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A B S T R A C T   

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated 
with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. 
While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor 
(TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and 
enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to 
modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of indi-
vidual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study 
examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide 
(OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and 
hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, 
poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic in-
flammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although 
only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hy-
pothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related 
genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced 
attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not signifi-
cantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflam-
matory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3- 
induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.   

1. Introduction 

Uncontrolled immune responses to viral infection have been pro-
posed to underlie the pathophysiology and exacerbation of a host of 
neurological and psychiatric conditions. Thus, unsurprisingly, recent 
evidence indicates this is also the case following SARS-CoV-2 infection 
(Harapan and Yoo, 2021; Mahalakshmi et al., 2021; Taquet et al., 2021), 

which is responsible for coronavirus disease 2019 (COVID-19), a 
pandemic that has overtaken the world during the past year. Viral an-
tigens mediate immune responses by activating pattern recognition re-
ceptors such as toll-like receptor (TLR)3, resulting in induction of type 1 
interferon (IFN-α and IFN-β) and NFĸB-inducible (e.g. IL-1β, IL-6 and 
TNF-α) inflammatory cascades responsible for host defences, homeo-
stasis and response to injury. However, uncontrolled and aberrant 
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activation of TLR3 has been shown to impair contextual and working 
memory (Baghel et al., 2018; Galic et al., 2009), elicit anxiety- and 
depressive-like behaviour (Gibney et al., 2013), increase neuronal 
excitability and seizure susceptibility (Costello and Lynch, 2013; Galic 
et al., 2009) and exacerbate underlying neurodegenerative processes 
(Deleidi et al., 2010; Field et al., 2010). Furthermore, TLR3 expression 
has been demonstrated to be increased in the brain of patients with 
neurodegenerative (Walker et al., 2018) and psychiatric (Pandey et al., 
2014) disorders. Thus, modulating the neuroinflammatory, and conse-
quently neurological, effects of TLR3 activation is of critical physio-
logical and therapeutic importance. 

The cannabinoid system exhibits well recognised immune- 
modulatory properties (Henry et al., 2016; Russo et al., 2018; Taham-
tan et al., 2016). Accordingly, cannabinoids and related N-acyletha-
nolamines such as N-palmitoylethanolamide (PEA) have been proposed 
as potential therapeutics limiting mast cell activation and inflammatory 
response to SARS-CoV-2 (Gigante et al., 2020; Lucaciu et al., 2021). 
Recent data have indicated that the plant-derived cannabinoid canna-
bidiol inhibits SARS-CoV-2 replication and viral gene expression, in-
duces interferon (IFN) expression and up-regulates its antiviral 
signalling pathways (Nguyen et al., 2021). Similarly, the synthetic 
cannabinoid agonist WIN55,212 has been shown to increase TLR3- 
induced IFN-β levels while attenuating pro-inflammatory NFκB-related 
immune responses in astrocytes (Downer et al., 2011). Increasing 
endogenous cannabinoid tone by inhibiting the catabolism enzymes for 
anandamide and 2-AG, fatty acid amide hydrolase (FAAH) and mono-
acylglycerol lipase (MAGL) respectively, has shown that FAAH, but not 
MAGL, inhibition attenuates TLR3-induced neuroinflammatory, but not 
peripheral, immune responses (Flannery et al., 2018a; Henry et al., 
2014). Furthermore, inhibition of TLR3-induced neuroinflammation 
following FAAH inhibition is associated with an attenuation of TLR3- 
associated hyperthermia, anxiety-like behaviour and enhanced noci-
ceptive responding (Flannery et al., 2018b), indicating that FAAH sub-
strates are important modulators of TLR3-induced neuroinflammation 
and associated behavioural responding. In addition to the endocanna-
binoid anandamide, FAAH also metabolises the related fatty acid am-
ides, N-oleoylethanolamide (OEA) and PEA (Cravatt et al., 1996), and 
thus, inhibition of FAAH results in increases in all three substrates 
(Fegley et al., 2005; Flannery et al., 2018a). It is unknown if one or all of 
these substrates is responsible for modulating the TLR3-induced neu-
roinflammatory and associated behavioural responding following FAAH 
inhibition. 

The effects of AEA, OEA and PEA on TLR4-induced inflammatory 
responses have been well documented. AEA attenuates TLR4-induced 
production of pro-inflammatory cytokines and mediators such as TNF- 
α, IL-1β, prostaglandins (PG) and nitric oxide (NO) (Facchinetti et al., 
2003; Molina-Holgado et al., 1997; Puffenbarger et al., 2000), while 
concurrently increasing anti-inflammatory mediators such as IL-10 
(Correa et al., 2010; Krishnan and Chatterjee, 2012). N-acylethanol-
amine acid amidase (NAAA) is a further metabolic pathway for OEA and 
PEA, inhibition of which elicits potent immunosuppressive effects 
(Alhouayek et al., 2015; Piomelli et al., 2020; Skaper et al., 2015; 
Solorzano et al., 2009). PEA reduces TLR4-induced increases in TNF-α 
production and IL-6 and iNOS expression in macrophages (Li et al., 
2012; Solorzano et al., 2009) and inhibits TLR4-induced pro-inflam-
matory M1 microglia while augmenting anti-inflammatory M2a micro-
glia (D'Aloia et al., 2021). OEA decreased TLR4-induced increases in 
expression of pro-inflammatory cytokines iNOS and COX-2 in macro-
phages (Fan et al., 2014; Yang et al., 2016). OEA and PEA induce anti- 
inflammatory effects in a mouse model of colitis, directly via inhibi-
tion of TLR4-mediated immune responses (Esposito et al., 2014; Lama 
et al., 2020). Within the brain, AEA modulates TLR4-induced inflam-
matory responses, temperature changes and hypophagia (Hollis et al., 
2011; Steiner et al., 2011). OEA and PEA attenuated TLR4-induced NFκB 
activity, IL-1β, COX-2, mPGES-1 expression and PGE2 levels in the hy-
pothalamus, an effect associated with potentiation of TLR4-induced 

hypothermia (Sayd et al., 2015). OEA blocks the TLR4-mediated in-
creases in pro-inflammatory cytokines and chemokines, oxidative and 
nitrosative stress, and neurodegenerative cascades in frontal cortex of a 
rodent model of alcohol abuse (Orio et al., 2018; Rivera et al., 2019) and 
neuropsychiatric conditions (Moya et al., 2021). Collectively, this 
demonstrates that AEA, OEA and PEA modulate TLR4-induced inflam-
matory responses; however, there is a paucity of studies investigating 
the effects of individual N-acylethanolamines on TLR3-induced inflam-
matory responses. PEA has been shown to inhibit TLR3-induced increase 
in the expression and release of the chemokine MCP-1 in keratinocytes 
(Petrosino et al., 2010). TLR3 plays a key role in the induction of the 
TMEV-model of multiple sclerosis, and FAAH inhibition, AEA and PEA 
has been shown to attenuate microglial activation, the expression of pro- 
inflammatory cytokines and ameliorates motor symptoms in this model 
(Mestre et al., 2005; Ortega-Gutierrez et al., 2005; Loria et al., 2008; 
Loria et al., 2010; Correa et al., 2011; Hernangomez et al., 2012). 
However, effects of individual FAAH substrates on the acute TLR3- 
mediated neuroimmune responses and associated sickness behaviour 
has not been examined. Enhancing FAAH substrate levels inhibits TLR3- 
induced hyperthermia without altering other aspects of the acute sick-
ness response (Flannery et al., 2018b). As such, this study examined the 
effects of intracerebral or systemic administration of meth-AEA, OEA 
and PEA on TLR3-induced hyperthermia and expression of neuro-
inflammatory genes. OEA and PEA elicit their anti-inflammatory and 
neuroprotective effects mainly through the activation of nuclear 
peroxisome proliferator-activated receptor-alpha (PPAR-α) (Di Cesare 
Mannelli et al., 2013; Gonzalez-Aparicio et al., 2014; Lo Verme et al., 
2005; Rankin and Fowler, 2020; Zhou et al., 2012). As such, the role of 
PPARα on OEA-mediated modulation of TLR3-induced hyperthermia 
and inflammatory gene expression was also examined. 

2. Methods 

2.1. Animals 

Experiments were carried out on female Sprague-Dawley rats 
(weight, 200-350 g; In house bred), housed singly in transparent plastic 
bottomed cages on a constant temperature (21 ± 2 ◦C) under standard 
light-dark cycle conditions (12: 12 h light-dark, lights on from 0800 to 
2000 h). All experiments were carried out during the light phase be-
tween 0800 h and 1800 h. Food and water were available ad libitum. 
Animals were habituated to handling and received an intraperitoneal (i. 
p.) injection of sterile saline (0.89% NaCl) for 3–4 days before experi-
mentation in order to minimise the influence of the injection procedure 
on behaviour and biological endpoints. The experimental protocol was 
carried out in accordance with the guidelines of the Animal Care and 
Research Ethics Committee, National University of Ireland Galway 
under licence from the Irish Health Products regulatory Authority and in 
compliance with the European Communities Council directive 2010/ 
63/EU. 

2.2. Experimental design 

2.2.1. Experiment 1: the effect of methanandamide on TLR3-induced 
hyperthermia and neuroinflammatory gene expression 

Rats were randomly assigned to one of three treatment groups: 
Vehicle-Saline (n = 6), Vehicle-Poly I:C (n = 9), Methanandamide 
(meth-AEA)-Poly I:C (n = 10). Meth-AEA (20μg, Abcam, UK) or Vehicle 
(100% DMSO) were administered in a single acute i.c.v. injection, in an 
injection volume of 4 μl. This was followed 10 min later by an i.p, in-
jection of poly I:C (3 mg/kg) or sterile saline (0.89% NaCl) administered 
in an injection volume of 1.5 mg/kg. Due to the rapid metabolism of AEA 
in vivo, the stable AEA analogue meth-AEA was administered directly to 
the brain (i.c.v). The concentration of meth-AEA used was chosen based 
on previous literature demonstrating antinociceptive and gastro-
protective effect when administered centrally (Garzon et al., 2009; 
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Shujaa et al., 2009). Core body temperature was measured using a rectal 
probe prior to any experimental manipulation and 4 h post poly I:C/ 
saline injection. Animals were sacrificed by decapitation at 4 h post-poly 
I:C/saline administration, the hypothalamus excised, snap-frozen on dry 
ice and stored at -80 ◦C until assayed for expression of inflammatory 
mediators. 

2.2.2. Experiment 2: the effects of OEA and PEA on TLR3-induced 
hyperthermia and neuroinflammatory gene expression 

Rats were randomly assigned to one of four treatment groups: 
Vehicle-saline (n = 8), Vehicle-poly I:C (n = 9), OEA-poly I:C (n = 9) and 
PEA-poly I:C (n = 9). OEA and PEA (20 mg/kg, Abcam, UK) or Vehicle 
(ethanol: Cremophor: saline; 1:1:18) were administered i.p. in an in-
jection volume of 2 ml/kg followed 10 min later by an i.p, injection of 
poly I:C (3 mg/kg) or sterile saline (0.89% NaCl) administered in an 
injection volume of 1.5 ml/kg. The dose of OEA was chosen as this has 
been shown to increase striatal levels of OEA from 15 min to 2 h post 
administration (Gonzalez-Aparicio et al., 2014; Plaza-Zabala et al., 
2010) and pilot data in the lab demonstrated increased OEA concen-
tration in the hypothalamus 1 h post administration. The dose of PEA 
was chosen based on published data demonstrating efficacy in reducing 
nociceptive behaviour (Pessina et al., 2015). Temperature was recorded 
prior to injection and 4 h post poly I:C/saline administration. Animals 
were sacrificed by decapitation at 4 h post-poly I:C/saline administra-
tion, the spleen and hypothalamus excised, snap-frozen on dry ice and 
stored at -80 ◦C until assayed for inflammatory gene expression. 

2.2.3. Experiment 3: the effects of PPARα antagonism, in the presence and 
absence of OEA, on TLR3-induced hyperthermia and neuroinflammatory 
gene expression 

Rats were randomly assigned to one of four treatment groups: 
Vehicle-Vehicle-saline (n = 8), Vehicle-Vehicle-poly I:C (n = 9), Vehicle- 
OEA-poly I:C (n = 8), GW6471-OEA-poly I:C (n = 8) and GW6471- 
Vehicle-PEA-poly I:C (n = 7). OEA (20 mg/kg, Abcam, UK) and 
GW6471 (2 mg/kg) were dissolved in Vehicle (ethanol: cremophor: 
saline; 1:1:18) were administered i.p. in an injection volume of 2 ml/kg. 
GW6471 or Vehicle was administered 20 min prior to administration of 
OEA or vehicle followed 10 min later by an i.p, injection of poly I:C (3 
mg/kg) or sterile saline (0.89% NaCl) in an injection volume of 1.5 ml/ 
kg. The dose of GW6471 was chosen based on efficacy in reversing PEA- 
induced protective effects (Pessina et al., 2015; Scuderi et al., 2014), 
without affecting nociceptive responding (Gaspar et al., 2020) or 
anxiety-like behaviour (unpublished in-house data). Temperature was 
recorded prior to injection and 4 h post poly I:C/saline administration, 
after which animals were sacrificed hypothalamus excised, snap-frozen 
on dry ice and stored at -80 ◦C until assayed for gene expression. 

2.2.4. Experiment 4: the effects of PPARα agonism on TLR3-induced 
hyperthermia and neuroinflammatory gene expression 

Rats were randomly assigned to one of three treatment groups: 
Vehicle-saline (n = 6), Vehicle-poly I:C (n = 8), Vehicle-WY14643 (n =
6). WY14643 (20 mg/kg, Abcam, UK) was dissolved in Vehicle (10% 
DMSO) were administered i.p. in an injection volume of 2 ml/kg, fol-
lowed 30 min later by an i.p, injection of poly I:C (3 mg/kg) or sterile 
saline (0.89% NaCl) in an injection volume of 1.5 ml/kg. The dose of 
WY14643 was chosen based on in vivo efficacy in several models (Lysne 
et al., 2019; Okine et al., 2015; Song et al., 2016). Temperature was 
recorded prior to injection and 4 h post poly I:C/saline administration, 
after which animals were sacrificed hypothalamus excised, snap-frozen 
on dry ice and stored at -80 ◦C until assayed for gene expression. 

2.3. Intracerebroventricular (i.c.v.) guide cannula implantation 

Intracerebroventricular (i.c.v.) guide cannulae were implanted into 
the rat brain as previously described (Henry et al., 2014). In brief, under 
isoflurane anaesthesia (1–3% in O2; 0.5 L/min), a guide cannula (5 mm, 

Plastics One Inc., Roanoke, Virginia, USA) was stereotaxically implanted 
into the right lateral ventricle (coordinates: AP: − 0.07 mm; ML: − 0.15 
mm, DV: − 0.30 mm; (Paxinos, 2006)). The cannula was permanently 
fixed to the skull using stainless steel screws and dental acrylic cement 
and the guide remained patent by the insertion of a stainless steel stylet 
(Plastics One Inc., USA). Animals received the broad spectrum antibiotic 
enrofloxacin (2.5 mg/kg s.c.; Baytril, Bayer Ltd., Ireland) on the day of 
and for 3 days post surgery. Correct cannula placement was verified by 
the Angiotensin (Ang) II drinking test 3 days prior to the experiment. 
Animals were considered non-responders if they drank <3mls over 20 
min post AngII infusion and were not included in the experiment. Over 
all experiments, the average number of non-responders was <5%. Ani-
mals were allowed to recover from surgery for at least 6 days prior to 
experimentation. 

2.4. Expression of inflammatory mediators using quantitative real-time 
PCR 

RT-qPCR was performed as previously described (Flannery et al., 
2018a; Flannery et al., 2018b; Henry et al., 2014). In brief, mRNA was 
isolated from hypothlamic tissue using NucleoSpin RNA II total RNA 
isolation kit (Macherey-Nagel, Germany) and reverse transcribed into 
cDNA using a High Capacity cDNA Archive kit (Applied Biosystems, 
UK). Taqman gene expression assays (Applied Biosystems, UK) were 
used to quantify the gene of interest and real-time PCR was performed 
using an ABI Prism 7500 instrument (Applied Biosystems, UK. Assay IDs 
for the genes were as follows: IP-10 (Rn00594648_m1), IRF7 
(Rn01450778_g1), TNFα (Rn99999017_m1), IL-1β (Rn00580432_m1), 
IL-10 (Rn00563409_m1), iNOS (NOS2) (Rn00561646_m1), COX-2 
(Rn01483828_m1), m-PGE-s (Rn00572047_m1), SOCS1 
(Rn00595838_s1) and SOCS3 (Rn00585674_s1). β-actin was used as an 
endogenous control to normalise gene expression data. Relative gene 
expression was calculated using the ∆∆CT method. 

2.5. Statistical analysis 

Data were analysed and graphs using Graph Pad Prizm v9. Normality 
and homogeneity of variance were assessed using Shapiro-Wilk and 
Levene's test, respectively. Data were analysed by One-Way ANOVA's 
followed by Student Newman Keules (SNK) post hoc analysis where 
appropriate. The level of significance was set at p < 0.05. Data are 
expressed as group means ± standard error of the mean (SEM). 

3. Results 

3.1. Meth-AEA does not alter TLR3-induced hyperthermia or 
inflammatory gene expression in the hypothalamus 

The data revealed that poly I:C-induced an increase in temperature 
[F(2,19) = 6.35, p = 0.007] and IP-10 [F(2,19) = 29.97, p < 0.001], TNF-α 
[F(2,19) = 4.89, p = 0.019] and IL-1β [F(2,19) = 3.73, p = 0.044] 
expression in the hypothalamus, 4 h post administration (Fig. 1a-d). 
Meth-AEA (i.c.v.) did not alter poly I:C-induced hyperthermia or in-
flammatory gene expression in the hypothalamus (Fig. 1a-d). 

3.2. OEA and PEA attenuates TLR3-induced hyperthermia, but only OEA 
attenuates TLR3- induced inflammatory gene expression in the 
hypothalamus 

The data revealed that poly I:C significantly increased temperature at 
4 h post administration [F(3,24) = 5.842, p = 0.004]. Systemic admin-
istration of either OEA or PEA prevented poly I:C-induced hyperthermia 
(Fig. 2a). 

Analysis revealed a significant effect of treatment on the hypotha-
lamic expression of IFN-inducible genes IP-10 [F(3,25) = 24.32, p <
0.001] and IRF7 [F(3,25) = 25.6, p < 0.001], and the NFκB-inducible 
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Fig. 1. The effect of meth-AEA (i.c.v.) on poly I:C induced (a) hyperthermia and increases in (b) IP-10, (c) TNF-α and (d) IL-1β expression in the hypothalamus, 4 h 
post poly I:C administration. Data expressed as mean ± SEM (n = 5–9 per group). *p < 0.05; ** p < 0.01 vs vehicle-saline-treated counterparts. 

Fig. 2. The effect of OEA or PEA on poly I:C induced (a) hyperthermia and increases in inflammatory gene expression of (b) IP-10, (c) IRF7, (d) TNF-α, (e) IL-1β, (f) 
IL-10, (g) iNOS, (h) COX2, (i) MPGES, (j) SOCS1 and (k) SOCS3 in the hypothalamus, 4 h post poly I:C administration. Data expressed as mean ± SEM (n = 6–8 per 
group). ***p < 0.001; **p < 0.01; * p < 0.05 vs vehicle-saline-treated counterparts. ++p < 0.01; +p < 0.05 vs vehicle-poly I:C-treated counterparts. 
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genes TNF-α [F(3,25) = 11.03, p < 0.001], IL-1β [F(3,25) = 9.02, p <
0.001], IL-10 [F(3,25) = 8.328, p < 0.01]. Post hoc analysis revealed that 
poly I:C-induced a significant increase in the expression of all inflam-
matory genes examined in the hypothalamus compared to vehicle- 
saline-treated counterparts, 4 h post administration (Fig. 2b-f). OEA 
significantly attenuated the poly-I:C-induced increase in IP-10, IRF7, 
TNF-α and IL-1β, but not IL-10, expression in the hypothalamus. In 
contrast, systemic administration of PEA did not alter the poly I:C- 
induced increase in neuroinflammatory gene expression in the hypo-
thalamus (Fig. 2b-f). 

In order to determine if the effects of OEA on poly I:C-induced hy-
perthermia are accompanied by an attenuation of COX2-PEG2 activity, 
the expression of genes regulating this pathway was also examined. 
Analysis revealed a significant effect of treatment on expression iNOS 
[F(3,25) = 8.506, p < 0.01], COX2 [F(3,24) = 20.06, p < 0.01] and MPEGS 
[F(3,25) = 20.47, p < 0.01]. Post hoc analysis revealed that poly I:C 
induced an increase in expression of iNOS, COX2 and MPGES, an effect 
attenuated by OEA, but not PEA (Fig. 2g-i). Furthermore, analysis 
revealed a significant effect of treatment the expression of the regulatory 
genes SOCS1 [F(3,25) = 22.51, p < 0.01] and SOCS3 [F(3,25) = 17.57, p <
0.01] and confirmed that poly I:C-induced an increase in expression of 
SOCS1 and SOCS3, an effect attenuated by OEA, but not PEA (Fig. 2j-k). 

3.3. OEA or PEA do not alter TLR3-induced inflammatory gene 
expression in the spleen 

In order to determine if the effect of OEA on inflammatory gene 
expression in the hypothalamus are due to modulation of peripheral 
immune responses following TLR3 activation, inflammatory gene 
expression was also examined in the spleen. Poly I:C-induced a signifi-
cant increase in IP-10 [F(3,25) = 129.8, p < 0.001], IRF7 [F(3,25) = 104.1, 
p < 0.001], TNF-α [F(3,25) = 25.46, p < 0.001] and IL-1β expression 
[F(3,25) = 16.59, p < 0.001] in the spleen, an effect not altered by OEA or 
PEA (Fig. 3). 

3.4. PPARα antagonism blocks the OEA-induced attenuation of 
inflammatory gene expression in the hypothalamus following TLR3 
activation 

Several studies have demonstrated that anti-inflammatory effects of 
OEA have been attributed to activation of PPARα. Thus, the role of 
PPARα in mediating the effects of OEA on TLR3-induced hyperthermia 
and neuroinflammatory gene expression in the hypothalamus were 
examined in the current study. Analysis revealed that poly I:C- induced 
an increase in body temperature 4 h post administration (P = 0.05), 
which was not observed in rats that received OEA and/or the PPARα 
antagonist GW6471 (Fig. 4a). Poly I:C significantly increased the 
expression of IP-10 [F(4,33) = 10.86, p < 0.001], IRF7 [F(4,33) = 11.31, p 
< 0.001], TNF-α [F(4,33) = 5.13, p = 0.002] and IL-1β [F(4,33) = 4.52, p =
0.005] in the hypothalamus, an effect not observed in rats pre-treated 

with OEA (Fig. 4b-e). Administration of GW6471 blocked the effects 
of OEA on inflammatory gene expression following poly I:C adminis-
tration. There was no significant effect of GW6471 alone on poly I:C- 
induced inflammatory gene expression in the hypothalamus (Fig. 4b-e). 

In order to determine if the effects of OEA on TLR3-induced re-
sponses could be mimicked by PPARα agonism, the effects of systemic 
administration of the PPARα agonist WY14643 were examined. 
WY14643 did not alter TLR3-induced hyperthermia, IP-10 or TNFα 
expression in the hypothalamus (Fig. 5). 

4. Discussion 

N-acylethanolamines exhibit potent anti-inflammatory effects, 
however, effects on viral-mediated immune responses within the brain 
have not been extensively examined. The present study demonstrated 
that OEA and PEA, but not AEA, attenuate TLR3-induced hyperthermia 
and OEA attenuates the expression of IRF- and NFκB-related genes in the 
hypothalamus, including hyperthermic related genes (IL-1β, iNOS, COX2 
and m-PGES). Antagonism of PPARα prevented the OEA-induced 
attenuation of IRF- and NFκB-related genes in the hypothalamus 
following TLR3 activation, without altering temperature. However, 
PPARα agonism did not alter TLR3-induced hyperthermia or hypotha-
lamic inflammatory gene expression. While the mechanisms mediating 
the effects of PEA on TLR3-mediated hyperthermia remain to be deter-
mined, the data indicate that OEA attenuates TLR3-induced neuro-
inflammation and hyperthermia, an effect partially mediated by PPARα. 

In line with previous data, (Cunningham et al., 2007; Flannery et al., 
2018a; Henry et al., 2014; Murray et al., 2015), the present study 
confirmed that poly I:C-induced activation of TLR3 elicits a robust in-
duction of IFN- and NFκB-mediated immune responses both peripherally 
and centrally, accompanied by hyperthermia. Increasing FAAH sub-
strate levels has been demonstrated to attenuate TLR3-induced hyper-
thermic and neuroinflammatory responses, effects specifically mediated 
at the level of the central nervous system (Flannery et al., 2018a; 
Flannery et al., 2018b; Henry et al., 2014). The current data demonstrate 
that OEA and PEA, but not meth-AEA, attenuate TLR3-induced hyper-
thermia. In comparison, AEA, OEA and PEA have been shown to 
modulate TLR4-induced hypo- (Sayd et al., 2015; Steiner et al., 2011) or 
hyper-thermia (Hollis et al., 2011), although no effect was observed 
when all 3 substrates are enhanced following FAAH inhibition (Henry 
et al., 2017). It is possible that competitive inhibition exists when all 
three FAAH substrates are enhanced which overrides the effects of in-
dividual N-acylethanolamines on TLR4-induced changes in core body 
temperature. Such competitive inhibition between FAAH substrates may 
not take place in response to TLR3 activation, as AEA does not play a 
significant role in TLR3-mediated thermoregulation. Accordingly, AEA- 
induced activation of CB1 receptors plays a key role in the thermoreg-
ulatory response following TLR4 activation (Duncan et al., 2013; Fraga 
et al., 2009; Steiner et al., 2011). In comparison, TLR3-mediated hy-
perthermia is maintained in CB1− /− mice (Duncan et al., 2013), a finding 

Fig. 3. The effect of OEA or PEA on poly I:C induced increases in inflammatory gene expression of (a) IP-10, (b) IRF7, (c) TNF-α and (d) IL-1β in the spleen, 4 h post 
poly I:C administration. Data expressed as mean ± SEM (n = 6–8 per group). ***p < 0.001 vs vehicle-saline-treated counterparts. 
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further supported by unpublished data from our lab demonstrating a 
lack of effect of central CB1 or CB2 receptor agonism on TLR3-induced 
hyperthermia. Thus, taken together, these data suggest that AEA-CB1 
receptor activation plays a key role in TLR4-, but not TLR3-, induced 
thermoregulatory and neuroinflammatory responses. 

OEA and PEA modulate the TLR4-induced hypothermic response, an 
effect associated with an attenuation in hypothalamic IL-1β, COX-2, 
mPGES-1 expression and PGE2 levels (Sayd et al., 2015). Similarly, the 
TLR3-induced hyperthermic response has been shown to be primarily 
mediated by the IL-1β-COX2 pathway (Fortier et al., 2004). The current 
study demonstrated that OEA and PEA attenuates TLR3-induced hy-
perthermia; however, only OEA attenuates the hypothalamic expression 
of hyperthermic related genes (IL-1β, COX2, iNOS and m-PGES-1). 
Published and pilot data have demonstrated that OEA crosses the blood 
brain barrier and increases OEA levels in the brain 20 mins following i.p. 
administration (Gonzalez-Aparicio et al., 2014) and can remain elevated 
up to 2 h post injection (Plaza-Zabala et al., 2010). Furthermore, OEA 
did not alter the expression of TLR3-induced inflammatory genes in the 
spleen. Thus, it is likely that OEA acts directly at the level of the hypo-
thalamus to attenuate the TLR3-induced activation of the IL1β-COX2- 
PGE2 pathway and consequently, the associated hyperthermia. The 
neuro-immuno-modulatory effects of FAAH inhibition following TLR3 

activation have been demonstrated to be mediated directly at the level 
of the brain (Flannery et al., 2018a; Henry et al., 2014). Thus, given the 
lack of effect of meth-AEA or PEA on TLR3-induced neuroimmune me-
diators, it is likely that OEA is the primary FAAH substrate modulating 
TLR3-induced neuroinflammation and associated hyperthermia. The 
anti-inflammatory effects of OEA are primarily mediated by PPARα 
(Russo et al., 2018; Xu et al., 2016) and accordingly, the current study 
demonstrated that PPARα antagonism blocked the inhibitory effect of 
OEA on TLR3-induced inflammatory gene expression in the hypothala-
mus. However, PPARα antagonism failed to alter the inhibitory effect of 
OEA on TLR3-induced hyperthermia, and PPARα agonism failed to 
modulate TLR3-induced hyperthermia or hypothalamic gene expres-
sion, indicating additional receptor (TRPV1, GPR55) or molecular tar-
gets and/or thermoregulatory mechanisms are likely to be also involved 
in mediating the effects of OEA. 

Although PEA attenuated TLR3-induced hyperthermia, no effect was 
observed on the expression of inflammatory genes in the hypothalamus, 
suggesting differential mechanisms underlie the effects of OEA and PEA 
on TLR3-induced hyperthermia. We cannot rule out that PEA may have 
induced effects on hypothalamic inflammatory gene expression at an 
earlier timepoint than examined in this study. PEA has been reported to 
cross the blood brain barrier after an oral administration, although at 

Fig. 4. The effect of GW6471 on OEA-induced changes in (a) temperature and f (b) IP-10, (c) IRF7, (d) TNF-α and (e) IL-1β expression in the hypothalamus. Data 
expressed as mean ± SEM (n = 7–8 per group). *p < 0.05; **p < 0.01 vs Veh-Veh-Saline. ++p < 0.01 vs Veh-Veh-poly I:C. $p < 0.05 vs Veh-OEA-poly I:C. 

Fig. 5. The effect of systemic administration of WY14643 on poly I:C induced (a) hyperthermia and (b) increases in (b) IP-10 and (c) TNF-α expression in the 
hypothalamus. Data expressed as mean ± SEM (n = 6–8 per group). ***p < 0.001 **p < 0.01 *p < 0.05 vs vehicle-saline. 
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very low concentrations (<1%) (Artamonov et al., 2005) and unpub-
lished pilot data from our lab suggest that PEA levels were not elevated 
in the hypothalamus 1 h following administration. It should be noted 
that in addition to FAAH, OEA and PEA are also hydrolysed by NAAA, 
the inhibition of which has been shown to elicit potent immunosup-
pressive activity (Alhouayek et al., 2015; Piomelli et al., 2020; Skaper 
et al., 2015; Solorzano et al., 2009). NAAA is highly expressed in cells of 
the immune system and thus, the lack of effect of PEA on hypothalamic 
gene expression may be due to low central tissue distribution due to its 
rapid metabolism by NAAA under inflammatory conditions. The effects 
of PEA on TLR3-induced hyperthermia is most likely mediated periph-
erally rather than at the level of the hypothalamus. However, the current 
study demonstrated that PEA did not alter the TLR3-induced increase in 
IFN- or NFκB-related gene expression in the spleen, indicating that 
thermoregulatory effects are not merely due to global inhibition of pe-
ripheral immune responses to TLR3 activation. However, PEA may have 
altered the transcription or translation of these genes, the release of 
immune mediators or elicited effects in other tissues or organs. For 
example, it is possible that PEA may modulate peripheral, rather than 
central, PGE2 levels. LPS and poly I:C dramatically increase the plasma 
level of PGE2 60–90 min following administration, which in critical in 
the initiation of the hyperthermic response (Davidson et al., 2001; 
Rotondo et al., 1988). In comparison, later phases of the hyperthermic 
response are mediated by PGE2 produced by COX-2 and mPGES-1 in 
perivascular macrophages and endothelial cells in the brain (Steiner 
et al., 2006). Therefore, by inhibiting poly I:C-induced increases in 
plasma levels of PGE2, PEA may prevent the TLR3-induced hyperthermic 
response. It was not possible to assess this directly in the current study 
due to the time at which samples were taken (4 h post poly I:C admin-
istration). Alternatively, PEA may mediate its effects by modulating 
cardiovascular or metabolic pathways (Karimian Azari et al., 2020; 
Mattace Raso et al., 2014) involved in thermoregulation. Further studies 
will be required to examine the mechanisms by which PEA is mediating 
its inhibitory effects on the poly I:C-induced fever response. 

Overall, the data herein demonstrate that the FAAH substrate OEA 
elicits potent neuro-immuno-regulatory effects partially mediated by 
PPARα, which limit the hyperthermic response to TLR3 activation 
following viral infection. These effects mimic those observed following 
FAAH inhibition, and as such, OEA may be the primary FAAH substrate 
mediating protective effects on TLR3-induced neuroinflammation, 
sickness behaviour and long-term psychiatric and neurological changes. 
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