static
compliance

Venosa et al., 2019 Conditional mouse mutant,
I73T expression induced by
Tamoxifen; Local and i.v
application of clodronate

Multiphasic and multicellular
alveolitis; local clodronate
application reduced survival,
i.v. clodronate improved
survival and reduced
eosinophilia

Early reduction of
macrophages, followed by
accumulation of immature
macrophages, neutrophils
and eosinophils

Katzen et al., 2019 Constitutive and conditional
C121G mutant inducible by
tamoxifen, C57BL/6J

Constitutive expression:
lethal postnatal respiratory
failure
Conditional expression in
adult mice: dose-dependent
morbidity and mortality,
multiphasic polycellular
alveolitis with increased
BALF cell counts

Constitutive: distorted
architecture, enlarged
airspaces, interstitial
widening, inflammatory
infiltrates,
proteinaceous fluid
conditional expression:
acute diffuse lung injury,
partial recovery but
spontaneous fibrotic
lung remodeling

Conditional expression:
polycellular alveolitis,
increased total cell counts,
early macrophage increase,
followed by neutrophils and
eosinophils, milder increase
in lymphocytes

Restrictive
pattern: decline
in static lung
compliance

Jin et al., 2018 Sterile injury model
(surfactant protein
C-thymidine kinase) induced
by ganciclovir in presence
(SPC-TK) and absence
(SPC-TK/SPC-KO) of SP-C
expression

Increased injury and higher
mortality in absence than in
presence of SP-C
expression

Diffuse alveolar damage
qualitatively similar but more
pronounced in
SPC-TK/SPC-KO

Total cell counts unaltered in
SPC-TK/SPC-KO and
SPC-TK, higher neutrophils
and lymphocyte cell counts
in SPC-TK/SPC-KO

in SP-C deficient mice. Abnormal intracellular lipid inclusions
and crystals were observed in macrophages and AE2C (Glasser
et al., 2001, 2003). While phospholipid content was normal in
SP-C deficient lungs on the swiss black background, it was 2-
fold elevated in 129/Sv background. In addition, lung mechanics
showed increased lung volume at high pressure, tissue damping
and hysteresivity in 129Sv background. Together, both studies
show strain specific influences on the severity of the pulmonary
phenotype (Glasser et al., 2001, 2003). Interestingly, as mentioned
before, the 129Sv strain demonstrates an increased absorption

of dietary cholesterol (Jolley et al., 1999) which might also
contribute to the strain specific phenotype in Sftpc null mice.

Further investigations included additional hits aggravating the
effects of SP-C deficiency (Lawson et al., 2005; Glasser et al.,
2008, 2009, 2013a,b). Intratracheal application of bleomycin led
to higher mortality, more pronounced weight loss, increased
neutrophil counts and enhanced collagen deposition in SP-
C deficient mice compared to controls. Increased fibrosis
as additionally indicated by morphological parameters went
along with a delayed resolution of bleomycin-induced fibrosis
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TABLE 2 | Lung mechanics and BALF cells data from patients.

Variant BALF cells Lung mechanics Reference

L188Q TLC 52%, DLCo 51% (male patient, onset 20 years);
FVC 21% (female patient, onset 17 years)

Thomas et al., 2002

I73T 85% M, 12% L, 3% N Tredano et al., 2004

R167Q 84% M, 11% L, 5% N

I73T 92% M, 7% N, 1% L, 0% E FRC: 69% (8 months), 77% (13 years)
DLCo: 25% (8 months), 51% (13 years)

Abou Taam et al., 2009

I73T 30% M, 60% N, 10% L, 0% E (Moraxella catarrhalis) FRC: 138% (36 months), DLCo: 111% (33 months),
128% (36 months), 156% (42 months)

I73T 82% M, 13% N, 3% L, 2% E FRC: 120% (26 months), 128% (35 months), 73% (39
months) DLCo: 98% (26 months), 89% (35 months),
164% (39 months)

I73T 84% M, 5% N, 11% L, 0% E

I73T 93% M, 1% N, 6% L, 0% E FRC 112% (26 months), DLCo: 87% (26 months)

15x I73T, 1x V39A,
c.325- 1G > A,
c.424delC, c.435G > C
(Q145H), L188P,
C189Y, L194P

70 ± 5% M, 8 ± 2% L, 18 ± 4% N, total: 379 ± 56 × 103 82% patients with SpO2 testing <95% Thouvenin et al., 2010

I73T 40% M, 57% N, 3% L (mother 32 years) FVC 62%, TLC 77%, FEV1 83%, RV 108%, DLCo
33%,
PaO2 room air 11.3 kPa, PaO2 after 10 min exercise
(35W): 7.3 kPa

Cottin et al., 2011

74% M, 20% N, 4% L, 2% E (child, 3 months)

G100S BAL cell count (100.000 cells/ml): 2.4, 90% M, 7.5% L,
2.5% N, 0% E, CD4/CD8 ratio: 1,7

VC 72.2%, FEV1 84.1% DLCo: 69.3% Ono et al., 2011

BAL cell count (100.000 cells/ml): 2, 86% M, 12% L, 1%
N, 1% E, CD4/CD8 ratio: 1.6

VC 85%, FEV1 90.3% DLCo: not available

BAL cell count (100.000 cells/ml): 1.4, 91% M, 5.8% L,
2.4% N, 0.8% E; CD4/CD8 ratio: 1.5

VC 96.6%, FEV1 85% DLCo: 65.2%

BAL cell count(100.000 cells/ml): 1.21,: 54.2% M, 10.1%
L, 34.5% N, 1.2% E, CD4/CD8 ratio: 0.25

VC 42.5%, FEV1 92.9% DLCo: 38.5%

BAL cell count (100.000 cells/ml): 3.85, 80% M, 17.3% L,
1.1% N, 1.6% E, CD4/CD8 ratio: 0.6 (time diagnosis)

VC 65.3%, FEV1 83.3% DLCo: not available (at time
diagnosis)

Y104H 91% M, 8% L, 1% N FVC 85%, DLCo 89%, oxygen saturation 97% to 95%
(with exercise)

Kuse et al., 2013

I73T 16 years: 90% FVC, 86% TLC, 96% DLCo, 96% VO2

max; 37 years: FVC 65%, TLC 91%, DLCo 42%,
VO2max: 5

Avital et al., 2014

I38F 14 years: FVC 77%, TLC 90%, DLCo 108%, VO2 max
78%; 32 years: FVC 94%, TLC 96%, DLCo 82%,
VO2max 69%, high breathing reserve: 115 l/min,
saturation 100% at peak exercise

I73T 7 years: FVC 59%, TLC 95% DLCo not available,
VO2max 80%, 28 years: FVC 46%, TLC 48%, DLCo
58%, VO2max 79%

I73T 8 years: FVC 69%, TLC 100%, DLCo 107%, VO2 max
83%, 29 years: FVC 102%, TLC 106%, DLCo 95%,
VO2max 83%

V39L 16 years: FVC 88%, TLC 95%, DLCo 109%, VO2max
93%; 37 years: 94% FVC, 96% TLC, 82% DLCo, 91%
VO2max

C121F Infiltration of granulocytes and alveolar macrophages van Hoorn et al., 2014

I73T 4 months: 88% oxygen saturation, respiratory rate 85,
VT

6.0 ml/kg, VE 507 ml/min/kg, Crs 2.96 ml/cmH2O,
Crs/kg 0.76/kg, VC 92 ml(52%), TLC 196 ml(74%),
FRC
128 ml(110%), RV 104 ml(99%), VmaxFRC 416 ml/s
(263%), FEF75 410 ml/s (207%), FEF85 295 ml/s
(258%)

Hevroni et al., 2015

(Continued)
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TABLE 2 | Continued

Variant BALF cells Lung mechanics Reference

I38F 3.3 months: 91% oxygen saturation, respiratory rate 77,
VT 6.3 ml/kg, VE 484 ml/min/kg, Crs 2.26 ml/cmH2O,
Crs/kg 0.59/kg, VC 28 ml(69%), TLC 211 ml(94%), FRC
138 ml(125%), RV 108 ml(109%), VmaxFRC 343 ml/s
(245%), FEF75 579 ml/s (334%), FEF85 477 ml/s (476%)

I73T Normal cytology and lipid index lipid-laden alveolar
macrophages

Salerno et al., 2016

L188E Normal lung volumes, diffusion capacity 18% of
predicted

Chibbar et al., 2004

E66K Increased cellularity with foamy mononuclear cell Stevens et al., 2005

Summary of data from patients suffering fibrosis related to a SP-C mutation. Changes in BALF cells and lung mechanics are summarized for the available data. Crs,
respiratory system compliance; PaO2, partial pressure of oxygen; RV, residual volume; VC, vital capacity; VE, minute ventilation; VT, tidal volume; VO2 max, maximal
oxygen uptake; FEF75, Forced expiratory flow at 75% of forced vital capacity; FEF85, Forced expiratory flow at 85% of forced vital capacity. M, macrophage; N, neutrophil;
L, lymphocyte; E, eosinophil.

(Lawson et al., 2005). Preventive and therapeutic treatment
with rapamycin failed to reduce bleomycin induced tissue
inflammation and collagen deposition in SP-C deficiency
(Madala et al., 2011). Instillation of Pseudomonas aeruginosa
increased pulmonary injury and bacterial colony counts in SP-
C deficient mice compared to control mice. As for unchallenged
SP-C deficient mice, sensitivity to Pseudomonas challenge
seemed to be strain specific since bacterial cell counts were
enhanced in 129/Sv6 strain but unaltered in age-matched
FVB/N mice. Further, neutrophils and enlarged macrophages
with cytoplasmic inclusions were observed upon Pseudomonas
aeruginosa challenge in absence of SP-C whereby the phagocytic
index of macrophages in the SP-C deficient mouse model
was reduced (Glasser et al., 2008). Similarly, SP-C deficient
mice were more susceptible to respiratory syncytial virus
(RSV) infection and resolution of RSV-induced alterations in
lung morphology was delayed. Mice exhibited more extensive
interstitial thickening, air space consolidation and goblet cell
hyperplasia. Polymorphonuclear and macrophage cell counts
were increased in BALF obtained from SP-C deficient mice as
well as viral titers in lung homogenate (Glasser et al., 2008, 2009).
In contrast to challenge with Pseudomonas aeruginosa, increased
susceptibility of SP-C deficient mice to RSV was not restricted to
129/Sv6 strain but also observed in FVB/N background (Glasser
et al., 2008, 2009). However, induction of SP-C expression in
compound transgenic mice could reduce RSV-induced tissue
inflammation and inflammatory cell counts (Glasser et al.,
2013b). LPS-challenged mice develop more intense airway and
airspace inflammation in the absence of SP-C. While control
mice demonstrate a rapid resolution of LPS-induced cellular
and tissue inflammation, inflammation persisted longer in SP-
C deficient mice. Cell culture experiments further demonstrated
increased LPS-induced cytokine expression of SP-C deficient
AE2C compared to those from controls (Glasser et al., 2013b).

The model studied by Glasser et al. (2001, 2008) represents
a null mutant mouse model without sufficient Sftpc expression
leading to the absence of SP-C and proSP-C. Other models
include mutations that cause aberrant accumulation of SP-C
precursor proteins. Deletion of exon 4 (g.1728 G3A), a mutation

detected in human SFTPC, resulted in a truncated form of SP-C
(SP-C1exon4) and incomplete pro-protein processing. Affected
mice exhibited disrupted lung organogenesis, branching
morphogenesis and expression-depended epithelial cell
cytotoxicity (Bridges et al., 2003). Further, transgenic mice
that express the mutant L188Q SP-C did not develop pulmonary
fibrosis spontaneously, despite induction of ER stress, but
developed a more extensive pulmonary fibrosis with reduced
compliance and enhanced AEC apoptosis in response to
bleomycin and authors suggested alveolar epithelial ER stress to
play a crucial role in enhanced disease development (Lawson
et al., 2011). Recently, Nureki et al. (2018) developed a
conditional mouse mutant in which the expression of I73T, the
most common SFTPC mutation found in human patients, is
regulated by tamoxifen. In their study, expression of the human
mutation induced a spontaneous acute alveolitis, followed by
parenchymal injury and fibrotic remodeling in mice (Nureki
et al., 2018). Tamoxifen controlled expression of isoleucin
to threonine substitution at codon 73 in Sftpc (I73T) results
in misprocessed proSP-C and leads to increased mortality at
day 7 to 14 and acute diffuse parenchymal lung injury with
polycellular alveolitis. An early influx of polymorphonuclear
cells and macrophages was followed by eosinophilia. Partial
recovery from acute injury was followed by aberrant remodeling,
collagen deposition and AE2C cell hyperplasia and mechanical
abnormalities. Pressure-volume curves displayed a restrictive
pattern at 4 to 6 weeks post-tamoxifen and static compliance
was reduced at week 4 but rose with resolution of inflammation.
However, the fibrotic phenotype was preceded by TGF-β1
(Nureki et al., 2018). A detailed analysis of the same model
showed an early reduction of macrophages, followed by an
accumulation of immature macrophages and neutrophils before
onset of eosinophilia at week 2 in combination with shift from
proinflammatory to anti-inflammatory/profibrotic activation
state in mRNA BALF cell analysis (Venosa et al., 2019). Total
inspiratory capacity and static compliance were reduced in
transgenic mice following the induction of the mutant protein
whereas tissue damping was elevated, all together suggesting
an enhanced tissue stiffness. While local clodronate application
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diminishing resident macrophages led to reduced survival,
intravenous application of clodronate decreased accumulation
of immature macrophages, improved survival and reduced
eosinophilia (Venosa et al., 2019). Expression of another mutant
protein, C121G, resulted in postnatal respiratory failure due to
disrupted lung morphogenesis with enlargement of airspaces and
interstitial widening in mice constitutively expressing C121G
whereas a tamoxifen-mediated expression in adult mice induced
acute parenchymal lung injury and a multiphasic polycellular
alveolitis with increased BALF cell counts. Similar to the I73T
model, an early increase of macrophages and neutrophils was
followed by a later influx of eosinophils. Overall, lung mechanics
showed a restrictive impairment indicated by a decline in static
lung compliance (Katzen et al., 2019).

SP-C Mutations in Human Patients
Since Nogee et al. (2001) described the first case of a Sftpc
mutation in an infant girl and her mother diagnosed with ILD
(Nogee et al., 2001), several studies have been conducted to
provide a link between variants in SFTPC and the manifestation
of ILDs in adults or children. Since previous groups have already
performed systematic reviews describing detected mutations,
clinical parameters and radiographic as well as histological
findings (Ono et al., 2011; Litao et al., 2017), we decided to
focus on the work that reported either BALF cell counting or
data on lung mechanics in their study (Table 2). In general,
lung mechanics display a restrictive pattern (Thomas et al.,
2002; Ono et al., 2011; Kuse et al., 2013; Avital et al., 2014;
Hevroni et al., 2015). In particular, vital capacity, forced vital
capacity were markedly reduced in some patients (Ono et al.,
2011; Kuse et al., 2013; Avital et al., 2014; Hevroni et al., 2015)
whereas mild reductions in forced expiratory pressure in 1 s
(FEV1) (Cottin et al., 2011; Ono et al., 2011) were attributable
to a generally reduced lung volume and not indicative of an
obstruction. However, the reported residual volumes were high
to normal (Cottin et al., 2011; Hevroni et al., 2015). Changes in
functional residual capacity (FRC) were unspecific. While some
patients demonstrated a reduced FRC, other studies reported
elevated or normal values. Gas exchange as indicated by diffusing
capacity for carbon monoxide exhibited distinct impairment
in most (Thomas et al., 2002; Abou Taam et al., 2009; Cottin
et al., 2011; Ono et al., 2011; Avital et al., 2014) resulting in a
generally reduced oxygen (Thouvenin et al., 2010; Hevroni et al.,
2015). However, Abou Taam and coworkers reported normal
and increased diffusion capacity for carbon monoxide (DLCO)
in two patients (Abou Taam et al., 2009) and oxygenation was
sufficient in another patient reported by Avital et al. (2014).
Hence, heterogeneity of the disease is also reflected in lung
function. While the majority of studies linked SFTPC mutations
to the familial form of pulmonary fibrosis, genetic mutations
in SFTPC were also detected in a subset of patients suffering
from sporadic IPF (Lawson et al., 2004). Interestingly, sporadic
patients also demonstrate with mixed pattern as reported by
Cottin et al. (2011). Indeed, they reported a case of combined
pulmonary fibrosis and emphysema in a patient with the most
common I73T mutation.

As explained before, pulmonary fibrosis and especially IPF
was linked to an AE2C dysfunction and increased ER stress
response due to aberrant protein accumulation. Hyperplastic
AE2C in histological examination are a common finding (Nogee
et al., 2001; Chibbar et al., 2004; Hamvas et al., 2004; Cameron
et al., 2005; Stevens et al., 2005; Soraisham et al., 2006;
Mechri et al., 2010; Thouvenin et al., 2010; Citti et al., 2013;
Litao et al., 2017; Park et al., 2018) and enhanced ER stress
is a widely acknowledged pathomechanism in IPF (Korfei
et al., 2008). However, reduced transcription of SFTPC due
to promotor variant were associated with neonatal respiratory
distress syndrome in late preterm infants (Wambach et al., 2010)
and SP-C was absent in BALF samples of a family with chronic
ILDs, together with reduced pro-SP-C staining, though no
mutation was identified (Amin et al., 2001). While the majority
of mutations leads to the onset of ILDs already in childhood
(Chibbar et al., 2004; Hamvas et al., 2004; Tredano et al., 2004;
Rosen and Waltz, 2005; Stevens et al., 2005; Bullard and Nogee,
2007; Guillot et al., 2009; Mechri et al., 2010; Cottin et al., 2011;
Citti et al., 2013; Henderson et al., 2013; Hepping et al., 2013;
Turcu et al., 2013; Akimoto et al., 2014; Avital et al., 2014; van
Hoorn et al., 2014; Kroner et al., 2015; Liptzin et al., 2015; Peca
et al., 2015; Griese et al., 2016; Liu et al., 2016; Hayasaka et al.,
2018) a subset of variants results in a manifestation in later child-
or adulthood (Lawson et al., 2004; Setoguchi et al., 2006; Markart
et al., 2007; van Moorsel et al., 2010; Cottin et al., 2011; Ono et al.,
2011; Kuse et al., 2013) suggesting a chronic process.

Besides to AE2C hyperplasia, cholesterol clefts are frequently
detected on lung biopsy in context of an SFTPC mutations
(Hamvas et al., 2004; Abou Taam et al., 2009; Mechri et al., 2010;
Cottin et al., 2011; Litao et al., 2017) or on lung specimen from
ILD patients lacking SP-C (Amin et al., 2001). Macrophages were
often described as foamy (Lawson et al., 2004; Stevens et al.,
2005; Henderson et al., 2013) or lipid-laden (Liptzin et al., 2015;
Salerno et al., 2016). When analyzing BALF cells, the majority
of cells usually consists of macrophages (Abou Taam et al., 2009;
Thouvenin et al., 2010; Ono et al., 2011). However, some samples
showed a marked increase in neutrophil (Thouvenin et al., 2010;
Cottin et al., 2011) or lymphocyte (Ono et al., 2011) cell counting
in the absence of an infection. Whether immune cell infiltration
occurs in reaction to abnormal histological findings or rather
causes alterations remains unclear in view of single time point
studies in human patients. In addition, a detailed characterization
of macrophages was not provided by the majority of studies, but
different activation could have distinct effects on fibrogenesis.

LUNG FIBROSIS AND CHOLESTEROL

Recently, we have described the accumulation of cholesterol
crystals in AMs of SP-C deficient animals (Ruwisch et al.,
2020). We also showed similar crystals accumulated in the
lung of an IPF patient. Looking through the literature this
feature is commonly described (Glasser et al., 2003; Hoenerhoff
et al., 2006; Mora et al., 2006) but no further investigated.
Therefore, the role of cholesterol or accumulation of cholesterol
in the form of crystals in cells is yet not well understood
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and often overlooked. As explained before, cholesterol is also
involved in many processes apart from regulating membrane
biophysical properties. Not many experimental data are available
in the context of the influence of cholesterol in lung diseases.
However, in the clinic settings, it is not surprising that
certain patients are suffering from comorbidities that should
be treated such as hypercholesterolemia. In fact, it is known
that IPF increases the risk of heart diseases. Thus, it is
common for IPF patients to receive medications aimed at
reducing cardiovascular risk, including statins, which lower
cholesterol levels (Kreuter et al., 2018). Data in this regard
is still quite controversial. While, 3-hydroxy-3-methylglutaryl-
coenzyme A reductase inhibitors (statins) aggravated pulmonary
fibrosis in mice by increased production of mitochondrial
ROS and NLRP3 inflammasome activation in macrophages.
Statins, as potent inhibitors of the endogenous cholesterol
synthesis have been associated with a lower decline in FVC in
a cohort of untreated IPF patients (Kreuter et al., 2018). In
line with this, diet induced systemic hyperlipidemia resulted in
altered surfactant phospholipid composition leading to increased
alveolar collapsibility, providing evidence that pulmonary
lipid homeostasis is strongly related to the blood circulation
(Baritussio et al., 1980). As approximately 83% of surfactant
cholesterol has been stated to be derived from blood plasma
(Turley et al., 1981), statins could contribute in preventing
deleterious high levels of cholesterol in surfactant films, providing
surfactant film stability and avoiding alveolar collapse. In
addition, evaluation of lung function showed that patients
receiving statin therapy and Ofev had less decline in pulmonary
capacity, compared with a placebo (Kreuter et al., 2018). The
yardstick that researchers used was patients’ annual rate of decline
in forced vital capacity (FVC). The results suggested that statins
do not diminish Ofev’s effectiveness (Kreuter et al., 2018).

Statins may also have an anti-inflammatory effect in the
lung (Liao and Laufs, 2004; Jain and Ridker, 2005), thus a
multifactorial mechanism may play an important role in their
use. In conclusion, more experimental evidence is needed to
support the use of cholesterol lowering drugs for the treatment of

lung diseases such as fibrosis. In addition, the role of cholesterol
and SP-C has to be further described and understood in order to
develop new therapies. However, there is already promising data
in this regard, opening a new pathway to target.

CONCLUSION

Summing up there are various potential either direct or indirect
mechanisms how SP-C is able to interfere and modulate
fibrogenesis in the lung. While SP-C deficiency mediated
surfactant dysfunction and impaired lung mechanics are likely
contributors in the generation of local mechanical stresses and
strains, its biophysical interplay with cholesterol on the one
hand, and its modulation of TLR-4 signaling on the other
hand, highlights SP-C as a key element in a complex profibrotic
network. Thereby SP-C deficiency comes into play not only in
animal models, but also in patients with familial and non-familial
forms of lung fibrosis such as IPF. Further research is needed in
order to determine the potential of cholesterol lowering drugs as
treatment or combined with anti-fibrotic drugs to find a better
therapy for IPF patients.
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