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Abstract: Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern.
From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus
disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there
is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody-
based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we
describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix
protein association with viral particle assembly sites on the interior of the host cell plasma membrane.
Using this assay, we screened nearly 3000 small molecules and identified several molecules with
the desired inhibitory properties. In secondary assays, one identified compound, sangivamycin,
inhibited not only Ebola viral infectivity but also that of other viruses. This finding indicates that it is
possible for this new VP40-based screening method to identify highly potent MCMs against Ebola
virus and its relatives.

Keywords: broad spectrum; Ebola virus; Filoviridae; filovirus; Marburg virus; MCM; VP40; sangivamycin

1. Introduction

Filoviruses (Mononegavirales: Filoviridae) have linear non-segmented negative-sense
RNA genomes (up to 19.1 kb), consisting of the canonical genes 3′-NP-VP35-VP40-GP-
VP30-VP24-L-5′ that encode nucleoprotein (NP), polymerase cofactor (VP35), matrix pro-
tein (VP40), spike glycoprotein (GP1,2), transcriptional activator (VP30), RNA complex-
associated protein (VP24), and large protein (L, including an RNA-directed RNA poly-
merase [RdRp] activity), respectively [1]. The family Filoviridae currently includes six
genera, of which two, Ebolavirus and Marburgvirus, harbor viruses known to cause human
disease [2]. Based on frequency and size of documented human filovirus disease outbreaks,
two ebolaviruses (Ebola virus [EBOV] and Sudan virus [SUDV]) and one marburgvirus
(Marburg virus [MARV]) are of the greatest public health concern [1]. EBOV, the etiologic
agent of Ebola virus disease (EVD) [3], caused the two largest filovirus disease outbreaks on
record: 28,652 cases with 11,323 deaths were reported during the 2013–2016 EVD outbreak
in Western Africa; and 3481 cases with 2299 deaths occurred during a 2018–2020 EVD
outbreak in the Democratic Republic of the Congo [4,5].

Relatively little progress has been made toward establishing anti-filovirus medical
countermeasures (MCMs) until recently. The 2013–2016 EVD outbreak in particular sparked
innovation, resulting in the first European- and US-approved EBOV vaccines [6]. Addition-
ally, a randomized controlled phase II/III trial (“PALM”) conducted during this outbreak
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indicated improved clinical outcomes in certain patient cohorts receiving monoclonal anti-
body mAb114 or monoclonal antibody cocktail REGN-EB3 [7]. Remdesivir, a nucleoside
analog that was highly efficacious in non-human primate models of EVD [8], had little
effect on patient outcome [7]. Thus, EVD patient therapy has been limited to the use of
antibodies, which do not penetrate immune-privileged sites (i.e., brain, eyes, placenta, and
testes) known to harbor EBOV in some EVD survivors [9] and which may result in the
evolution of EBOV escape mutants [10]. Small molecules may have logistical advantages
over antibodies with regard to long-term storage, transport to remote locations, and pa-
tient administration and therefore could be alternatives to antibodies or could be part of
combinatorial therapies with antibodies [11].

An ideal filoviral therapeutic is virus specific enough to minimize off-target effects
but broad enough to target multiple aspects of a particular step of the virus life cycle,
multiple steps of the virus life cycle, and/or several closely related viruses [12]. For in-
stance, REGN-EB3 is a cocktail of three monoclonal antibodies, all of which affect EBOV
cell entry by targeting distinct GP1,2 sites [13]. In the absence of ideal therapeutics, com-
binations of therapeutics of different classes that, ideally, work synergistically may be
considered [14], although combinatorial products face more challenging regulatory hurdles
than single products.

Most small molecules that have proven highly efficacious in non-human primate
models of EVD and/or have been evaluated in clinical trials are nucleoside analogs (e.g.,
favipiravir [15–17] and remdesivir [7]). Typically, these molecules are associated with a
single mechanism of action, i.e., the inhibition of virus replication and/or transcription
through interference with the L-contained RdRp activity [8,18,19].

To narrow the gap in current EVD therapeutic availability, we sought to develop an
assay to identify small molecules that target steps of the EBOV life cycle other than virion
entry or replication/transcription. The last step in the EBOV replication cycle includes
particle assembly, ribonucleoprotein (RNP) complex packaging, and virion release from
the host cell membrane [1]. This process is mediated by EBOV matrix protein VP40, a
multifunctional protein [20,21]. The VP40 monomer consists of distinct N-terminal domains
(NTDs) and C-terminal domains (CTDs) that are joined through a flexible linker [22]. NTD–
NTD interactions can lead to the formation of cyclic octamers that remain in the cytosol
and bind RNA for regulation of EBOV replication and transcription [20,22–35]. VP40
requires three crucial interactions to promote formation of viral particles (Figure 1): VP40
must first form homodimers via NTD–NTD interactions for which residue L117 is crucial;
such dimers accumulate at the plasma membrane due to VP40 domain rearrangement by
which the CTD is flipped away from the NTD. This rearrangement exposes a basic patch
comprised of six lysine residues (221, 224, 225, 270, 274, and 275) that interact with the
inner membrane. This CTD juxtaposition exposes an additional NTD surface containing a
conserved W95 that forms a secondary NTD–NTD interaction, which results in hexameric
VP40 moieties. Interactions among VP40 hexamers form the viral matrix [20]. VP40 alone
undergoes these interactions and thereby forms virion-like particles (VLPs) that are secreted
from producer cells [20].

Our assay focused on VP40 because it is absolutely required for EBOV particle pro-
duction [25]. Additionally, single and double mutants in the four discrete interactions are
known to completely obstruct oligomerization and VLP formation [25]. Our hypothesis
was that small-molecule disruption of this crucial nucleation for higher-order assembly of
VP40 would inhibit virion formation [20,30]. Therefore, we designed a fluorescent live-cell
assay based solely on EBOV VP40 expression to screen for compounds that could disrupt
membrane formation of VP40-based VLPs; this disruption would directly affect the ability
of VP40 to form VLPs on the cell surface and would be identified by the screening.
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molecules necessary to form the viral matrix. 
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Resources, Manassas, VA, USA) were maintained at 37 °C and 5% CO2 in Dulbecco’s Mod-
ified Eagle’s Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) containing 10% 
heat-inactivated fetal bovine serum (FBS). Human monocyte-derived macrophages 
(MDMs) were differentiated from CD14+ monocytes and cultured as previously described 
[36,37]. 
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screening [HTS] as a positive control for non-oligomerized VP40). The simian virus 5 
epitope (V5) tag peptide sequence (amino acids IPNPLLGLDST) and anti-V5 epitope 
mouse monoclonal antibody (Life Technologies) enabled western blot monitoring of the 
expression of full-length VP40 WT and L117R proteins and their presence in VLPs. 

Figure 1. This cartoon schematic illustrates EBOV VP40–VP40 interaction phases crucial for viral
particle formation: (i) VP40 NTD homodimers are formed. Once at the plasma membrane, VP40
rearrangement occurs through (ii) a basic patch containing six lysine residues. This rearrangement
triggers exposure of (iii) an NTD surface that interacts at the hexameric interface between VP40
molecules necessary to form the viral matrix.

We identified a nucleoside analog, sangivamycin, that inhibited both EBOV VP40
association with the cell membrane and cellular virion-like particle release. As expected
from these results, sangivamycin inhibited the replication of EBOV but, surprisingly, it
also inhibited the replication of EBOV’s close relative, MARV, as well as the unrelated
Lassa virus (LASV), cowpox virus (CPXV), and vaccinia virus (VACV), which do not
express VP40 orthologs. Using an EBOV minigenome assay that does not encode or express
VP40, we demonstrate that these broad-spectrum effects are likely due to a highly efficient
secondary interaction with RdRps or other viral proteins required for viral replication
and/or transcription. These data indicate that the VP40-based screening is suitable for the
identification of novel EBOV MCMs and that sangivamycin could potentially be developed
as a broad-spectrum antiviral once its mechanism of action is further clarified.

2. Materials and Methods
2.1. Cells and Cell Culture Conditions

Grivet (Chlorocebus aethiops) Vero E6 cells (NR596, BEI Resources, Manassas, VA, USA),
human embryonic kidney (HEK) 293T cells (ATCC, Manassas, VA, USA) 293T/T17 cells
(BEI Resources, Manassas, VA, USA), and human hepatocarcinoma (Huh7) cells (BEI
Resources, Manassas, VA, USA) were maintained at 37 ◦C and 5% CO2 in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) containing 10%
heat-inactivated fetal bovine serum (FBS). Human monocyte-derived macrophages (MDMs)
were differentiated from CD14+ monocytes and cultured as previously described [36,37].

2.2. Fluorescent VP40 Oligomerization Assay

For production of EBOV VP40, HEK 293T cells were plated at 10,000 cells per well
in 384-well black-walled clear-bottom plates (BD Falcon, Corning, NY, USA). The next
day, cells were transfected using TurboFect Transfection Reagent (Thermo Fisher Scientific,
Waltham, MA, USA) with pIRES-P plasmids [38] encoding an EBOV/Yambuku-Mayinga
VP40 fused to enhanced green fluorescent protein (eGFP) and V5 tag (eGFP-V5-VP40 wild
type, henceforth referred to as VP40 WT) or a VP40 mutant unable to dimerize (eGFP-
V5-VP40 L117R, henceforth referred to as VP40 L117R, and used in the high-throughput
screening [HTS] as a positive control for non-oligomerized VP40). The simian virus 5
epitope (V5) tag peptide sequence (amino acids IPNPLLGLDST) and anti-V5 epitope
mouse monoclonal antibody (Life Technologies) enabled western blot monitoring of the
expression of full-length VP40 WT and L117R proteins and their presence in VLPs.
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Four hours after transfection, cells were exposed to various concentrations of small
molecules dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA)
using a liquid handling robot (Janus Scientific Inc., Fairfield, CA, USA) and pin tools
(PerkinElmer, Waltham, MA, USA). The National Cancer Institute (NCI) open repository
compound library (2954 compounds) was evaluated in the primary screening at an initial
concentration of 10 µM and follow-up quantitative (q) HTS in dose ranges from 30 µM to
1.2 nM. Cells were incubated with small molecules for 16 h, fixed in 4% paraformaldehyde
(Electron Microscopy Sciences [EMS], Hatfield, PA, USA); nuclei were stained with Hoechst
33342 (Thermo Fisher Scientific), and cells were washed with phosphate-buffered saline
(PBS) (Fisher Scientific, Hampton, NH, USA). Cell imaging was performed with a Synergy 4
plate reader (BioTek, Winooski, VT, USA). Inhibitors of VP40 oligomerization were initially
identified as those small-molecule treatments resulting in enhanced green fluorescent
protein (eGFP) fluorescence intensity reductions in the range of the diffuse fluorescence
quantified for the positive control. Cells in wells associated with such reductions were
further characterized by fluorescent imaging using an IX81 inverted microscope (Olympus
Life Science, Waltham, MA, USA), a fluorescein isothiocyanate (FITC) filter cube, and
an ORCA-05G digital CCD camera (Hamamatsu Photonics, Hamamatsu City, Shizuoka,
Japan) to capture images of cellular eGFP and Hoechst 33342 signals at 10× magnification.
A “hit” was defined as an inhibitor that reduced VP40 peri-membrane (“ring”) fluorescence
commensurate with the appearance of homogeneous cytoplasmic fluorescent signal. The
cytotoxicity of each hit was further assessed by visualization of cell nuclei via Hoechst 33342
staining. As a confirmatory measure, cell viability for each hit was measured using the
CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI, USA). A selectivity
index (SI), defined as the ratio of the drug concentration required to reduce cell viability
by 50% against the half maximal effective concentration (CC50:EC50), was calculated for
each hit.

2.3. VLP Isolation and Western Blotting

HEK 293T cells transfected with TurboFect in six-well plates at 500,000 cells per well
(BD Falcon, Corning, NY, USA) with 2 µg eGFP-V5-VP40 WT or eGFP-V5-APOBEC3G(A3G)
were treated with compounds at multiple concentrations (0, 37.5, 75, 150, and 300 nM)
in DMSO, as described in Section 2.2. DMSO-treated cells transfected with VP40 L117R
positive control were included for comparison, final 0.25% DMSO. After 24 h, VP40 WT-
and L117R-transfected cell culture media were harvested for analysis of secreted VLPs,
and cell lysates were also collected in reporter lysis buffer (Promega, Madison, WI, USA).
Culture media for each condition were filtered using a 0.45 µm filter to remove cell debris,
and effluents were collected. VLPs were pelleted from the effluents by sedimentation
through a 20% sucrose cushion by ultracentrifugation (100,000× g for 2 h). The pelleted
VLPs were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), and western blotting with an anti-V5 antibody (Life Technologies) at a 1:4000
dilution was used to detect VP40 WT or VP40 L117R positive control. Additionally, lysates
from treated cells were compared to untreated cell lysates by western blot to assess VP40
WT and VP40 L117R positive control abundance. Western blots were probed in parallel
with anti-actin beta antibody (Sigma-Aldrich) at a 1:2000 dilution to confirm that similar
amounts of each cell extract had been loaded and resolved by SDS-PAGE and western blot
transferred to nitrocellulose membrane. Cells transfected with eGFP-V5-A3G were imaged,
as described in Section 2.2.

2.4. Verification of Hits against Infectious Viruses

The infectious virus cell-based screening was performed as described previously [39].
Vero E6 cells were used to test small-molecule viral inhibitors of multiple and taxonomically
distinct viruses. All viruses were grown at 37 ◦C and 5% CO2:

• Bunyavirales: Arenaviridae: Lassa virus strain Josiah (LASV). LASV (IRF0193; L segment,
Genbank #KY425632.1; S segment, Genbank #KY425638.1) was grown in Vero E6 cells
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with alpha minimum essential media (MEM) (Thermo Fisher Scientific) containing 2%
FBS (SAFC Biosciences, Lenexa, KS, USA) for 5 d. This working stock originated from
a Centers for Disease Control and Prevention (CDC) isolate (#800789);

• Chitovirales: Poxviridae: recombinant cowpox virus expressing GFP (rCPXV-GFP) (seed
stock received from United States Army Medical Research Institute of Infectious
Diseases [USAMRIID]) [40] and recombinant vaccinia virus expressing GFP (rVACV-
GFP) (seed stock received from Dr. Bernard Moss, National Institutes of Health [NIH]
National Institute of Allergy and Infectious Diseases [NIAID]) [41]. Viruses were
grown in Vero E6 cells with DMEM (Thermo Fisher Scientific) containing 2% FBS as
previously described [42]; and

• Mononegavirales: Filoviridae: Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV)
and Marburg virus/H. sapiens-tc/AGO/2005/Angola-1379v (MARV). EBOV (IRF0165,
Genbank #KY425645.1) was grown in Vero E6 cells with alpha MEM media containing
5% FBS for 7 d. The seed virus from which it originated was obtained from Public
Health Agency of Canada (PHAC). MARV (IRF0202, Biosample #SAMN05916381)
was grown in Vero E6 cells with alpha MEM containing 2% FBS for 5 d. The seed virus
originated from University of Texas Medical Branch (UTMB).

Small molecules were also tested against EBOV, LASV, MARV, rCPXV-GFP, and
rVACV-GFP in Huh7 cells. MDMs were used to further test the most promising hit,
sangivamycin, against EBOV.

One day prior to assay performance, black opaque (for cytotoxicity) or clear-bottom
96-well (for efficacy) Operetta plates (Greiner Bio-One, Monroe, NC, USA) were seeded
with Huh7 (30,000 cells per well), Vero E6 (30,000 cells per well), or MDMs (100,000 cells per
well). Compounds were dissolved in DMSO to a concentration of 0.05% for stock solutions.
For each assay, an 8-point dose-response curve with two-fold compound dilutions (600 to
4.69 nM) was prepared. Each dose was evaluated in triplicate. Toremifene citrate (T7204-
25MG, Sigma-Aldrich) served as the positive control antiviral compound for EBOV, MARV,
and LASV [14,43,44]; and cytosine β-D-arabinofuranoside (C1768-1G, Sigma-Aldrich)
served as the positive control for both the rCPXV-GFP and rVACV-GFP assays [45,46].
Untreated cells were included as additional controls.

Cells were pre-treated with each dose of the compounds for 1 h prior to virus exposure.
Exposures were performed at the following multiplicities of infection (MOIs): 0.1 or 0.5 MOI
(EBOV), 0.5 MOI (LASV), 0.5 MOI (MARV), and 0.1 MOI (rCPXV-GFP and rVACV-GFP).
For time-of-addition studies, virus was added first and compounds were added 1, 2, 4, 8,
and 24 h after virus exposure.

After 24 h (rCPXV-GFP and rVACV-GFP) or 48 h (EBOV, LASV, and MARV), cells
were fixed with 10% neutral-buffered formalin, washed with PBS, and blocked with PBS
containing 2% w/v of bovine serum albumin (BSA) (Sigma-Aldrich).

Cells were then stained with primary antibodies corresponding to the virus used
for infection:

• Anti-EBOV-VP40 (BMDO4B007 AE11, courtesy of USAMRIID, Fort Detrick, Frederick,
MD, USA [47]) at a dilution of 1:4000;

• Anti-MARV-VP40 (0203-012, Integrated Biotherapeutics, Rockville, MD, USA) at a
dilution of 1:4000; and

• Anti-LASV-GP (L-52-216-7, USAMRIID [48]) at a dilution of 1:3000.

Following PBS washes, cells were stained with peroxidase-labeled goat anti-mouse
secondary antibody diluted at 1:4000 (5220-0339, SeraCare, Milford, MA, USA). Chemilu-
minescence was quantified using an Infinite M1000 microplate reader (Tecan, Morrisville,
NC, USA). Fluorescence (for GFP-tagged viruses) was measured using an Operetta High-
Content Imaging System (PerkinElmer, Waltham, MA, USA). Each experiment was run in
duplicate (two plates) and repeated at least twice on separate days.

Sangivamycin was also tested against human immunodeficiency virus 1 (HIV-1)
particles pseudotyped with vesicular stomatitis Indiana virus (VSIV) glycoprotein (G)
instead of HIV-1 gp41/gp120 trimers. For pseudotype production, the proviral DNA
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plasmid pDHIV3-GFP was used, which contains all HIV-1 genes except nef (replaced
with a gene encoding eGFP) and env. HEK 293T cells (producer cells) were transfected
with the proviral vector and pVSV-G, a plasmid encoding VSIV G using FuGENE HD
(Promega, Madison, WI, USA). Two µg total of proviral DNA:pVSV-G were added to cells
at a ratio of 1:0.5, as described previously [49]. Pseudotype producer cells were dosed
with sangivamycin in DMSO (0.25% final) 4 h after transfection, and HIV-1 pseudotypes
were harvested 24 h later by filtering the media through a 0.45-micron syringe filter. Viral
load was normalized with an HIV-1 p24 ELISA (PerkinElmer, Waltham, MA, USA). Equal
loads of pseudotypes (500 pg p24) were added for 48 h to 10,000 cells per well TZM-bl
reporter cells [50], which express firefly luciferase from the HIV-1-LTR promoter. Thus,
pseudotype transduction efficiency at 48 h could be measured as relative light units (RLU)
using a VICTOR3 Multilabel Plate Reader (PerkinElmer, Waltham, MA, USA) after cells
were treated with Steady-Glo Reagent (Promega, Madison, WI, USA). Sangivamycin was
added to both the producer cells and reporter cells, ranging from 600 to 37.5 nM in DMSO.

Compound cytotoxicity across the tested dose range was determined in parallel using
treated but mock-exposed cells (drug and media only). The CellTiter-Glo Luminescent Cell
Viability Assay (Promega) was conducted 48 h following compound treatment according
to the manufacturer’s instructions. Briefly, at 48 h after drug treatment, 50 µL of the
CellTiter-Glo reagent were added to each well of the plate. After 10 min of incubation at
room temperature to allow maximum cell lysis, luminescence was measured on an Infinite
M1000 microplate reader (Tecan). Cytotoxicity also was evaluated based on changes in
chromatin domain nuclei staining (Hoechst 33342, Thermo Fisher Scientific) of compound-
treated cells relative to that observed in untreated cells using the Operetta High-Content
Imaging System. All plates were assessed for signal-to-noise ratios and Z’-factor scores for
quality-control purposes.

2.5. Minigenome Assay

The standard EBOV minigenome system was obtained from Dr. Elke Mühlberger
(Boston University School of Medicine, Boston, MA, USA). This system uses a reporter gene
encoding firefly luciferase and works by cellular transfection of a minigenome reporter
plasmid (3E5E-Luci) containing the reporter gene flanked by the EBOV 3′ trailer and 5′

leader as well as the NP 5′ and L 3′ untranslated region sequences [51], four plasmids
expressing the EBOV RNP complex components (pCAGGS NP, VP35, VP30, and L) under
a chicken actin beta promoter, and a sixth pCAGGS plasmid encoding T7 polymerase.
Co-transfection of all six plasmids results in replication of the minigenome and, thereby,
reporter gene expression in the absence of particle formation due to the absence of VP40 in
the system [52].

T75 flasks (Corning, Corning, NY, USA) were seeded with 5 × 106 HEK 293T/T17
cells per flask containing 12 mL of medium each. The next day, 56 µL of Lipofectamine
3000 Transfection Reagent (Thermo Fisher Scientific) was diluted in 1.5 mL of Opti-MEM
Reduced-Serum Medium (Life Technologies). A mixture of the six EBOV minigenome
plasmids (4.3 µg of pCAGGS-NP, 2.2 µg of pCAGGS-VP35, 1.7 µg of pCAGGS-VP30, 8.6 µg
of pCAGGS-L, 3.4 µg/µL of 3E5E-Luci reporter plasmid, and 3.4 µg/µL of pCAGGS-T7)
was prepared in Opti-MEM. The negative control plasmid mixture excluded the plasmid
encoding VP35 and instead included an empty vector. Prepared plasmids and transfection
reagent were mixed and incubated for 10 to 20 min at room temperature. From each T75
flask, 6 mL of media were removed, and plasmid transfection or negative control mixtures
were added and incubated for 24 h. After incubation, cells were detached from the flask
by enzyme-free Cell Dissociation Buffer (Thermo Fisher Scientific) and resuspended in
DMEM without phenol red (Thermo Fisher Scientific). Cells were re-seeded in 96-well
plates (Corning) at 30,000 cells per well in 50 µL of medium and allowed to settle for 1 h.
Black and white opaque plates were used for cytotoxicity and luciferase measurements,
respectively. Each plate was seeded with 11 columns of cells transfected with minigenome
plasmid mixture and one column of cells with negative control plasmid mixture. After



Viruses 2021, 13, 52 7 of 20

settling for 1 h, cells were treated with sangivamycin (300 to 9.4 nM) or remdesivir (3000 to
94 nM, Biosynth International, Inc., San Diego, CA, USA; catalog #AG170167) in a six-point,
two-fold dilution scheme in triplicate on three separate plates. Cells were also treated
with constant ratios of sangivamycin (300 to 4.7 nM) to remdesivir (6000 to 4.7 nM) at
1:2.5, 1:5, 1:10, 1:20, and 1:40 in triplicate for each concentration. The remaining wells
on each plate were split between untreated negative control mixture-transfected cells
and untreated cells transfected with a complete minigenome plasmid mixture. At 24 h,
luciferase activity and cytotoxicity were measured (one plate per assay per time point).
Steady-Glo Reagent (Promega) was used to develop luciferase plates for measurement
according to manufacturer’s instructions. At 24 h post-treatment, firefly luciferase substrate
was added, and the luciferase signals were measured using an Infinite M1000 Microplate
Reader (Tecan). At 24 h after drug treatment, the CellTiter-Glo Luminescence Cell Viability
Assay was used to measure cytotoxicity, as described in Section 2.4. Percentage cytotoxicity
and inhibition was determined relative to the untreated controls in each plate.

3. Results
3.1. EBOV VP40 Membrane Localization Is Disrupted by Sangivamycin

To identify small molecules that could interrupt assembly/budding of EBOV, we
screened live cells expressing eGFP-tagged EBOV VP40 (VP40 WT) in the presence of the
molecules for changes in VP40 localization to the inner surface of the cell plasma membrane
and eGFP fluorescence pattern changes compared to EBOV VP40 in the absence of small
molecules (primary screening).

In the absence of small molecules, VP40 WT membrane localization can be visualized
as a bright fluorescent lining of cell membranes (Figure 2A, top left panel). In contrast, an
L117R point mutation in VP40 WT (positive control) that abolishes VP40 oligomerization
by preventing initial VP40 NTD dimerization manifests as diffuse cytoplasmic fluorescence
(Figure 2A, top right panel). Despite equivalent expression (as assessed by western blotting;
see Figure 3), the diffuse cytoplasmic fluorescent signal from VP40 L117R positive control
appeared less intense than the peri-inner membrane fluorescence of VP40 WT, with a
Z’-factor of 0.5, calculated from RFU and standard deviation values in Figure 2A. This
finding is consistent with a previous report on the effect of the L117R mutation on VP40 and
confirmed the ability of our assay to discern ablation of VP40–VP40 interaction at the cell
membrane [20]. Extrapolating from these results, we hypothesized that any small molecule
efficient at disrupting wild-type VP40 self-interaction would result in altered fluorescence
characteristics approaching those similar to that of VP40 L117R positive control.

In the primary screening of the NCI library of 2954 small molecules, 30 hits were
identified. Next, these hits were screened by quantitative high-throughput screening
(qHTS). Through qHTS, we selected hits with dose-dependent effects on VP40 membrane
localization in a dose range of 30 µM to 1.2 nM. Thirteen of the initial hits were dose
dependent in qHTS, with 50% effective concentration (EC50) values less than 4 µM and 50%
cytotoxic concentration (CC50) values greater than 30 µM (Figure 2B). Hits were further
triaged based on their SI, which was defined as the EC50:CC50 ratio. Four hits had SI
values greater than 1600 (Figure 2B). Since these hits were structurally related, we selected
the hit with the lowest EC50 and greatest SI (NSC 143648, sangivamycin HCl and NSC
65346, sangivamycin; see Figure 2B). In the qHTS, VP40 subcellular localization (shown
as fluorescence expression at the cell membrane) clearly decreased and became more
diffuse throughout the cytoplasm with increasing concentrations of sangivamycin. At 150
and 300 nM, sangivamycin images showed homogenous VP40 subcellular localization,
indicating the ablation of VP40–VP40 membrane localization (Figure 2C).
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Figure 2. EBOV VP40 membrane localization is disrupted by sangivamycin. (A) Disruption of
VP40 membrane association via the introduction of the L117R mutation (VP40 L117R positive
control). Relative fluorescence units (RFUs) are shown below the eGFP images at 10×magnification.
Lower RFU values for hits were then phenotypically confirmed via VP40 membrane association and
fluorescent cellular rings for VP40 WT (top left panel). VP40 L117R positive control prevents initial
VP40 dimerization and virion-like particle (VLP) formation leading to diffuse cellular fluorescence
with lower RFU (top right panel). Hoechst 33342 DNA staining for chromatin in nuclei was used as
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an initial indicator of cell health (bottom panels). (B) The table lists the top 30 hits by their NCI
assigned NSC numbers. Sangivamycin as either its HCl salt (NSC 143648) or free base (NSC 65346)
impairs EBOV VP40 localization to the inner plasma membrane. Listed are the half maximal ef-
fective concentration (EC50), drug concentration required to reduce cell viability by 50% (CC50),
and selectivity index (SI) values of the 30 hits identified in the primary screening and evaluated
in the secondary screening. EC50 values were quantified by plate reads compared to VP40 WT
and VP40 L117R positive control values. CC50 values were measured with CellTiter-Glo as relative
luciferase units compared to VP40 WT and VP40 L117R positive control and SI was calculated by
CC50/EC50. Although initial quantification was performed by plate reader, all hits were confirmed
by a phenotypic shift from fluorescent rings to homogenous expression by cellular imaging. (C)
Representative fluorescent images of VP40 WT treated with 37.5, 75, 150, and 300 nM sangivamycin
at 10×magnification.
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Figure 3. Sangivamycin decreases VLP release but does not alter VP40 abundance or cellular
transcription/translation. (A) Shown are western blots performed on cell lysates and VLPs isolated
from cell supernatants after transfection of plasmids encoding VP40 WT and VP40 L117R positive
control. Sangivamycin was tested at 0, 37.5, 75, 150, and 300 nM. western blots show amounts of VP40
WT detected in cell lysates based on V5 epitope reactivity (VP40) (top) compared to anti-actin beta
reactivity (V5: actin ratio shown) (middle). The bottom panel shows VLPs isolated from supernatant
following sangivamycin treatment compared to VP40 WT control (bottom left lane). The VP40 L117R
positive control did not result in VLP production (bottom right lane) despite slightly greater overall
cellular abundance compared to VP40 WT (top right vs left lane). (B) Images showing the cytoplasmic
protein A3G linked to eGFP expressed from the same plasmid as eGFP-V5-VP40 in the presence of
sangivamycin at 0, 37.5, 75, 150, and 300 nM.
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3.2. Sangivamycin Decreases VLP Release but Does Not Alter VP40 Abundance or Cellular
Transcription/Translation

We confirmed the effect of sangivamycin on VP40 membrane localization by quanti-
fying the release of VLPs from the sangivamycin-treated cells (treated at concentrations
of 37.5, 75, 150, and 300 nM) versus untreated cells. If VP40 cannot localize at the cellular
membrane to form VLPs, VLPs should not be released in the cell supernatant. VLPs isolated
from cell supernatants and cell lysates were collected for western blots 24 h after transfec-
tion with VP40 WT or VP40 L117R positive control plasmids. VLPs and cell lysates for each
treatment group were subjected to SDS-PAGE and western blotted with anti-V5 (VP40) or
anti-actin beta antibody. The blots were densitometrically scanned for semi-quantitative
analysis of VLPs and cell lysates based on relative VP40 abundance.

Sangivamycin reduced the recovery of V5-tagged VP40 as secreted VLPs in a dose-
dependent manner. The reduction in VLPs released from treated cells at and above 150 nM
(Figure 3A, bottom) was consistent with the reduction in eGFP-V5-VP40 inner membrane
localization observed at the same sangivamycin concentrations (Figure 2C). As expected,
cell culture supernatants from cells transfected with plasmid encoding VP40 L117R positive
control did not contain detectable V5-tagged VP40, indicating that VLPs had not been
released (Figure 3A, bottom right).

To exclude the possibility that the reduction in VLP release was due to off-target
inhibition of VP40 expression or alterations in VP40 protein turnover, we examined VP40
expression in cell lysates. The ratio of VP40 WT relative to cellular actin beta in cell lysates
was similar among all treatment groups (Figure 3A, top and middle). The general lack of
an effect of sangivamycin on transcription/translation was also confirmed by quantifying
the abundance of an unrelated stably expressed eGFP linked protein in HEK 293T cells
(Figure 3B).

3.3. Sangivamycin Inhibits the Replication of Multiple Viruses, Including EBOV and MARV

Having determined that sangivamycin is an effective antagonist of EBOV VP40 in
viral particle assembly, we evaluated whether sangivamycin has antiviral activity against
infectious EBOV in cell culture. Additionally, sangivamycin was tested in Huh7 and Vero
E6 cells against multiple other viruses. Prior to virus exposure, cells were pre-treated
for 1 h with sangivamycin. Pre-treatment involved the preparation of an eight-point
dose-response curve with two-fold dilutions (600 to 4.7 nM). Cells were then exposed
to EBOV, MARV, LASV, rCPXV-GFP, and rVACV-GFP. Plates were fixed after 24 or 48 h
and developed via antibody staining specific for each virus (except for the recombinant
viruses). Chemiluminescence of WT viruses was measured by staining with a peroxidase-
labeled secondary antibody. GFP fluorescence was measured from the recombinant viruses.
Cytotoxicity was measured with CellTiter-Glo assay that measures ATP levels to determine
cell viability according to the manufacturer’s instructions.

Consistent with the data obtained from our primary screening, sangivamycin was
effective against EBOV in Vero E6 and Huh7 cells, but surprisingly also was effective
against MARV, rCPXV-GFP, and rVACV-GFP in both Vero E6 and Huh7 (Figure 4A,B,D–J).
The sangivamycin IC50 values ranged from 0.1 to 0.3 µM for MARV to approximately 0.04
to 0.1 µM for EBOV. The compound did not affect HIV-1 pseudotype transduction in a
293T producer cells and a TZM-bl target cell-based system (Figure 4L).

Since sangivamycin was originally evaluated as an anti-cancer drug and since Huh7
and Vero E6 are immortalized cell lines, we evaluated whether sangivamycin would still
be efficacious in a primary cell line [53]. Sangivamycin was active in MDMs against EBOV;
however, higher cytotoxicity was also observed (Figure 4C), though the effect is likely not
cytotoxicity but rather a cytostatic effect as reported in the literature [54–56], given that
MDM cells remained on the plate albeit in lower abundance, presumably due to a lack of
cell divisions (data not shown).
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Figure 4. Sangivamycin inhibits the replication of multiple viruses, including EBOV and MARV. (A–K) Infectious virus
cell-based enzyme-linked immunosorbent assays were performed to determine efficacy and cytotoxicity of sangivamycin in
the presence of various viruses. Results are reported as percent inhibition and cytotoxicity relative to untreated controls.
Results for each virus tested are shown. (L) HIV-1 pseudotype control, TZM-bl cells. Z’ values 0.2 to 1 were considered
acceptable. Each concentration was run in triplicate. Plates were run on two separate occasions to ensure reproducibility
and agreement between runs. Graphs shown above were generated from one of two runs.
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3.4. Sangivamycin Inhibits EBOV RNA Transcription/Replication

The broad antiviral effect of sangivamycin against viruses lacking a VP40 homolog
or ortholog (rCPXV-GFP, rVACV-GFP, LASV) and the absence of acute cellular toxicity
suggested that sangivamycin may interact with EBOV at sites other than VP40. We therefore
evaluated sangivamycin efficacy in the absence of EBOV VP40 WT expression using an
EBOV minigenome assay, which offers a measure of EBOV L (RdRp) activity. Cells were
transfected simultaneously with plasmids expressing the EBOV RNP complex components
NP, VP35, VP30, and L along with a plasmid expressing T7 polymerase and another
plasmid containing the EBOV genomic 3′ and 5′ leaders flanking a luciferase reporter gene.
Transcription of the reporter is driven by the RNP complex (after initial transcription from
transfected plasmids by T7 polymerase) [52].

Treatment with sangivamycin yielded a measurable dose-dependent reduction in
luciferase expression. Luciferase activity (expression) reduced greater than 80% of the
activity quantified in untreated control cells at 24 h with an IC50 of 46.4 nM (Figure 5A). At
the highest dose and 24 h post-exposure, dose-dependent cytotoxicity of sangivamycin was
approximately 30%. Minigenome activity was also tested with remdesivir, which specifi-
cally targets EBOV L activity [57]. As expected, remdesivir was active in the minigenome
assay, albeit with an IC50 of 1444 nM (Figure 5B). Because both remdesivir and sangi-
vamycin are nucleoside analogs, we tested them in combination at several constant ratios
relative to their respective IC50 values to determine whether they are synergistic, additive,
or antagonistic against the EBOV L target. Increasing amounts of remdesivir relative to
sangivamycin (Figure 5C) or increasing amounts of sangivamycin relative to remdesivir
(Figure 5D) both lowered the IC50 of the respective treatments. These IC50 values were
plotted for each constant ratio of sangivamycin to remdesivir (S:R) in an isobologram [58].
A straight line between the IC50 for sangivamycin alone (46.4 nM) on the y axis to the
IC50 for remdesivir alone (1444 nM) on the x axis determined the additive line (Figure 5E,
dotted line). IC50 values for the constant ratios of S:R were plotted along the additive line
(Figure 5E). The results suggest that both compounds are acting on the same target and not
affecting the activity of each other. IC50 values for the constant ratios significantly above
the additive line would indicate that the compounds were antagonistic to each other in
targeting EBOV L activity. On the other hand, if they were acting on different targets to
affect the minigenome assay (e.g., a cellular target that indirectly affects the minigenome
readout), then the combined treatment would have resulted in data that plotted below the
additive line indicative of synergy.

3.5. Sangivamycin Inhibits EBOV up to 24 H after Addition Relative to Virus Exposure

To further show that sangivamycin is directly targeting specific EBOV processes,
antiviral activity was measured in a time-of-addition experiment of sangivamycin relative
to virus exposure of Huh7 cells. Both viral replication/transcription and VP40-dependent
viral assembly processes occur late in the viral life cycle; therefore, it was expected that
the antiviral activity would be unchanged up to 24 h after adding the drug relative to viral
infection of the cells. On the other hand, if sangivamycin only affects viral entry or an
indirect cellular process (and not late-stage viral processes directly), it is anticipated that
diminishing effects on EBOV infectivity would occur at later time points of drug addition.
At all time points of addition, sangivamycin’s IC50 values were similar or lower than
those at later time points (Figure 6A). Remdesivir’s IC50 value changes were also less than
significant (Figure 5B). This result was not surprising as remdesivir directly affects EBOV
L-dependent replication and transcription late in the viral life cycle [57]. Notably, time-
of-addition curves for remdesivir are overlaying, but the late addition of sangivamycin
appears to lower the IC50.
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Figure 5. Sangivamycin inhibits EBOV RNA transcription/replication. Briefly, EBOV minigenome plasmids were first
transfected in HEK 293T/17 cells. Cells were initially treated with (A) sangivamycin (300 to 9.4 nM) and (B) remdesivir
(3000 to 94 nM) and cytotoxicity and luciferase activity were measured at 24 h. Based on the calculated IC50 values from
the single drug tests in A and B, constant ratios of sangivamycin to remdesivir (S:R = 1:2.5, 1:5, 1:10, 1:20, 1:40) were set
up for drug combination studies (C–E). The constant ratios were plotted relative to (C) sangivamycin concentration (1:0
represents sangivamycin alone from A) and (D) remdesivir concentration (0:1 represents remdesivir alone from B). (E) The
isobologram shows the IC50 values calculated from the curves in C and D plotted on the y axis (values from C) and x axis
(values from D) to assess the constant ratios relative to the additive line (dotted line) drawn between the IC50 values for
sangivamycin and remdesivir alone calculated from curves A and B, respectively. All of the constant ratios are along the
additive line within the 95% confidence interval for each point. Data for percent inhibition and cytotoxicity were determined
based on a comparison to untreated negative control cells. Data represent means ± standard deviations (SD) of results from
triplicate samples for the constant ratios and an n of 9 for sangivamycin- and remdesivir-alone treatments.
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Figure 6. Sangivamycin inhibits EBOV up to 24 h after addition relative to virus exposure. Huh7
cells were infected with EBOV and sangivamycin (A) or remdesivir (B) were added to the cells at 1, 2,
4, 8 and 24 h after virus exposure. Results are reported as percent inhibition and cytotoxicity relative
to untreated controls. Each concentration was run in triplicate.

4. Discussion

We developed a new assay to identify compounds that disrupt EBOV VP40 recruitment
for viral particle assembly. VP40 is an abundant filovirus protein that is critical to the
virus life cycle. The primary high-content, high-throughput assay was developed in cells
expressing only fluorescent VP40 to identify compounds that prevented VP40 recruitment
to the inner surface of the cell plasma membrane for viral particle assembly. The advantage
of our cell-based assay is that initial hits are cell permeable, react with VP40 when expressed
alone in a cellular context, and can easily be identified as overtly cytotoxic or not. We
screened approximately 3000 compounds from the NCI open repository compound library
and phenotypically confirmed hits that prevented VP40 membrane localization using
cellular imaging. We first selected hits that caused dose-dependent inhibition of VP40
membrane localization. Hits were then vetted for low cytotoxicity, ability to inhibit VLP
release, and antiviral activity against infectious virus in culture. Finally, hits were counter-
screened using a minigenome assay, an assay excluding VP40, to determine whether
hits targeted additional EBOV proteins and a time-of-addition test of viral infectivity to
determine the stage of the viral life cycle that is affected.

Our results demonstrate that sangivamycin, an antibiotic derived from Streptomyces
sp. and previously tested as an anti-cancer drug [59–62], is a potent inhibitor of a broad
spectrum of viruses, thereby validating the VP40-based screening method. Sangivamycin’s
broad-spectrum activity is perhaps unsurprising given that sangivamycin is an adenosine
nucleoside analog [59] (Figure 7).
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Remdesivir also is a nucleoside analog [8], but neither remdesivir nor GS-441524 (the
parent nucleoside to remdesivir) affected VP40 perimembrane. Sangivamycin therefore is a
dual EBOV antagonist in vitro, which may account for its particularly potent antiviral activ-
ity against EBOV. It is intriguing to consider that the reduction in IC50 upon late addition of
sangivamycin in the time-of-addition assay (Figure 6A) is due to its dual targeting on viral
replication and viral particle assembly and release whereas remdesivir has a single mode
of action and its curves overlapped independent of time-of-addition (Figure 6B). Worth
exploring in the future are whether sangivamycin is a dual antagonist of other ebolaviruses
(in particular, Bundibugyo virus [BDBV] and SUDV) or MARV as well as the nature of the
viral replication and/or transcription inhibition in the minigenome assay. L is the most
likely target of the nucleoside analog since sangivamycin was additive with remdesivir
when combined, but the AMP binding pocket in viral nucleoproteins is another possible
target, as shown for another small molecule (PJ34) targeting coronaviruses [63]. Sangi-
vamycin inhibits the replication of some viruses not tested here, such as herpes simplex
viruses 1 and 2 (IC50 = 226 nM) [64–66], rhinoviruses (IC50 = 291–485 nM) [67], vesicular
stomatitis Indiana virus and human parainfluenza virus 3 (IC50 = 65 nM), coxsackie virus
B4 (IC50 = 129 nM), poliovirus 1 (IC50 = 226 nM), Sindbis virus (IC50 = 646 nM), vaccinia
virus (IC50 = 65 nM), and reovirus type 1 (IC50 = 323 nM) [66]. These findings are consistent
with the broad-spectrum nature of sangivamycin we identified against LASV, rVACV-GFP,
and rCPXV-GFP.

Importantly, the antiviral concentrations required for filovirus inhibition did not
seem to impact cellular RNA polymerase or protein expression in general. Although
sangivamycin was not an effective clinical treatment for cancer when tested in the 1960s, its
effectiveness against cancer cell line growth in vitro has led to multiple hypotheses for its
mechanism of action in cancer cells. Since the clinical trials in the 1960s, many laboratories
have studied the drug’s effect on translation machinery, cellular RNA and DNA polymerase
function, and cellular kinases [53,59,60,68,69]. Sangivamycin has activity against all these
cellular functions, but at substantially higher doses (micromolar) [53,59,68,69] than were
determined to be effective against EBOV and other viruses in our study (nanomolar) and
those previously published [64–67].

The most studied inhibitory mechanism of action for sangivamycin is against cellular
kinases. Sangivamycin may inhibit cellular kinases that are overexpressed in certain cancer
cells, most notably protein kinase C (PKC) and haspin, which may have an apoptotic effect
in certain cancer cell types [e.g., pancreatic cancer cells, breast cancer MCF-AR cells, and
primary effusion lymphoma (PEL) cells] [54–56]. On the other hand, sangivamycin is well
tolerated in other cancer cells or normal cell types (e.g., normal pancreatic cells, Ramos cells,
Burkitt lymphoma DG75 cells, and breast cancer MCF-WT cells), with cytostatic effects only
becoming apparent at the high nanomolar to low micromolar dose range [54–56]. Although
cell growth is affected at these higher concentrations, we observed that both MDMs and
293T cells remain attached and do not undergo apoptosis (data not shown). Numerous
kinases are involved in EBOV replication [70–76]. It therefore must be acknowledged that
some of them may be inhibited by sangivamycin, even at low concentrations, thereby
influencing VP40 transport to the plasma membrane, VP40 oligomerization, or VP40
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membrane association (VP40-specific), or may affect other parts of the EBOV life cycle
(dual specificity, possibly targeting proteins other than L/RdRp).

In considering the in vitro data, we must also consider that sangivamycin was already
tested in clinical trials in the 1960s for anti-cancer activity. The compound proved inac-
tive against cancer but was well tolerated with daily, thrice-weekly, or weekly dosing in
40 patients (0.1 to 2.83 mg/kg total dose) [60]. Preclinical work archived at NCI revealed
that sangivamycin was tested in African green monkeys and was tolerated for 10 d at
1.6 mg/kg/d (total dose 16 mg/kg) and 28 d at 0.4 mg/kg/d (total dose 11.2 mg/kg) [77].
To move forward as a filoviral therapeutic candidate, animal studies, including more in-
depth pharmacokinetic and tolerability studies, should be performed to ensure that the
effective concentration of sangivamycin can safely be administered.

Notably, in laboratory mice, sangivamycin appears to be retained in tissues for days
following a single dose [78]. This retention suggests that sangivamycin could be a candidate
for single or limited dosing. Assuming that slow metabolic turnover of sangivamycin
occurs in humans, we have estimated the amount of sangivamycin in a two-compartment
model for a 70-kg adult male (extracellular and cellular water volumes will be 42 L). Based
on this estimate we calculated that doses already demonstrated to be safe in humans could
be greater than 10-fold above the concentration needed to achieve an antiviral IC90.

In summary, we have described a novel EBOV VP40-based drug screening assay
and demonstrated its suitability for MCM identification through the discovery of sangi-
vamycin as a first in class of compounds that inhibits EBOV VP40 participation in virion
assembly. The validation of the VP40 primary screening and critical path to identify hits
will enable screening of larger small-molecule libraries to identify additional novel EBOV
VP40 inhibitors.

5. Patents

Patents have been filed on Sangivamycin in the USA (PCT/US2017/060207), in Canada
(06384.005CA1) and in Europe (WO2018089306) for Methods of Treating and Inhibiting
Ebola Virus Infection.
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