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Abstract

Outbreaks of infectious diseases require a rapid response from policy makers. The choice of an adequate level of response
relies upon available knowledge of the spatial and temporal parameters governing pathogen spread, affecting, amongst
others, the predicted severity of the epidemic. Yet, when a new pathogen is introduced into an alien environment, such
information is often lacking or of no use, and epidemiological parameters must be estimated from the first observations of
the epidemic. This poses a challenge to epidemiologists: how quickly can the parameters of an emerging disease be
estimated? How soon can the future progress of the epidemic be reliably predicted? We investigate these issues using a
unique, spatially and temporally resolved dataset for the invasion of a plant disease, Asiatic citrus canker in urban Miami. We
use epidemiological models, Bayesian Markov-chain Monte Carlo, and advanced spatial statistical methods to analyse rates
and extent of spread of the disease. A rich and complex epidemic behaviour is revealed. The spatial scale of spread is
approximately constant over time and can be estimated rapidly with great precision (although the evidence for long-range
transmission is inconclusive). In contrast, the rate of infection is characterised by strong monthly fluctuations that we
associate with extreme weather events. Uninformed predictions from the early stages of the epidemic, assuming complete
ignorance of the future environmental drivers, fail because of the unpredictable variability of the infection rate. Conversely,
predictions improve dramatically if we assume prior knowledge of either the main environmental trend, or the main
environmental events. A contrast emerges between the high detail attained by modelling in the spatiotemporal description
of the epidemic and the bottleneck imposed on epidemic prediction by the limits of meteorological predictability. We argue
that identifying such bottlenecks will be a fundamental step in future modelling of weather-driven epidemics.
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Introduction

Emerging epidemics are of increasing topical interest [1]. These

emerging diseases pose new threats to human health [2–6],

livestock [7–11] and crop production [12–14], as well as wildlife

populations [15–17] and natural plant communities [18–21]. Such

epidemics occur most frequently when exotic pathogens are

introduced into new environments or when novel strains arise that

enable a pathogen to grow in a previously unfavourable

environment [1].

One of the principal challenges in managing emerging

epidemics is to predict the likely future development of disease

in order to assess the severity of the invasion prior to instituting

control measures. However, prediction is difficult when little is

known about how a new pathogen is likely to continue to spread in

an alien environment, and frequently the underlying epidemio-

logical parameters that influence the spread of disease are not

known. Even when there is prior knowledge of a pathogen, as for

example foot and mouth epidemics in the UK in 1967, 1982 and

2001, different pathogen strains, changes in farming practices or

environmental conditions can markedly change the extent and

speed of disease spread through the landscape [7,9,22,23].

Whereas, for example, the spread of foot and mouth disease in

the 1967 epidemic was relatively localised, occurring mainly by

aerial dispersal [24], changes in the frequency and distance of

livestock movements over large distances [25] led to a strikingly,

topologically different epidemic in 2001 [7,9]. Numerous other

examples have been reported of variability in epidemic outcome

upon reintroductions of emerging pathogens. This is problematic,

because rapid decisions about the introduction of disease control

strategies often have to be made early in the course of an emerging

epidemic. Sometimes, options are clear. Immediate control aimed

at eradication is initiated as soon as an outbreak is detected for

certain statutory diseases. Actions against the H1N1-2009

pandemic influenza worldwide [26], foot and mouth disease in

the UK [8], and Asian soya bean rust in several US states [27] are
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good examples amongst others of human, livestock and crop

diseases that attract an immediate response.

For other diseases, policy makers and disease control authorities

may wish to wait to assess the likely severity of the infestation in

order to consider the likely costs and benefits of control; delay may

also be necessary to mobilise resources. Informed decision making

invokes a series of questions about how to make inferences about

the emerging epidemic: what type of epidemiological model can be

used to characterise the epidemic and to predict future spread of

disease? Where are the susceptible hosts and how are they

distributed in the landscape? How is disease transmitted and what

are the values of the epidemiological parameters for transmission

and dispersal? How soon during the course of the epidemic can the

parameters be reliably estimated? How should we take account of

uncertainty? Here, we examine these questions using a combina-

tion of Bayesian statistical inference and a unique, spatially- and

temporally-resolved data-set [28] for the invasion of a plant

disease, Asiatic citrus canker, in Florida.

Asiatic citrus canker (ACC) is caused by the bacterium

Xanthomonas axonopodis pv. citri (Xac). The pathogen can infect a

very wide range of citrus and related hosts, causing defoliation,

fruit blemishing and severe losses in quality and quantity of yield

[29]. The pathogen is principally spread by wind-blown rain

[29,30]. It is not vector borne, other than by anthropomorphic

transmission on machinery [29], but the spread is known to be

exacerbated by leaf damage inflicted by the Asian leaf miner

Phyllocnistis citrella that first appeared in Florida in 1993. There

have been several independent introductions of Xac into Florida up

until the mid 1990s [31]. The pathogen was originally introduced

on imported seedlings from Japan in 1910 and declared

eradicated, after extensive removal of infected and exposed

susceptible trees, in 1933. An outbreak in Manatee county on

the west coast of Florida was thought to have been eradicated in

the 1980s, but ACC reoccurred within two years from surviving

inoculum. A new infestation of ACC from a genetically different

strain of Xac was reported in urban Miami on residential trees in

1995. The disease spread rapidly through Eastern and central

Florida [29], triggering an extensive eradication programme,

involving compulsory removal of ,7M commercial, .4M nursery

and 0.8M residential trees around infected sites, at a cost of .$1

billion. The eradication scheme was halted in 2006 following

widespread dispersal of inoculum during several severe hurricanes

in 2004 and the eventual determination that the disease had

become endemic rendering eradication unattainable [32].

Here we focus on the early stage of the epidemic in urban

Miami and, in particular, how to estimate the inherent spatial and

temporal scales of the epidemic in order to predict the future

course of an epidemic in a spatially heterogeneous urban setting.

Infection on these trees constituted a potent source of inoculum

that must be controlled were the disease threat to plantations to be

economically managed. Accordingly, the USDA Agricultural

Research Service initiated a detailed census of susceptible trees

and the occurrence of ACC in five sites in Broward and Dade

counties in the Miami region. The sites ranged from 2.6 km2 to

15.5 km2 [28]. The data provide a full census of susceptible trees,

with 24 successive monthly snapshots for the occurrence of new

infections. Retrospectively, the outcome of the epidemic at each

site is known. Here we use subsets of the data at different stages of

the epidemic to recreate different levels of ignorance about the

future course of the epidemic. Then using Bayesian statistical

inference and a stochastic model we compare model predictions

with the known course of the epidemic. Specifically we ask:

N What is the appropriate epidemiological model to characterise

the spread of disease?

N Is the epidemic self-contained at each site or is there evidence

of ingress of inoculum from outside the site?

N How early in the epidemic can the epidemiological parameters

be reliably estimated from disease snapshots?

N How does the starting time of observations affect the reliability

of parameter estimates?

N Are the epidemiological parameters constant over time?

N Are the epidemiological parameters similar at each site?

N How do the predictions of the future evolution of the epidemic

vary with the time of prediction and the amounts of data used

for prediction?

By using the citrus canker outbreak to address these broad

questions, we introduce and test methodologies that are applicable

to a much broader class of spatially- and temporally-complex

epidemics.

Methods

The methods are organised as follows. The first three sections

set the general problem by describing the data used for parameter

estimation and the data collection process (first section), the models

fitted to the data (second section), and methods for Bayesian

parameter estimation (third section). Model selection methods are

explained in the fourth section. In the fifth section, we discuss

temporal-window techniques for the change of parameter

estimates with time; the sixth section describes techniques for

parameter changes amongst census sites. The seventh section

describes goodness-of-fit tests. In the eighth and final section, we

give details on simulating predictive distributions of epidemic

outbreaks.

Data for parameter estimation
The data used for analysis consist of four sites in urban regions

close to Miami (Figure 1A), with two sites in Broward County

(labelled B1 and B2) and two in Miami Dade county (D1 and D2).

The spatial locations of susceptible citrus trees in the four sites

were fully enumerated using a differential global positioning

Author Summary

We consider emerging epidemics, arising, e.g., when a new
pathogen is introduced in a host population. In face of the
new threat, crucial control measures have to be imple-
mented quickly, yet prior knowledge of the parameters
underlying pathogen spread and transmission is often
missing. Predictive modelling can greatly help in informing
decision making by estimating those parameters from
early observations of the outbreak. The important ques-
tions are then: can a modeller characterise the disease
‘‘soon enough,’’ i.e., within a useful time frame, in order to
enact the proper control measures? At what stage of the
outbreak can the future epidemic progress be reliably
predicted? We analyse an outbreak of citrus canker, a
wind-spread bacterial disease of citrus, in urban Miami. The
model succeeds in capturing the main epidemiological
features of the disease, but we find contrasting answers.
The spatial scale of disease spread can be identified quickly
and accurately from early observations. However, the rate
of spread is rapidly changing in time, driven mainly by rare
thunderstorms with very short-time predictability, which
frustrates epidemic prediction.

Bayesian Analysis of an Emerging Epidemic
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system. There were 4730, 1113, 6056 and 6072 trees at sites B1,

B2, D1 and D2, respectively. Each site was visited by teams of

inspectors at successive intervals between October 1997 and

October 1999. The locations of infected trees were identified and

notional infection times were calculated by experienced personnel,

from lesion size and other phenotypic characters. In order to

account for errors in the assessment, the notional times were then

grouped into 24 successive 30-day intervals (effectively used as

censoring intervals for the true infection times). The data therefore

provide spatial snapshots of the locations of susceptible and

infected trees at successive 30-day intervals (see examples in

Figures 1B,C). The incidence of disease increased rapidly at all

sites during the first 18 intervals with little infection thereafter

coincident with the onset of dry conditions (Figure 1D). Further

details of the collection of data are given in [28]. Disease was

present in the area surrounding the census sites during the

outbreak, with both susceptible and infected citrus trees between

the sites (Figure 1A; see Figure S10 for a density map of citrus trees

in the area). The data for an isolated small fifth site, also

enumerated by the Agricultural Research Service (ARS) of the

USDA, with a very small spread of infection around a single focus

of three trees, are not analysed here because the small size of the

outbreak precluded rigorous analysis. The effects of ingress of

inoculum from infected trees outside the sites were incorporated

into the rates for primary infection. Hence, for the purposes of the

analyses, in this paper each site was treated as an independent sub-

population subject to external inoculum, and parameters were

assumed to be independent among sites.

Models
We consider a family of spatially-explicit, stochastic SI models

for the spread of disease over time and space through a fixed

population of trees (N) in each census site. Sites are analysed

independently and for notational simplicity the dependence of

each parameter on the site is omitted.

Infection sources and modes of transmission. The model

incorporates two sources of infection: secondary infection by tree

to tree spread within census sites, and primary infection from

external inoculum coming from outside the site. Secondary

infection depends upon the relative locations of infected (I) and

susceptible (S) trees within the site, whereas primary infection

depends only upon the availability of susceptible trees. For any

pair of infected (i) and susceptible (s) trees, the probability of

secondary, tree-to-tree, infection within a census site depends upon

the distance dis between i and s, and is given by:

Figure 1. Census sites and progress of citrus canker in urban Miami. A Map showing locations and boundaries of four census sites in
Broward (B1, B2) and Dade (D1, D2) counties. The coloured outlines indicate the locations of susceptible citrus hosts: there were 4703 susceptible
tress in B1, 1113 in B2, 6056 in D1 and 6072 in D2. B, C Examples of snapshots at two representative times, 180 d, 750 d in site B2. Grey points
indicate locations of healthy (i.e. susceptible trees), red dots indicate locations of newly infected trees within the previous 30 d interval. D Increase in
numbers of infected trees in successive 30 d intervals at all three sites with colours corresponding to coloured sites in Figure 1A. Background image
in Figure 1A provided by W. Luo, courtesy of USDA Service Center Agencies.
doi:10.1371/journal.pcbi.1003587.g001
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P i infects s in (t,tzdt�ð Þ~bK dis; að Þdt, ð1Þ

in which K(d; a) is a dispersal kernel with parameter a, and b is

the transmission rate for infection given that inoculum from tree (i)

arrives at tree (s), for a vanishingly small dt, so that no more than

one infection event occurs in the interval (t,tzdt�.
We extend the generic model to allow for external infection,

thus:

P s infected from within census site or byð

external inoculum in (t,tzdt�Þ~Qs(t) dt;
ð2aÞ

Qs(t)~b
X

i infected at time t

K(dis; a)ze, ð2bÞ

in which e is the rate of primary (external) infection per unit time

and Qs(t) is the hazard, or infectious pressure, for host s at time t.

Initial inference is focused on three parameters, the primary and

secondary transmission rates (e and b) and the dispersal parameter

(a). Later estimation allows for a change in b and e over time.

The latent period for citrus canker is short, ,7–21 days [28]

relative to the timescale for infection, and shorter than the interval

(30 days) used for data censoring. Hence, latent infection is not

represented explicitly in our model. Asymptomatic infection was

also not included in the model. The period of asymptomatic

infection has been estimated around 100 days [28], which is not

negligible compared with the timescale of infection. However, lags

in the infection process due to the asymptomatic period were

avoided in the analyses described here (see previous section): the

dataset used for parameter estimation consists of censored

infection times, estimated by pathologists at the time of detection

by back calculating from symptom size and expression the likely

day of infection with allowance for a 30-day error. See the section

‘‘Parameter estimation’’ below for a test of our assumptions about

latent and asymptomatic periods.

Spatial dispersal. Here we consider a variety of models: a

model with only primary infection (e.0, b = 0) in which the infected

set at any time is therefore a random selection from the population,

as well as spatially-structured models in which we consider dispersal

kernels with and without allowance for contemporary external

infection. Several different models for dispersal (including the

exponential, power law, Gaussian and Cauchy models) were

screened for suitability in a preliminary analysis of the data. Two

models, with qualitatively different behaviour, fitted substantially

better than the others and were selected for comparison: these are

the exponential and the Cauchy model, given by:

Exponential K d,að Þ~ 1

2pd
|

1

a
exp {d=að Þ,

Cauchy K d,að Þ~ 1

2pd
|

2

pa 1zd2=a2ð Þ ,
ð3Þ

in which d is the Euclidean distance between a given pair of infected

and susceptible trees, measured in kilometres. Both kernels in

Equations 3 are isotropic, of the form K d,að Þ~1=(2pd)|f d; að Þ,
where f d; að Þ is a one-dimensional kernel defined on the positive

real axis (for the kernels in Equations 3, f d; að Þ is a negative

exponential and half-Cauchy kernel, respectively). A cutoff at short

distances was introduced (Text S1, Equations S5) to control kernel

divergence. We remark that, owing to the kernel normalisation

chosen in Equations 3, the secondary transmission rate b is

measured in days21km2, while the primary transmission rate e is

measured in days21 (see Text S1 for a discussion of this point).

The dispersal models differ with respect to the patterns of

disease. Whereas exponentially bounded models (such as the

exponential) give rise to spreading waves of new infected sites

(trees), heavier tailed kernels (such as the Cauchy) result in more

dispersed daughter foci ahead of the initial site of infection [33].

The introduction of an external infection rate was supported by

the presence of infected hosts around the sites (see also Figure S10

for the population densities), and supplies the system with

additional, randomly located primary infections throughout the

entire plot.

Parameter estimation
The transmission (e, b) and dispersal (a) parameters were

estimated by Bayesian inference using Markov chain Monte Carlo

methods with data augmentation. Let Tmin,Tmax½ � be the time

span of experimental observations, i a host infected at time ti

(tivTmax), and s a host still susceptible at time Tmax. If infection

times were known the likelihood function could be calculated as

follows:

f uncensored dataja,b,eð Þ~

P
i ever infected

Qi(ti) exp {

ðti

Tmin

Qi(u)du

8><
>:

9>=
>;

|
P

s never infected
exp {

ðTmax

Tmin

Qs(u)du

8><
>:

9>=
>;

ð4Þ

where Qj(t) is the infectious pressure for host j at time t (Equation 2b).

However, the data are actually censored, and the likelihood involves

integrating over the unobserved infection times consistent with the

data: f censored dataDa,b,eð Þ~
Ð

f uncensored dataDa,b,eð Þ dt.

The posterior for a,b,eð Þ can then be obtained by extending the

parameter vector to a,b,e,t1,t2, . . .ð Þ[H, i.e. including the unobserved

event times as parameters, and using MCMC to explore the

augmented parameter space H [34,35] (for recent applications see

e.g. [21,36–38]). The marginal for a,b,eð Þ is the desired posterior.

Independent uniform priors over the regions of interest were

taken for all parameters, with support coinciding with the

following intervals: 0, 1½ �km for a; 0, 1½ �days21km2 for b;

0, 1½ �days21 for e. A Metropolis-Hastings algorithm with inde-

pendent Gaussian proposal distributions [39] was used for

parameters a, b, e, adjusting the width of the distributions to

obtain an acceptance rate between 0.2 and 0.4 for each parameter.

The proposal distribution for augmented infection times was

constant over the corresponding censoring intervals. Each Monte

Carlo chain was run for 100000–250000 steps (depending on the

system size and the temporal window used, see below), and a burn-

in period corresponding to the initial 10% of the chain was

discarded before the analysis, to ensure that convergence had been

reached.

Sensitivity analysis was used to test the two assumptions: (i) that

the existence of a latent period (,7–21 days) can be ignored; (ii)

that the specific choice of a 30-day censoring interval for true

infection times was appropriate given the length of the asymp-

tomatic period (,100 days). For the first assumption, we

compared the fit of the default model with that of a model with

a constant latent period (14 days). For the asymptomatic period,

Bayesian Analysis of an Emerging Epidemic

PLOS Computational Biology | www.ploscompbiol.org 4 April 2014 | Volume 10 | Issue 4 | e1003587



we compared the default model with a model fitted to a dataset

where the censoring intervals for all infection times were artificially

extended to 90 days (with the same midpoints as the original 30-

day intervals).

Model selection
The candidate models were compared for each site separately

using the deviance information criterion (DIC, [40]). The

objective is to consider whether or not there is evidence for

spatially dependent secondary challenge rather than homogeneous

primary challenge only, then to distinguish between kernels and

whether or not there is evidence for a combination of external

(primary) and internal (secondary) infection. The adaptation

(DIC6) of the DIC suggested in [41] was used to account for the

augmented data.

Estimation using subsets of the temporal snapshots
Following analysis of the entire dataset of 24 successive monthly

snapshots of disease, parameters were estimated for subsets of the

data in order to identify trends in parameter estimates over time.

We also used the analyses to infer what effects additional snapshots

or different starting times for data collection would have had on

epidemic predictions. For subsequent analyses, we introduce a

classification of the models (Table 1) based upon the temporal

window used for the estimation (with no reference to the specific

form of the dispersal kernel) and the number of parameters used.

The original three-parameter model, fitted to the entire dataset,

will be denoted with M0. Cumulative windows (model Mcum in

Table 1) were used to identify the effect of recording more and

more snapshots over time on the parameter estimates, by deriving

estimates based upon snapshots for 0–3, 0–6, … 0–24 30-day

intervals. Sliding windows, for example 0–6, 3–9, …12–18 30-day

intervals (model MDT
slid in Table 1, with DT equal to the window

width), were used to assess the effects of different starting times for

data collection and fixed periods of observation on parameter

estimates (hence, they represent scenarios for later detection and

initiation of data collection).

Two additional models were fitted to the entire dataset. Rather

than representing scenarios where observation is initiated at

different times, as for the sliding-window estimates, these models,

like model M0, are post facto analyses of the epidemic. In a four

parameter model, henceforth denoted with MV (cf. Table 1), a
and e are constant over time (as in model M0), while the

secondary transmission rate is a continuous, linearly decreasing

function of time, b tð Þ~b0 1{vtð Þ, with b0 and v constant

(b tð Þ~0 for tw1=v). The last model (modelMDT
a in Table 1) has

heterogeneous time scales for the parameters, with a constant for

the whole dataset and rates b and e changing by time intervals.

Essentially, this approach implies: choosing a time resolution (e.g.,

DT = six months) for the rates bt and et; partitioning the whole

epidemic time span into regular intervals (e.g., for DT = 6 months,

four intervals: 0–6, 6–12, 12–18, and 18–24 months); fitting

different bt and et to each time interval (in the same example, four

secondary rates bt and four primary rates et), but a single a to all

the intervals.

Comparison of epidemics amongst census sites
We assess the hypothesis that parameters vary spatially between

sites as follows. The model is fitted to pairs of sites J and K
independently (J, K = B1, B2, D1, D2), yielding a sample from the

marginal distribution, e.g., for bJ and bK (and similarly for the

other parameters) for each of the sites respectively. Under the prior

assumption of independence of parameters amongst sites, we can

then build a joint posterior distribution for bJ and bK , and

empirically evaluate the probability pJK bð Þ~Pr bJwbK Dcensoredð
data for sites J and KÞ. Should pJK bð Þ be near 1 or 0, there is

evidence that there is a difference in parameter values between sites; if

intermediate, the joint posterior straddles the line of equality and we

cannot conclude in which location the parameter is greater. Further

details are given in [42].

Goodness-of-fit tests
Goodness-of-fit was tested for parameter estimates from

different types of temporal windows using posterior predictive

distributions [43]. For each time window (delimited by times t0

and t1, with t0~0 for cumulative windows), a stochastic, spatially

explicit model, based upon Equations 2, with parameter values

sampled from the posterior distribution, was used to generate a

large number (1000) of replicate epidemics, running from time t0

(with initial conditions set according to the recorded infection

status) to time t1. Three summary statistics were stored for each

simulation: the count of infected trees, I(t), and two spatial

statistics, the autocorrelation function Ct(d) and the ‘‘time-lagged’’

statistic Rt
t0

(d), described in detail below. The posterior predictive

distributions for stored values of I(t), Ct(d), and Rt
t0

(d)

(henceforth, simulated summary statistics), at times t correspond-

ing to experimental snapshots, were then compared with the

corresponding summary statistics extracted from the experimental

dataset (henceforth, experimental summary statistics).

Autocorrelation function. We introduce the following defini-

tions: n(d) is the number of all tree-tree pairs separated by a distance d
in a given census site; nII (d,T) is the number of infected-infected pairs

a distance d apart at time T (t0vTƒt1); rII (d,T)~nII (d,T)=n(d)
is the corresponding fraction of infected-infected pairs a distance d

Table 1. Main models used in the paper, classified according to the time-dependence of parameters.

Model Parameters Number of parameters Description

M0 a,b,e 3 All parameters constant; fitted to the entire dataset

Mcum a,b,e 3 All parameters constant; fitted to cumulative time windows of different width, all
starting at t = 0

MDT
slid

a,b,e 3 All parameters constant; fitted to sliding time windows of width DT (with different
starting times)

MV a,b0,e,v 4 Parameters a and e constant and b tð Þ~b0 1{v tð Þ; fitted to the entire dataset
(except for prediction, cf. Figure 6)

MDT
a

a,fbtg,fetg Variable: 1+26(#intervals) Parameter a constant, rates bt,et changing by intervals of width DT; fitted to the
entire dataset (except for prediction, cf. Figure 6)

doi:10.1371/journal.pcbi.1003587.t001

Bayesian Analysis of an Emerging Epidemic
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apart at time T ; rI (T)~I(T)=N is the fraction of infected hosts at

time T . The spatial autocorrelation function at distance d can be

defined (see e.g. [44]) as:

CT (d)~
rII (d,T){rI (T)

rI (T)(1{rI (T))
: ð5Þ

The non-parametric estimator used here for CT (d) is the spline

correlogram [45]. A 95% confidence interval for the estimated

experimental autocorrelation function was calculated from 1000

bootstrapped datasets, generated from the experimental data,

using a dedicated algorithm [45]. Finally, the statistical signifi-

cance of autocorrelation functions was evaluated by generating

1000 simulated datasets where the infection status of each host was

re-allocated randomly (see e.g. [46]). We refer the reader to Text

S1 for a brief introduction to spline correlogram calculation and

related techniques.

Time-lagged spatial statistic. When t0w0, the spatial

autocorrelation function between all infected trees at time T is

inevitably offset by the spatial configuration of trees already

infected at time t0, especially in later stages of the epidemic. It is

then useful to introduce a statistic that measures the spatial

association between ‘‘mother foci’’ (henceforth, M), i.e., trees

infected at t0, and ‘‘daughter foci’’ (henceforth, D), i.e., trees

becoming infected after t0. We define nMS(d; t0) as the number of

pairs at time t0 that comprise an infected tree (mother focus) and a

susceptible tree a distance d apart. At time Twt0, a number

nMD(d; T) of those initial infected-susceptible pairs have turned

into infected-infected (mother-daughter) pairs. If spatial depen-

dence is ignored, the probability for any M–S pair at time t0 to

become an M–D pair by time T coincides with the probability for

an initially susceptible host to be infected between t0 and T:

P
d

nMD(d; T)

P
d

nMS(d; t0)
~

I(T){I(t0)

N{I( t0)
~PS?D(T),

where the sum runs over all existing values of d. Under the

hypothesis of no spatial dependence between the positions of M

and D trees, the expected value of nMD(d; T) is then given by:

SnMD(d; T)T~nMS(d; t0)|PS?D(T):

If there is spatial dependence, the probability of observing an

M–D pair is affected by d, and the observed number nMD(d; T)
can differ significantly from the expected value. Such difference is

measured by the time-lagged statistic RT
t0

(d):

RT
t0

(d)~
nMD(d; T){SnMD(d; T)T

½s2
MD(d; T)�1=2

, ð6Þ

where s2
MD(d; T)~SnMD(d; T)T nMD(d; t0){SnMD(d; T)Tð Þ is

the sample variance. Deviations of RT
t0

(d) from 0 indicate positive

clustering (RT
t0

(d)w0) or negative clustering (RT
t0

(d)v0). The

same techniques described above for spline correlogram estima-

tion were used to obtain smoothed, non-parametric estimates of

RT
t0

(d), confidence intervals for experimental estimates, and

regions of significance (see Text S1 for more details).

Prediction of epidemic behaviour using estimated
parameters

A stochastic, spatially-explicit model, based upon Equations 2,

with parameters estimated from different time periods, was used to

predict future progress of the disease. Large numbers (1000) of

replicate epidemics were generated in each of the census sites, with

the susceptible trees located according to the original map for each

site and initial conditions set according to the recorded infection

status at the time of prediction.

Results

Selection of model
A variety of models were compared, comprising secondary

infection kernels with and without external infection, and external

infection alone. The deviance information criterion (DIC6)

strongly supported spatially structured models with additional

external infection as the most plausible at all four sites. We

conclude that, while the epidemic is largely driven by secondary

infection between infected and susceptible trees within each site,

there are sufficient numbers of isolated new foci at each site to

infer that external infection continues to perturb the system. Such

disturbance is consistent with long distance dispersal that is known

to occur during tropical storms [29,32].

While DIC6 did clearly select for the exponential and Cauchy

models with external infection as the most plausible at all sites,

amongst all models tested in post hoc analysis of the data, it did not

give decisive overall support for either (Text S1 and Table S1).

The main reason for this, for which we refer the reader to the

Discussion and Text S1, is the difficulty in discriminating between

long-range dispersal, occurring within a census site, and primary

infection incoming from outside. All subsequent analyses apply to

the more conservative model with exponential dispersal kernel and

external infection. We remark, however, that the results shown

below are very similar when using estimates from the Cauchy

model with external infection.

Having selected the exponential model from a post hoc analysis,

we now investigate parameter estimation for this model from early

disease snapshots. The kernel type itself could not be identified

from early snapshots. Our situation is therefore analogous to a

broad class of epidemics in which prior evidence would favour a

particular model (here the exponential, or equivalently the Cauchy

kernel) and the question is then how soon can the parameters be

estimated during an emerging epidemics (see Discussion for

further consideration of model selection).

Sampling windows for parameter estimation of the
emerging epidemic

The posterior distributions for the dispersal kernel (a),

transmission rate (b), and the ingress of external inoculum (e) are

summarised in Figure 2 for one of the sites (B2) in Broward county.

The results show the sensitivity of the posterior distributions of the

parameters to the observation time window (cf. Table 1); similar

results were obtained for all four sites. Initial inferences were done

for cumulative windows (model Mcum, Table 1), in which

successively more monthly snapshots of the locations of infected

and healthy trees were added. These results show how the

availability of additional information during the epidemic affects

the precision of the parameter estimates (Figure 2A). The estimate

for a is remarkably robust. There is a short, initial transient period

(0–3 30-day periods) for which the parameter is not well estimated,

by the end of which there are fewer than 21/1113 infected trees.

Later estimates were remarkably close both in expectation and
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precision, with no further gain in precision after six months

(Figure 2A), when 69/1113 trees were recorded as infected.

There were clear trends in both the expectation and the

precision of estimates for the secondary transmission rate, b. As in

the case of a, the posterior distribution for b had a large variance

when based upon data for the first three months, and adding extra

monthly snapshots decreased the variance of the posterior (cf

Figures 2B,E). In contrast with the case of a, there was also a trend

in the posteriors for b to decrease as time progressed. The trend in

b is more appropriately characterised by the sliding windows

(Figure 2E), in which estimates are averaged over successive but

overlapping six 30-day intervals (cf. model MDT
slid in Table 1, with

DT = 6 months). Similar results were obtained for e (Figures 2C,F),

suggesting that both forms of transmission were driven by

environmental variables. Epidemics were dominated by secondary

over primary infection: the forces of infection corresponding to b
were much greater than those for e. Hence, in the following we

will focus our analysis of environmental trends on the time

dependence of b.

The robustness of sliding-window estimates for a to different

estimation periods motivates the following assumption: environ-

mental fluctuations affect the model only through primary and

secondary infection rates, while the short-range dispersal scale a
remains constant at each census site all along the epidemic. We

integrated this assumption into our estimations, and fitted to the

entire dataset modelMDT
a , with heterogeneous time scales for the

parameters (cf. model Table 1 and Methods), where a was kept

constant for the whole epidemic history, while the rates bt and et

changed with frequency DT. All the analyses from now on concern

model MDT
a , and focus on two different time intervals for the

infection rates, obeying two different purposes. The first, DT = 6

months, is intended to capture the main temporal trend in rates;

the second, DT = 1 month (corresponding to the highest possible

resolution given data censoring), is used to analyse short-time

fluctuations.

In Figure 3A, we show the posterior distributions for a for the

constant-dispersal model MDT
a (DT = 6 months; the posteriors

obtained for DT = 1 month, not shown, are essentially identical).

Posterior distributions for the secondary infection rate bt are

shown for model MDT
a with time resolution DT = 6 months

(Figures 3B–E) and DT = 1 month (Figures 3F–I). The estimated

dispersal length (Figure 3A) is very similar for sites B1, B2, D2,

with substantial overlap between the different posteriors for a, and

modes ranging between 90 m and 120 m. There is evidence of a

shorter mean dispersal length for site D1, with values tightly

concentrated around 50 m. Estimates of secondary infection rates

bt show a decreasing trend common to all four census sites

(Figures 3B–I), although with large monthly fluctuations for

DT = 1 month (Figures 3F–I).

The decreasing trend in b can be partly explained by previous

investigations [28], which suggested that the epidemic slowed

down after ,12 months because of the onset of an unusually

prolonged drought period. Moreover, there is compelling evidence

[28] that the three main peaks in the monthly time series for bt (see

e.g. months 6, 11, and 15 in Figure 3H for site D1, and similar

times for the other three sites) were associated with major

rainstorm events (strong wind gusts, combined with rainfall) in

the Miami area. For each census site, the decreasing trend is

Figure 2. Trend of parameter estimates over time. A–C Trends over time in posterior densities for Bayesian MCMC estimation of the
parameters a (A), b (B) and e (C) for a model with an exponential dispersal kernel and external inoculum, based on cumulative windows that
successively encompassed 3 additional snapshots of data (modelMcum, cf. Table 1), extending from 0–3 to 0–24 months. D–F Corresponding trends

in posterior densities for parameters based on sliding windows encompassing six successive months of observation (modelMDT
slid with DT = 6 months,

cf. Table 1), beginning at 0, 3, 6, 9 and 12 months. The figures show marked temporal trends in the transmission rate, b, similar temporal trends in the
rate of external infection, e and rapid settling of the dispersal parameter, a. For each parameter, the gray dashed line represents the prior distribution,
rescaled for display by a factor 105 for b and 104 for e.
doi:10.1371/journal.pcbi.1003587.g002

Bayesian Analysis of an Emerging Epidemic

PLOS Computational Biology | www.ploscompbiol.org 7 April 2014 | Volume 10 | Issue 4 | e1003587



compared (Figures 3B–I, gray lines) with a superimposed trend

from the four parameter modelMV (cf. Table 1 and Methods), in

which the secondary transmission rate is replaced by a linearly

decreasing function, b tð Þ~b0 1{v tð Þ, with a, e, and b0 constant

(and b tð Þ~0 for tw1=v). The linear decline in b captures the

overall trend, although monthly realisations fluctuate strongly

around the trend.

Sensitivity analyses (see Methods) were carried out by fitting

model MDT
a with DT = 1 month to data for all census sites (cf.

Figures 3F–I), either including a latent period of 14 days or by

extending the censoring intervals to 90 days. In both cases (results

not shown), the choice not to consider latent and asymptomatic

period in the models was supported. Estimates with latent period

were virtually identical to those in Figures 3F–I; estimates for the

asymptomatic period, albeit with some minor deviations, displayed

the same pattern as in Figures 3F–I.

Consistency of parameter estimates amongst different
sites

There was evidence of strong consistency for posterior

distributions amongst sites. This is shown in Figure 4A, by

plotting joint posterior distributions for bt (model MDT
a , DT = 1

month, cf. Figures 3F–I) across all four sites. There is a striking

Figure 3. Dispersal scales and trends in infection rates. Parameter estimates for the four census sites, obtained from the model MDT
a (cf.

Table 1). For each site, the value of a is constant for the entire epidemic, while the rates bt and et are time dependent (changing every time interval DT). A
Posterior distributions for a for the four census sites, from the model with DT = 6 months. B–E Posterior distributions (shaded strips) for bt for sites B1, B2,
D1, D2, from the model with DT = 6 months. Each strip is centred on the interval used for the estimation, with darker shading corresponding to higher
values of the probability density, and dark circles marking the mode of the distribution. F–I Posterior distributions (shaded strips) and corresponding
modes (dark circles) for bt for sites B1, B2, D1, D2, from the model with DT = 1 month. The same conventions as for panels B–E are used.
doi:10.1371/journal.pcbi.1003587.g003
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correspondence of magnitudes and trends in bt between the two

Broward sites (Figure 4A), which are located close to each other

(cf. Figure 1A). The more distant Dade sites (Figure 4B) are

themselves more distantly separated than the Broward sites (cf.

Figure 1A) and show at first a less consistent pattern (see Figure

S8). However, if we allow for a 1-month lag in the rates between

D1 and D2, the two series of estimates display again a strong

correlation (Figure 4B). Such a time lag would be consistent with

delayed introduction of the pathogen or the vector, but awaits

further analysis and testing. Similar, yet more regular patterns at

all four sites emerge when comparing estimates at resolution

DT = 6 months (see Figure S9).

Goodness-of-fit tests
In Figure 5, we show the results of goodness-of-fit tests for the

constant-dispersal model MDT
a , DT = 6 months (cf. Table 1), for

one of the Dade sites (D1; analogous results for the other sites are

shown in Figures S2, S3, S4). Intervals (t0,t1) shown are for

t0~0, 6, 9, 12 months, with t1~t0z 6 months. Simulated disease

progress curves are able to reproduce on average the observed

epidemic progress (Figures 5A,C,F,I). The spatial autocorrelation

function calculated at the end of each interval, Ct1
(d) (Equation 5)

is shown in Figures 5B,D,G,J. Predictive distributions of Ct1
(d)

(gray shaded areas) agree well with the autocorrelation estimated

from experimental data (thick red lines). Some deviations emerge

for the intervals [6,12] and [9,15] months (Figures 5G,J), where

the experimental function appears to decay faster than the

simulated function between 100 m and 250 m (Figure 5G) and

200 m and 600 m (Figure 5J), respectively. The spatial structure of

the hosts infected at the beginning of the window (time t0) can

significantly bias the values of Ct1
(d): such an effect emerges at

short distances in Figure 5J, as the value 0 lies out of the 95%

significance interval for Ct1
(d) (dashed cyan lines). A statistic free

from this bias is the time-lagged function Rt1
t0

(d) (Equation 6,

Figures 5E,H,K), which measures the excess of newly infected

trees at time t1 at distance d from the trees already infected at t0.

Significance intervals (dashed cyan lines) are always distributed

around 0. Predictive distributions of Rt1
t0

(d) (gray shaded areas) are

in very good agreement with Rt1
t0

(d) from observational data (thick

solid red lines), except again for the interval [9,15] months

(Figure 5K; for a possible origin of the disagreement see Text S1

and Figure S5). Overall, the spatial pattern of the epidemic is

broadly well reproduced by the model estimates. We remark (cf.

the beginning of this section) that very similar results were found

for a model with Cauchy kernel (not shown here). Deviations

appear when using different dispersal kernels (considered at the

preliminary stage, see Methods), and extreme discrepancies with

the data arise when testing models without primary infection (an

example is given in Figure S7).

Predicting the future course of the epidemic
Strategic decisions about how to react to emerging epidemics

are inevitably made early on, when few data are available.

However, it is strongly suspected [28] that the main drivers of the

epidemic (responsible for the fluctuations and the final slowing

down of transmission rates found in our post hoc analyses, cf.

Figures 3B–I and related discussion) were major weather events

that could not be known at the beginning of the outbreak. Such

lack of knowledge affects epidemic forecasts made from the early

stages of the outbreak. In the following, we investigate three

different hypothetical scenarios for early prediction: when no prior

information is given about the future conditions of the epidemic

(scenario A), and when some prior knowledge is assumed

(scenarios B and C). For each scenario, the parameters were

estimated using observation windows of increasing size, all starting

at t = 0, and then used to predict future trajectories of the

epidemics up to 18 months (i.e. for the pre-drought period; see

above). The results are shown in Figure 6 for one of the Miami

Dade sites (D1), with observation windows of 3, 6, and 9 months.

Scenario A. (Figures 6A1–A3) The cumulative-window mod-

el Mcum (Table 1) was fitted to the three observation windows.

The posterior distributions for a, b and e were used to generate

epidemic trajectories, which were then compared with the true

realisation. Predictions based upon initial estimates during the first

three months (Figure 6A1) capture the overall trend, although with

very wide credible intervals for the ensemble of possible epidemics.

As new data for estimation are included (Figures 6A2–A3), the

credible intervals tighten, but at the same time the predictions

systematically and increasingly overestimate the real epidemic, as

they fail in capturing the slowing down of epidemic spread.

As the differences are mainly driven by changes in the

transmission rate, b (Figures 3D,H), we tested whether the

epidemics could be adequately predicted using modelMV, which

incorporates a long-term decreasing linear trend: b(t) = b0(12vt)

(cf. Table 1). However, the linear trend is confounded by large

monthly fluctuations (Figure 3H), and a reliable estimate of the

decay rate v was only possible when at least 12 snapshots were

Figure 4. Consistency of secondary rates across sites. Joint posterior distributions for the transmission rate, bt, for (A) the B1 and B2 sites in
Broward county and (B) the D1 and D2 sites in Dade county. Estimates shown are for the constant-dispersal modelMDT

a , DT = 1 month (cf. Table 1),
discarding an initial transient period of 3 months. Each contour plot corresponds to a value of the probability density equal to 0.05 times the value at
the mode. The two Broward sites, which are located close to each other, are similar both in trend and in magnitude of bt. The two more distant Dade
sites show similar trends in bt once the window for D2 is shifted forward by one month, and a magnitude of bt approximately 3 times larger in D1
than in D2.
doi:10.1371/journal.pcbi.1003587.g004
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used for the estimation (results not shown here). By that time (1

year), the epidemic had already slowed down significantly, and in

the circumstances of wanting to predict future disease spread from

early observations the estimates would be of little practical use.

Scenario B. (Figures 6B1–B3) We investigated whether prior

knowledge of the main temporal trend of b (the linear rate v) can

improve epidemic forecast. We fitted model MV by keeping v
fixed to its known value (the mean of the posterior distribution

Figure 5. Posterior predictive distributions for the site D1. Results for the constant-dispersal model MDT
a , DT = 6 months (cf. Table 1) are

shown for four different intervals (each delimited by times t0 and t1, with t1 = t0+6 months). Parameter estimates obtained for each interval are used to
run the model 1000 times between t0 and t1, and summary statistics calculated from the output are compared with the data. A, C, F, I Distributions
of simulated disease progress between t0 and t1 (shaded areas, with black corresponding to the median and different levels of gray to different
quantiles) compared to observed disease progress (red circles; empty black circles mark data not used in the comparison). The total number of hosts
in site D1 is N = 6056. B, D, G, J The autocorrelation function at time t1, Ct1

(d), estimated from observed data (thick red line), together with the 95%
bootstrapped confidence interval (thin red lines), is compared with the distribution of Ct1

(d) estimated from simulated epidemics (shaded gray, same
as for panels A, C, F, I). Dashed cyan lines represent the 95% significance interval found with random labelling techniques. E, H, K Time-lagged
statistics calculated between times t0 and t1, Rt1

t0
(d). Thick red lines are Rt1

t0
(d) estimated from observed data, thin red lines mark the 95% confidence

interval, dashed cyan lines mark the 95% significance intervals, and distributions of Rt1
t0

(d) estimated from simulated epidemics are shown in shaded
gray.
doi:10.1371/journal.pcbi.1003587.g005
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from the ‘‘full’’ estimation, cf. solid gray line in Figures 3D, H),

and estimating only a, b0, and e. While very early predictions

(Figure 6B1) slightly under-estimate disease (with a very large

credible interval), including more snapshots for estimation leads to

consistent improvement of the forecast (Figures 6B2,B3). Hence,

information about a single parameter, v, leads to a stark

improvement of disease prediction. We remark, however, that it

was not possible to identify a single, clear environmental factor

responsible for the overall decreasing trend of the time series

(henceforth, we refer to the monthly series only, cf. Figure 3H).

Hence, knowing v implies advance knowledge of the behaviour of

bt along the whole course of the epidemic. It is desirable to test

epidemic predictions under alternative, more parsimonious

assumptions about our prior information on bt.

Scenario C. (Figures 6C1–C3, 6D1–D3) We assumed to have

prior information about the time of occurrence and values of the

three peaks of bt (cf. Figure 3H); no prior information was given

about the drought period. We fitted to the observation windows a

Figure 6. Predictions of epidemic trajectories for site D1. Predictions are based on observation windows of increasing length, comprising data
from the first three (A1, B1, C1, D1), six (A2, B2, C2, D2), and nine (A3, B3, C3, D3) snapshots of disease. Three different assumptions (A, B, C)
about our prior information on the future evolution of the system were used, each associated to a different model (cf. Table 1). A1–A3 Predictions
based on modelM0 , assuming no prior information. The probability distributions for predicted trajectories are shown by gray shading, with intensity
of shading representing probability of occurrence. The observational data (disease snapshots) used for prediction are marked by orange circles, the
last snapshot used (the prediction time) by a larger red circle, and the observational data to be predicted by white circles. The total number of hosts
in the site is N = 6056. B1–B3 Predictions (same conventions as for panels A1–A3) based upon modelMV , with the assumption that the value of v

(the linear decay rate of b(t), cf. gray line in Figure 3D,H) is known from the beginning. C1–C3, D1–D3 Predictions based upon modelMDT
a (DT = 1

month), with constant dispersal parameter a, and monthly rates of transmission (bt, et) (cf. Figure 3H). C1–C3 Predicted and observed trajectories
(same conventions as in A1–A3). D1–D3 The associated secondary infection rates bt , estimated from observed data, marked by orange circles
(coinciding with the mode of the distributions; cf. Figure 3H). Predictions are made under the assumption that the positions and values of the peaks
in the time series for bt (blue circles in panels D1–D3, same as the peaks in Figure 3H) are known in advance. A spline interpolator (dark red line in
panels D1–D3) is used to impute missing values of bt .
doi:10.1371/journal.pcbi.1003587.g006

Bayesian Analysis of an Emerging Epidemic

PLOS Computational Biology | www.ploscompbiol.org 11 April 2014 | Volume 10 | Issue 4 | e1003587



constant-dispersal model MDT
a with monthly-varying rates

(DT = 1 month, cf. Figures 3F–I). In Figures 6D1–D3, the modes

of the estimated monthly values of bt (orange circles) are shown for

each observation window together with the peak values of bt (blue

circles) that are known in advance (same values as in Figure 3H).

In order to impute the missing values of bt, a spline interpolator

(dark red line) was built from all the known and estimated values of

bt. The missing values of et were assumed to be constant and equal

to the average of et over the observation window. Predictions

based on the first three months (Figure 6C1, with corresponding

estimates for bt in Figure 6D1) capture the future progress of

disease, with a smaller credible interval than for scenarios A and B
(cf. Figures 6A1, B1). Increasing the observation window to six and

nine snapshots does not have a significant effect on forecast

(Figures 6C2–C3), as most of the additional true values of bt

(orange circles starting from month 4 in Figures 6D2–D3) are

already well imputed from the first three months (cf. correspond-

ing times in Figure 6D1, dark red line). We conclude that

knowledge of the peak values of bt, supplemented by a few early

stage observations, provide enough information to predict the

future course of the epidemic. Among the different scenarios we

investigated (including several not discussed here), we found

scenario C to correspond to the minimal amount of extra

information that could produce reliable predictions from the early

stages.

Discussion

Chief amongst the concerns of policy makers concerned with

managing an emerging epidemic are: how far and how fast is the

epidemic spreading? How reliable are future predictions of the

epidemic severity? Does the epidemic merit the deployment of

control, and how should this be optimised? Here we have focused

on the first two questions about estimation and prediction, using a

combination of Bayesian statistical inference and data for the

spread of citrus canker in urban Miami. We assumed that little was

known about the pathogen, using non-informative priors for the

parameters and a selection of dispersal kernels. Our analyses have

shown that the same spatio-temporal, stochastic model is able to

capture the temporal trends and spatial statistics characterising the

spread of infection in all four sites. Pathogen spread within sites is

described by an exponential dispersal kernel with a time-varying

transmission rate augmented by a small, time-varying rate of

external infection. We show, therefore, that epidemics were not

self-contained within sites but new foci of infection also arose from

external inoculum, a phenomenon evident at all four sites.

The estimation of dispersal and transmission parameters for

stochastic models from spatial snap-shots of disease is not new

[21,47–52]. While Gibson and Austin [51] first used likelihood

estimation to estimate dispersal parameters from snapshots of

citrus tristeza disease in plantations, the current analyses are based

upon subsequent MCMC methods to deal with unobserved

infection times [34,35], estimate the most likely chain of infections

between successive snapshots [48,49], and account for temporal

variability in transmission parameters [21,36,38]. What is different

in the current investigation is the quantification of precision and

bias of the parameters associated with taking different snapshots of

disease over time (Figure 2).

Models with short-range dispersal (exponential kernel) and long-

range dispersal (Cauchy kernel) together with external primary

infection were compared using DIC tests (DIC6, cf. Table S1 and

Text S1). Table S1 shows no significant differences between the

exponential and Cauchy models, except for site D1, for which the

exponential model is favoured. For the other census sites, the two

models are essentially equivalent. This result can be explained in

two steps, first by analysing dispersal at short distances (Figure 7),

then by considering the contribution of external infection at longer

distances (Figure S1). Figure 7 shows a direct comparison of

estimated exponential and Cauchy kernels, plotted as a function of

distance for each census site. The pattern is qualitatively similar for

all census sites: the two kernels are substantially identical up to

distances of a few hundred metres (‘‘plus’’ signs in Figure 7): 250–

300 m for all the sites bar D1, and ,150 m for site D1 (Figure 7C:

this may be a reason why the DIC tests favours the exponential

kernel for this site). Beyond those distances, which correspond to a

fraction of the size of the census site (1 km–4 km), the relative

difference between the two kernels increases rapidly. Hence, in

principle it should still be possible to detect the effect of such

difference in estimates from spatio-temporal maps of disease.

However, the long-distance divergence between the two kernels is

balanced by the primary infection rate e. This is shown with an

illustrative example in Figure S1 (see also Text S1 for details),

where exponential and Cauchy kernels are used to generate spatial

maps of the infectious pressure from a given experimental

snapshot of site D2 (Figure S1(A)). When only secondary infection

is considered, clear differences between the two kernels emerge at

long distances (Figures S1(B–C)), but the differences disappear,

yielding virtually identical maps, when adding the effect of the

external infection rate e (Figures S1(D–E)). We draw the following

conclusion: that the scale of our observations is too small to choose

unambiguously between the two dispersal kernels, as the potential

effect of long-range dispersal within a census site is confounded by

the presence of external infection. Gottwald et al. [53] found that a

power law dispersal model was superior to an exponential model

for the spread of ACC in 203 citrus plots in Brazil, following the

introduction of the leaf miner. In the absence of the leaf miner,

however, dispersal of ACC was adequately described by an

exponential model, which is in agreement with our findings;

moreover, none of the models considered in [53] included external

infection.

We remarked in the results that support for the exponential and

Cauchy model was found in post hoc analyses of the data. Model

comparison from early snapshots supported in general spatially

structured models with external infection, but could not select a

dispersal kernel (most of the kernels tried, see e.g. Text S1,

performed equally well). The choice of an exponential kernel for

early estimations (Figure 2) would then be motivated by a strong

prior belief on disease dispersal (for example, from results in the

absence of the leaf miner in [53]). Here, we also note that, in our

case, the absence of such a prior belief would be of little

importance, as the exact form of the kernel would not affect the

main results of Figure 2. Of the several kernels tried for the first

few snapshots, most (e.g. the Gaussian, Text S1) produced

estimates of dispersal scale and infection rates with patterns in

time qualitatively very similar to those in Figure 2 (results not

shown here).

Successful control of disease depends upon matching the scale of

control with the inherent spatial and temporal scales of the

epidemic [54–56]. For our dataset, we have identified a short

initial transient period at all four sites for which a and b are not

well estimated, with comparatively wider posterior distributions

than for later assessments. Clearly, relying upon data for the first

three 30-d intervals leads to great uncertainty in estimates of the

dispersal scale, and hence decisions about the scale of control

(Figure 2). The use of sliding windows shows that fewer but later

snapshots could be as precise in estimating dispersal parameters

(measured by posterior distributions) as cumulative windows with

more snapshots (Figures 2A,D). Estimates for the dispersal
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parameter changed very little over time (Figure 2D): this motivated

consideration of a new, simpler model where dispersal was

constant throughout the epidemic (MDT
a , Table 1). The robustness

of the results for the dispersal scale was confirmed by goodness of

fit tests, in which the posterior predictive distribution of several test

statistics showed close concordance with the observed statistics

(Figure 5 and Figures S2,S3,S4). The evidence that the dispersal

parameter (almost identical for three out of four census sites,

Figure 3A) did not change significantly over time, and the fact that

this parameter was estimated with substantial precision with few

snapshots, are encouraging results in view of control decisions

where the scale of control depends on the scale of dispersal [54–

56].

In contrast with the dispersal parameter, estimates for the

transmission rates (b, e) were not constant (Figures 2E,F and

Figures 3B–I), with the secondary transmission rate b showing

substantial month to month fluctuations (Figures 3F–H). This

result bears two consequences: first, it can frustrate control efforts

based on the assumption of a single, intrinsic transmission rate

[56]. Second, prediction of future disease severity (upon which the

decision to apply control is made) is difficult and prone to

systematic error (Figure 6). We suggested that both b and e were

driven by environmental variables that affected the infectivity, and

possibly the susceptibility, of the host. Accordingly, we found

strong evidence of a time pattern similar among all the census sites

for the transmission rate b (Figures 3–4; see also Figures S8, S9).

Savill et al. [55] explored analogous problems for the infectiousness

of infected premises in the 2001 UK foot and mouth epidemic,

and identified missing and inaccurate data as a rate-limiting step in

refining parameter estimates. For ACC, the principal environ-

mental variables that are likely to influence the pathogen, Xac, and

the disease are known to be wind-speed, rain and temperature

[29,30,32]. Extreme weather events have indeed been identified,

with robust statistical evidence [28], as the main determinants of

the pattern of b (Figures 3F–H): major rainstorm events, acting as

environmental pulses, were linked to peaks in the monthly series of

transmission rates, and a drought was responsible for the strong

quenching of the rates in the second half of the observation period.

The existence of a common external driver is also supported

(Figure 4 and Figure S9) by the close similarities in the temporal

patterns of transmission rates across different sites. Nevertheless,

extensive exploratory analysis using environmental data for

temperature, wind and rain as covariates did not succeed in

identifying a mechanistic environmentally-driven model for b.

This was due in part to the (largely unknown) time-lags in the

effect of weather events on the pathogen and the host. It is also

reasonable to assume that environmental, weather-related forcing

was just one, if the most important, of the factors affecting the

behaviour of b. Factors intrinsic to the host population might also

have played an important role: tree age, cultivar, and horticultural

care can affect the susceptibility to the disease [28]. In a

population of residential trees, the distribution of such individual

factors is extremely heterogeneous in space at several scales, and

also fluctuates over time. In the present case, as a result, there was

a high degree of spatio-temporal variability in the response of hosts

to weather drivers. Fitting models with explicit individual factors is

unfeasible in such a highly heterogeneous scenario; however, such

a class of models might be very useful in future analyses of

outbreaks within commercial citrus plantations, where host

properties are more consistently distributed.

We showed that, in retrospect, advance knowledge of major

weather events would have been required in order to forecast

future epidemic progress. Our methods, based on limited-

information forecast scenarios, should be applicable more

generally, e.g., to windborne diseases where transmission is mostly

driven by strong weather changes. In our analysis (Figure 6),

predictions based upon initial estimates, ignoring large weather-

related fluctuations in transmission rates (Figures 3E–I), showed

progressively more deviation from the actual outcome as more

epidemic snapshots were included in the estimation (scenario A,

Figures 6A1–A3). Post facto predictions were effective only when

the assumption of complete ignorance of the future was waived

(scenarios B and C, Figures 6B1–B3, 6C1–C6), and some extra

information, corresponding to major environmental events, was

known in advance (i.e., the drought period and the amplitude of

the fluctuations in b in scenario B; the peaks of b in scenario C). At

the same time, of course, meteorological predictability imposes

drastic constraints on prior knowledge of that kind. For example,

the evolution of position, intensity, and heavier rainfall areas of

supercell thunderstorms (two of which were most likely responsible

for the first two peaks in the time series for b) can currently not be

predicted with more than 2 hours lead time [57]. We can then

draw a more general conclusion from our results: that the spatial

and temporal scales for prediction must be chosen carefully, not

only to match the scales of disease spread [54–56], but also with

respect to the scales of the weather events that might affect the

spread. The spatial and temporal scales considered here (a few km

and ,1 y, respectively) proved to be ‘‘too small’’ for prediction: at

Figure 7. Dispersal kernels as a function of distance. A–D Estimated kernels for the exponential model (orange lines) and the Cauchy model
(cyan lines), plotted together as a function of distance for each census site. The functional form of the kernels is based upon Equations 3, with a cut-
off at very short distances as explained in Text S1 (Equations S5). The mean of the posterior distribution for a for model MDT

a (DT = 6 months; cf.
Figure 3A for the exponential model) is used as a point estimate to plot each kernel. The value of the two kernels at the point where they begin to
diverge (‘‘plus’’ symbol in A–D) is about 103 times the value at very short distances.
doi:10.1371/journal.pcbi.1003587.g007

Bayesian Analysis of an Emerging Epidemic

PLOS Computational Biology | www.ploscompbiol.org 13 April 2014 | Volume 10 | Issue 4 | e1003587



those scales, the model output is extremely sensitive to the number

and timing of isolated rare weather events (i.e., the effect of those

events could not be averaged out). An important question that

arises is whether or not our results could be up-scaled: that is, how

prediction would perform over larger (e.g., state-wide) spatial

scales and longer (e.g., decadal) temporal scales, using the

parameter values calculated here and weather templates (cf.

[58]) to generate time series for transmission rates. This is the

object of ongoing investigation.

Finally, while the lack of predictability is disappointing, it bears

an important broader warning, namely that if a component of an

epidemic—pathogen, vector or host—is affected by weather, or

climate, but that relationship is poorly understood and there are

insufficient long-term data, prediction of the future evolution of

the epidemic can be both challenging and prone to systematic

error. Our system was mainly driven by stochastic weather events

occurring on very short time scales. At longer scales, we can

consider influenza and mosquito-borne diseases as further

contrasting illustrations. Following recent evidence [59] that

absolute humidity is a strong driver of the rates of transmission

and survival of the influenza virus, a framework to predict seasonal

outbreaks of influenza was recently proposed [60]. With daily

climatological data and real-time population disease status as

inputs, retrospective forecasts could predict historical peaks of

influenza outbreak with good accuracy seven weeks in advance

[60]. While this case concerns short-term seasonal changes in

weather, longer-term changes are also known to influence the risk

and spread of disease. The importance of climate on the spread of

mosquito-borne diseases is broadly accepted [61–63] though very

complex and not fully understood [64–66]. Large scale weather

anomalies, such as unusually long rain [67] or drought periods

[68,69], can lead to unpredictable vector densities, which in turn

frustrates public health planning [70]. Global climate change is

expected to increase the frequency and intensity of unpredictable

extreme weather events, with a far-reaching projected impact on

many infectious diseases [70]. In the face of such future challenges,

it will be increasingly important for epidemiologists to explore and

identify the external factors limiting the predictive capability of

their models.

Supporting Information

Figure S1 Mapping infectious pressure from primary
and secondary sources. A Snapshot of census site D2 at 150

days. The density of susceptible hosts is in gray scale; overlapped

red circles are infected hosts. The infectious pressure on

susceptible hosts comes from two contributions: secondary sources

(red circles) and external sources. B, C Infectious pressure from

secondary sources only. Maps of the infectious pressure integrated

over 30 days (equal to the expected density of new infections),

estimated for the E model (panel B) and for the C model (panel C).

Differences between the two models are evident in the top region

of the system, far away from the secondary sources. D, E
Infectious pressure from primary and secondary sources. Maps of

the integrated infectious pressure, estimated for the E model (panel

D) and for the C model (panel E). The differences between the two

models disappear when primary infection is taken into account.

See Text S1 for a description of the methods used to build the

maps and a detailed discussion.

(TIF)

Figure S2 Posterior predictive distributions for site B1.
Predictive distributions are calculated from estimates for model

MDT
a , DT = 6 months (same as Figure 5). Predictive distributions

for disease progress (A, C, F, I; the total number of hosts being

N = 4730), spatial autocorrelation function Ct1
(B, D, G, J), and

time-lagged statistic Rt1
t0

(E, H, K) are shown, for intervals (0, 6)

months (A, B), (3, 9) months (C, D, E), (6, 12) months (F, G, H),

(9, 15) months (I, J, K). Symbols and conventions are the same as

for Figure 5.

(TIF)

Figure S3 Posterior predictive distributions for site B2.
Predictive distributions are calculated from estimates for model

MDT
a , DT = 6 months (same as Figure 5). Predictive distributions

for disease progress (A, C, F, I; the total number of hosts being

N = 1113), spatial autocorrelation function Ct1
(B, D, G, J), and

time-lagged statistic Rt1
t0

(E, H, K) are shown, for intervals (0, 6)

months (A, B), (3, 9) months (C, D, E), (6, 12) months (F, G, H),

(9, 15) months (I, J, K). Symbols and conventions are the same as

for Figure 5.

(TIF)

Figure S4 Posterior predictive distributions for site D2.
Predictive distributions are calculated from estimates for model

MDT
a , DT = 6 months (same as Figure 5). Predictive distributions

for disease progress (A, C, F, I; the total number of hosts being

N = 6072), spatial autocorrelation function Ct1
(B, D, G, J), and

time-lagged statistic Rt1
t0

(E, H, K) are shown, for intervals (0, 6)

months (A, B), (3, 9) months (C, D, E), (6, 12) months (F, G, H),

(9, 15) months (I, J, K). Symbols and conventions are the same as

for Figure 5.

(TIF)

Figure S5 Posterior predictive distributions for site D1:
intermediate times. Autocorrelation Ct (A–C; 1–3) and time-

lagged statistic Rt1
t0

(A–C; 4–6) (model MDT
a , DT = 6 months, cf.

Figure 5) for three time intervals (3–9 months, A1–A6; 6–12

months, B1–B6; 9–15 months, C1–C6), shown at two (A–C; 1, 4),

four (A–C; 2, 5), and six months (A–C; 3, 6) from the beginning of

each interval. The end-of-interval (six-month) plots are the same as

those in Figure 5, while within-interval plots show the evolution of

spatial summary statistics. See Text S1 for a discussion.

(TIF)

Figure S6 Posterior predictive distributions for site D2:
intermediate times. Autocorrelation Ct (A, B, C) and time-

lagged statistic Rt1
t0

(D, E, F) (model MDT
a , DT = 6 months) for

estimation interval (3, 9) months, at two (A, D), four (B, E), and six

months (C, F) from the beginning of the interval. Discrepancies

between experimental (red lines) and simulated (grey shaded area)

spatial statistics, explained by a lag of the experimental statistics,

are solved by artificially shifting forward by two months the

experimental autocorrelation function (J, H) and the experimental

time-lagged statistics (I, J). See Text S1 for a detailed explanation.

(TIF)

Figure S7 Posterior predictive distributions from a
model with negligible background infection. Predictive

distributions for site D1 are calculated from estimates for model

MDT
a , DT = 6 months (same census site and intervals as in

Figure 5), with Cauchy kernel (cf. Text S1, Equation S5b) and

background infection e kept at a very small constant value.

Predictive distributions for disease progress (A, C, F, I; the total

number of hosts being N = 6056), spatial autocorrelation function

Ct1
(B, D, G, J), and time-lagged statistic Rt1

t0
(E, H, K) are

shown, for intervals (0, 6) months (A, B), (3, 9) months (C, D, E),

(6, 12) months (F, G, H), (9, 15) months (I, J, K). Symbols and

conventions are the same as for Figure 5. For the last three periods

(C–K), the progress of the epidemic is well reproduced (C,F,I), but
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simulated spatial statistics (D,G,J and E,H,K) clearly and

consistently overestimate experimental spatial statistics (compare

with Figure 5, same panels, for the exponential kernel with

external infection). See Text S1 for more details.

(TIF)

Figure S8 Temporal pattern of secondary rates in sites
D1 and D2: Effect of shift. Joint posterior distributions for the

transmission rate, bt (modelMDT
a , DT = 1 month) for sites D1 and

D2 (cf. Figure 4B), plotted with no artificial shift in time (A) and

with a 1-month shift in the rates for site D2 (B, same as Figure 4B

and reproduced here for comparison). While the joint densities in

A lack a clear correlation pattern, consistency for the two sites

emerges in B upon introducing a 1-month lag for the parameters

of D2.

(TIF)

Figure S9 Consistency of longer-term secondary rates
amongst sites: 6-month resolution. Joint posterior distribu-

tions for the transmission rate, bt (modelMDT
a , DT = 6 months; cf.

Figure 4 and Figure S8 for DT = 1 month) for sites B1 and B2 (A),

sites D1 and D2 plotted with no artificial shift in time (B), and sites

D1 and D2 with a 1-month shift in the rates for site D2 (C). Here,

using a lower time resolution for rates, the consistency in the pattern

of bt among census sites emerges with more regularity, although the

qualitative behaviour is the same as in Figure 4 and Figure S8.

(TIF)

Figure S10 Estimated distribution of citrus trees in the
area of the experiment. (Figure courtesy of W. Luo.) Area of

the Broward County and the Miami Date County surrounding the

four census sites (delimited by blue lines, cf. Figure 1A). For each

polygon (small sub-areas delimited by gray lines), the human

population density and number of households is known from

census data. The estimated density of residential citrus trees

(colour-coded) was found using an empirical relationship between

the number of citrus trees per household and human population

density (W. Luo and T. Gottwald, private communication). The

estimate shows that the host population was distributed with high

spatial heterogeneity around every census site. Moreover, new

infections were found in the area, and outside census sites, during

all the epidemic (see Methods), which motivates the use of a

primary infection rate e in the model (Equation (2b)).

(TIF)

Table S1 Results of DIC tests. For each census site, DIC

values are calculated for model E (exponential kernel and external

infection) and model C (Cauchy kernel and external infection),

with time-dependent infection rates changing by six-month

intervals (model MDT
a with DT = 6 months, cf. Figures 3B–E

and Table 1) and by one-month intervals (model MDT
a with

DT = 1 month, cf. Figures 3F–I and Table 1). Pairwise differences

between DIC values for E and C models (columns with header E–

C) show that the two models are essentially equivalent, with a

trend for E to perform better than C as the frequency of rate

change increases. Only for census site D1 is model E clearly

favoured. See Text S1 for more details.

(PDF)

Text S1 Dispersal kernels and spatial goodness-of-fit
tests: Definitions, basic theory and discussion of further
results (including selected supplementary figures).

(PDF)
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