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1  |  INTRODUC TION

Improvements in public health and medical treatment have greatly con-
tributed to longer human life spans. However, susceptibility to a host of 
diseases, including diabetes (Kalyani et al., 2017), stroke (Yousufuddin 

& Young, 2019), cancer (Aunan et al., 2017), and neurodegeneration 
(Hou et al., 2019), increases with age. How to achieve healthy aging and 
delay functional degeneration has become an important issue.

The entorhinal cortex is situated in the medial temporal 
lobe, below the cerebral cortex near the hippocampus (Garcia & 
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Abstract
The entorhinal cortex is of great importance in cognition and memory, its dysfunction 
causes a variety of neurological diseases, particularly Alzheimer's disease (AD). Yet 
so far, research on entorhinal cortex is still limited. Here, we provided the first single- 
nucleus transcriptomic map of primate entorhinal cortex aging. Our result revealed 
that synapse signaling, neurogenesis, cellular homeostasis, and inflammation- related 
genes	 and	 pathways	 changed	 in	 a	 cell-	type-	specific	 manner	 with	 age.	 Moreover,	
among the 7 identified cell types, we highlighted the neuronal lineage that was most 
affected	by	aging.	By	integrating	multiple	datasets,	we	found	entorhinal	cortex	aging	
was closely related to multiple neurodegenerative diseases, particularly for AD. The 
expression levels of APP and MAPT, which generate β- amyloid (Aβ) and neurofibril-
lary tangles, respectively, were increased in most aged entorhinal cortex cell types. In 
addition, we found that neuronal lineage in the aged entorhinal cortex is more prone 
to AD and identified a subpopulation of excitatory neurons that are most highly as-
sociated with AD. Altogether, this study provides a comprehensive cellular and mo-
lecular atlas of the primate entorhinal cortex at single- cell resolution and provides 
new insights into potential therapeutic targets against age- related neurodegenerative 
diseases.
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Buffalo,	2020).	It	forms	circuits	with	different	brain	regions	(Schultz	
et al., 2015), such as the hippocampus, amygdaloid nucleus, and neo-
cortex (Gerlei et al., 2021). It processes information generated by the 
cerebral cortex and sends it to the hippocampus and amygdala, and 
vice versa. Thus, the entorhinal cortex is the “interface” for continu-
ous information exchange between the hippocampus and neocortex 
(Sirota	et	al.,	2003), and plays a crucial role in the acquisition, retrieval, 
and extinction of many forms of learning and memory (Coutureau & 
Di	Scala,	2009; Eichenbaum et al., 2007). Pathological changes in the 
entorhinal cortex are associated with a variety of neurological dis-
eases, particularly Alzheimer's disease (AD) (Khan et al., 2014). The 
entorhinal cortex is one of the first cortical brain regions to exhibit 
neuronal	loss	in	AD	(Braak	&	Braak,	1995;	Leng	et	al.,	2021).In addi-
tion, entorhinal cortex is among the first cortical fields to accumu-
late formation of β- amyloid (Aβ) and neurofibrillary tangles (NFTs) in 
AD brains (Huijbers et al., 2014; Knopman et al., 2019). Therefore, a 
comprehensive understanding of the mechanisms underlying aging 
in the entorhinal cortex could provide insight into disease mecha-
nisms and lead to therapeutic strategies.

Non- human primates (NHPs), such as cynomolgus monkeys, are 
similar to humans in terms of entorhinal cortex structure, anatomical 
location,	and	function	(Garcia	&	Buffalo,	2020), Therefore, analysis 
of the entorhinal cortex isolated from monkeys will help to better 
understand the etiology of aging- related memory loss and cognitive 
decline(M.L.	Li	et	al.,	2019). Given the cellular heterogeneity of the 
entorhinal cortex(Kim & Park, 2021), the application of single- cell/
nucleus RNA sequencing (scRNA- seq/snRNA- seq) could expand 
our understanding of how cell types are affected during entorhi-
nal	cortex	aging	(J.	Li	et	al.,	2021; H. Zhang et al., 2021;	W.	Zhang	
et al., 2020).

Here, we obtained a single- nuclear transcriptome atlas of the 
monkey entorhinal cortex as well as clarified gene and pathway 
alterations in a cell- type- specific manner during entorhinal cortex 
aging.	Moreover,	we	integrated	multiple	neurodegenerative	disease	
datasets based on single- cell transcriptome data to clarify the cor-
relation between disease and entorhinal cortex aging. This study 
advances our understanding of entorhinal cortex aging at the single- 
cell level and elucidates potential therapeutic targets for interven-
tions against neurodegenerative diseases in humans.

2  |  RESULTS

2.1  |  Single- nucleus transcriptome map of NHP 
entorhinal cortex

We	collected	the	entorhinal	cortex	from	young	(7–	8 years	old)	and	
aged	 (16–	18 years	 old)	 cynomolgus	 monkeys	 (Macaca fascicularis) 
(Figure 1a; Table S1). The aged entorhinal cortices were character-
ized by higher senescence- associated β-	galactosidase	 (SA-	β- Gal) 
staining (Figure 1b), a common feature of senescent cells (Rodrigue 
et al., 2012). In addition, the accumulation of amyloid- β (Aβ) depos-
its (immunostained by pan- specific anti- Aβ (4G8)) were significantly 

increased in aged entorhinal cortex (Figure S1 a) and overall neuronal 
density was significantly decreased in the aged entorhinal cortex 
(Figure S1 b).

To analyze cell populations and molecular characteristics, we 
performed snRNA- seq on the entorhinal cortex of the cynomol-
gus monkeys (Figure 1a). After cell quality control and filtering, 
76,839	single	cells	were	retained	for	downstream	analyses.	Using	
unbiased clustering and uniform manifold approximation and pro-
jection	(UMAP)	analysis,	we	identified	seven	cell	types	in	the	ento-
rhinal cortex based on classic cell- type- specific markers (Figure 1c; 
Table S2),	 including	 excitatory	 neurons	 (ExN,	 48,687),	 inhibitory	
neurons (InN, 15,178), oligodendrocytes (5859), oligodendrocyte 
precursor	cells	 (OPCs,	2283),	astrocytes	 (2066),	microglia	 (2047),	
and endothelial cells (ECs, 719) (Figure 1d). Gene Ontology (GO) 
enrichment analysis of cell- type- specific marker genes revealed 
the characteristics of each cell type. For example, the axonogen-
esis pathway was enriched in ExN genes, chemical synapse trans-
mission pathway was enriched in InN genes, neuron projection 
development pathway was enriched in oligodendrocyte genes, and 
inflammatory response- related pathway was enriched in microglial 
genes (Figure 1e). These results revealed the cellular heterogeneity 
in entorhinal cortex.

Furthermore, we identified the upstream regulators that drive cell 
differentiation in the entorhinal cortex. For example, the regulons of 
CREM and MEIS2, which are involved in cell differentiation and neu-
rodegeneration	(Mantamadiotis	et	al.,	2002), were crucial regulators 
for neuronal lineage differentiation (ExN/InN) (Figure 1f, Table S3). 
The regulons of FLI1, which regulate inflammation- associated genes 
(B.	Chen	et	al.,	2022), were identified as upstream regulators of mi-
croglia (Figure 1f, Table S3).	We	also	identified	several	transcription	
factors (TFs), including TEAD4, SOX10, SOX8, and OLIG2, that reg-
ulate oligodendrocyte lineage differentiation (Figure 1f, Table S3). 
Together, our results clarify the cellular characteristic in the entorhi-
nal cortex, providing the first single- nucleus transcriptomic map of 
the entorhinal cortex in NHPs.

2.2  |  Neuronal lineage is most affected by 
entorhinal cortex aging

We	next	examined	cell	type-	specific	transcriptional	changes	in	the	
entorhinal cortex during aging. Comparing the relative cell propor-
tions between young and aged NHP entorhinal cortices by multivari-
ate	test	(Smillie	et	al.,	2019), we found no significant changes in any 
cell types (Figure 2a; Figure S2). Next, we analyzed differentially ex-
pressed genes (DEGs) between young and aged entorhinal cortices 
according to cell type. The highest number of DEGs was observed 
in the neuronal lineage (Figure 2b).	Moreover,	by	assessing	the	gene	
set scores of aging- related genes across cell types in the entorhinal 
cortex (Aging Atlas, 2021), we found aging- related genes were acti-
vated in multiple cell types derived from the aged entorhinal cortex, 
particularly neurons (Figure 2c). Together, our results suggest that 
neurons are most affected by entorhinal cortex aging.
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2.3  |  Transcriptomic reprogramming in aging 
primate entorhinal cortex

DEGs analysis revealed significant changes in several key genes dur-
ing entorhinal cortex aging (Figure 2d, Table S4). For instance, OLFM, 
which regulates neural progenitor maintenance and axon growth 
(Nakaya et al., 2012), was the most significantly up- regulated gene in 
the ExNs, suggesting abnormal neurogenesis in the aged entorhinal 
cortex. APOE, which plays a role in lipid metabolism, Aβ aggrega-
tion,	and	tau	damage	(Yin	&	Wang,	2018), was up- regulated in the 
astrocytes. B2M,	which	is	a	component	of	the	MHC-	I	molecule	and	
accumulates	during	 inflammation	 (Batista	Muñoz	et	al.,	2019), was 
up- regulated in the microglia, thus suggesting elevated inflamma-
tion in the aged entorhinal cortex. These dysregulated genes may 

underlie the progressive functional decay of entorhinal cortex cells 
during aging.

GO enrichment analysis of DEGs revealed the cellular pathways 
involved in entorhinal cortex aging (Figure 2e). The synapse signaling 
pathway was down- regulated in all cell types, while pathways asso-
ciated with up- regulated genes exhibited diversity across cell types. 
For example, the ExN- up- regulated genes were primarily involved 
in protein folding in the endoplasmic reticulum and cellular chem-
ical homeostasis, suggesting dysregulation of homeostasis in aged 
ExNs (Estébanez et al., 2018). Neuronal projection organization was 
up- regulated in the oligodendrocytes and OPCs, and inflammation- 
related pathways were up- regulated in the microglia. Together, our 
result clarified the profile of transcriptomic reprogramming in aging 
primate entorhinal cortex.

F I G U R E  1 Construction	of	single-	nucleus	atlas	of	entorhinal	cortex	by	snRNA-	seq.	(a).	Study	flowchart.	(b).	Immunofluorescence	staining	
of	SA-	β-	gal	in	entorhinal	cortex	of	young	and	old	monkeys.	Scale	bars,	50 μm.* p < 0.05.	(c)	Single-	nucleus	transcriptional	atlas	of	NHP	
entorhinal	cortex.	Uniform	manifold	approximation	and	projection	(UMAP)	plots	showing	different	cell	types	by	snRNA-	seq.	(d).	Number	of	
each cell type in entorhinal cortex. (e). Heatmap showing expression profiles of indicated cell- type- specific marker genes of corresponding 
cell	types	in	NHP	entorhinal	cortex.	(f).	Dot	plot	showing	cell-	specific	transcriptome	regulons.	Size	of	dot	represents	specific	degree	of	TF;	
color of dot represents target gene number of TF

(a)

(c)

(e) (f)

(d)

(b)
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We	next	used	single-	cell	regulatory	network	inference	and	clus-
tering	(SCENIC)	to	map	the	gene	regulatory	networks	governing	en-
torhinal cortex aging (Aibar et al., 2017). FOXN3 is a key regulator of 
gene expression changes in microglia during entorhinal cortex aging 
(Figure 3a). GO enrichment analysis indicated that downstream 
DEGs targeted by FOXN3 were mainly involved in lipid metabolism 
and immune system processes (Figure 3b). In addition, we identified 

a series of TFs (ZMAT4, POU2F1, CLK2, TCF4, MEF2A, and SOX6) that 
regulate gene expression changes in the neuronal lineage (Figure 3a). 
GO enrichment analysis indicated that DEGs targeted by major hub 
TFs in neurons were mainly involved in chemical synaptic transmis-
sion and brain development (Figure 3b). These analyses identified 
the upstream regulons that drive cell- type- specific state transitions 
toward aging.

F I G U R E  2 Age-	related	transcriptional	changes	in	various	cell	types	of	entorhinal	cortex.	(a).	Pie	chart	showing	percentage	of	cell	
population	in	different	groups.	(b).	Bar	plot	showing	number	of	DEGs	across	different	cell	types	in	NHP	entorhinal	cortex.	(c).	Violin	plot	
showing gene set score of aging- related genes across cell types. (d). Differential gene expression analysis showing up-  and down- regulated 
genes across all seven clusters. An adjusted p value <0.05 is indicated in red, while an adjusted p	value	≥0.05	is	indicated	in	gray.	(e).	Bar	
plot showing GO terms enriched in aging- related DEGs of different cell types in entorhinal cortex. Red bar on left represents biological 
processes of up- regulated genes in aged entorhinal cortex; blue bar on right represents biological processes of down- regulated genes in 
aged entorhinal cortex

(a)

(d)

(e)

(b) (c)



    |  5 of 12LI et al.

We	 next	 investigated	 changes	 in	 intercellular	 communication	
during	entorhinal	cortex	aging.	Based	on	a	comprehensive	intercel-
lular	network	of	ligand–	receptor	interactions	(Efremova	et	al.,	2020), 
our results showed that interactions between cell types were glob-
ally decreased in the aged group compared with the young group 
(Figure 3c), indicating weakened intercellular communication in the 
aged	 entorhinal	 cortex.	 We	 also	 found	 the	 receptor–	ligand	 pairs	
specifically present in aged entorhinal cortices were mainly involved 
in	 the	neuroactive	 (neuroactive	 ligand–	receptor	 interactions),	 pro-	
inflammatory (regulation of leukocyte migration), and cell adhesion 
(positive regulation of cell adhesion) pathways (Figure 3d, Table S5). 
Thus, these pathways are proposed as mediators of abnormal cross-
talk between cell types in the aged entorhinal cortex.

Given the similar functions and frequent information ex-
change between the entorhinal cortex and hippocampus (Ku, Ku 
et al., 2021), we next asked whether similar aging mechanisms exist 
between	these	two	brain	regions.	By	performing	comparative	analy-
sis of our results and recently published single- cell hippocampal data 
from young and old cynomolgus monkeys (Hui Zhang et al., 2021), 
we found aging- related DEGs exhibited significant overlapping rate 
in all cell types between the entorhinal cortex and hippocampus 
(Figure 3e), suggesting a convergent aging mechanism between 
these two regions in monkeys.

2.4  |  Transcriptomic reprogramming in aging 
primate entorhinal cortex is associated with 
neurological diseases

Entorhinal cortex aging is a major risk factor for cognitive and mem-
ory deficits (Hou et al., 2019). However, how the specific cell types 
are	 involved	 in	 neurological	 diseases	 remains	 unclear.	 Based	 on	

single- cell data, we examined cell- type- specific expression of genes 
implicated in AD, Parkinson's disease (PD), and learning and memory 
disorders	 (LD,	MD)	 (Aging	 Atlas,	2021). Results showed that AD- 
related genes were significantly up- regulated in all cell types of the 
aged entorhinal cortex (Figure 4a), suggesting that cell types in aged 
entorhinal cortices are widely associated with AD. In addition, genes 
implicated	in	PD,	LD,	and	MD	were	significantly	elevated	in	the	aged	
entorhinal cortex neurons (Figure 4a).

We	next	constructed	a	network	integrating	all	cell	types,	aging-	
related	DEGs,	and	risk	genes	of	AD,	PD,	LD,	and	MD	to	identify	hub	
genes in the network (Figure 4b).	We	identified	several	disease-	risk	
genes that were abnormally expressed in specific cell types. Notably, 
APOD,	a	specific	risk	gene	of	LD,	showed	dysregulated	expression	in	
OPCs, while MAP2, a specific risk gene for PD, showed dysregulated 
expression in oligodendrocytes. In addition, several co- risk genes of 
diseases were abnormally expressed in multiple cell types. For exam-
ple, NPY	(co-	risk	gene	for	AD	and	MD)	showed	abnormal	expression	
in both neurons and oligodendrocytes. These results demonstrate 
the complex network of neurological disease and entorhinal cortex 
aging at cell level.

Given the key role of entorhinal cortex aging in AD, we per-
formed an integrated analysis of AD- associated DEGs (AD DEGs) 
from the human entorhinal cortex (obtained from previous snRNA- 
seq data [Grubman et al., 2019]) and aging- related DEGs from the 
entorhinal	 cortex	 in	 our	 study.	 We	 identified	 166	 shared	 genes	
between the AD DEGs and aging- related DEGs (Table S6). These 
overlapping DEGs were primarily enriched in neurons (Figure 4c), 
suggesting that the neuronal lineage in the aged entorhinal cortex is 
more prone to AD. GO analysis showed that the up- regulated over-
lapping DEGs were primarily related to synaptic signaling, whereas 
the down- regulated overlapping DEGs were mainly associated with 
neurogenesis (Figure 4d).

F I G U R E  3 (a).	Upstream	regulons	that	
drive cell- type- specific state transitions 
toward aging (b). GO enrichment analysis 
indicated that downstream DEGs targeted 
by upstream regulons. (c). Network 
plot	showing	cell–	cell	communication	
changes between cell types in entorhinal 
cortex. Color of connecting lines 
indicates number of altered interaction 
pairs. Red, increased interactions; blue, 
decreased	interactions.	(d).	Bar	plot	
showing enrichment of GO terms or 
pathways	in	old-	specific	ligand–	receptor	
interactions. (e). Heatmap showing 
overlapping significance of aging- related 
DEGs between entorhinal cortex and 
hippocampus

(a)

(c)
(d)

(e)

(b)
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F I G U R E  4 (a).	Circos	plots	showing	the	significance	of	difference	for	of	gene	set	score	in	AD,	PD,	MD,	and	LD	across	cell	types	between	
young and old entorhinal cortex. (b). Network plot showing DEGs associated with aging- related diseases in different cell types of entorhinal 
cortex. (c). Genes shared in aging- DEGs and AD DEGs. Proportion of DEGs shared in aging and AD groups are shown for different cell types. 
(d).	GO	term	analyses	for	up(left)	and	down(right)	regulated	genes	shared	by	aging-	DEGs	and	AD	DEGs.	(e).	UMAP	plots	showing	APP-	
positive	cells	in	entorhinal	cortex.	(f).	UMAP	plots	showing	MAPT-	positive	cells	in	entorhinal	cortex.	(g).	Percentages	of	different	cell	types	
expressing	corresponding	APP	genes.	(h).	Percentages	of	different	cell	types	expressing	corresponding	MAPT	genes.	(i).	Violin	plot	showing	
expression	of	APP	genes	across	cell	types.	(j).	Violin	plot	showing	expression	of	MAPT	genes	across	cell	types.	(k).	Violin	plot	showing	gene	
set	score	of	APP	coexisting	genes	across	cell	types.	(l).	Violin	plot	showing	gene	set	score	of	MAPT	coexisting	genes	across	cell	types

(a)

(c)

(e) (g)
(i)

(k)

(l)(j)(h)(f)

(d)

(b)
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2.5  |  The expression of Aβ  and NFT increased 
across multiple cell types in aged entorhinal cortex

The entorhinal cortex is one of the brain regions in which Aβ and 
NFTs are first detected in old age, both with and without mild cogni-
tive impairment (Thaker et al., 2017). Accumulated Aβ peptides are 
the main component of senile plaques and are derived from the pro-
teolytic cleavage of the large glycoprotein amyloid precursor pro-
tein	(APP)	(O'Brien	&	Wong,	2011).	Several	APP	cleavage	products	
are considered as potential contributors to AD, leading to neuronal 
dysfunction (G.f. Chen et al., 2017). The microtubule- associated pro-
tein	tau	(MAPT)	is	responsible	for	encoding	the	tau	protein,	which	
is strongly implicated in the maintenance of microtubule and axonal 
transport	functions	(Strang	et	al.,	2019). Hyperphosphorylated tau 
protein participates in the formation of NFTs, which characterize 
many neurodegenerative disorders, termed tauopathies (C.C. Zhang 
et al., 2016). Here, using our data, we assessed APP and MAPT ex-
pression in the aged entorhinal cortex at cell level. Results showed 
that APP and MAPT were widely expressed across all cell types in 
the entorhinal cortex (Figure 4e, f), but with more APP-  and MAPT- 
positive cells in the neuronal lineage relative to other cell types 
(Figure S3). Comparing the proportions of APP-  and MAPT- positive 
cells between the young and old groups, we found no significant 
change in the proportion of cells during entorhinal cortex aging 
(Figure 4g, h), but the expression levels of APP and MAPT were sig-
nificantly elevated in most cell types in the aged entorhinal cortex 
(Figure 4i, j). Furthermore, we evaluated the expression levels of 270 
proteins co- localized with Aβ plaques and 543 proteins co- localized 
NFTs	based	on	 laser	capture	microdissection	 (LCM)	and	 label-	free	
quantitative	 (LFQ)	 proteomic	 analysis	 (Drummond	 et	 al.,	 2017; 
Drummond et al., 2020; Table S7). Results showed that the ex-
pression levels of proteins co- localized with Aβ plaques and NFTs 
increased significantly in most cell types in the aged entorhinal cor-
tices (Figure 4k, l). Thus, the elevated expression of APP and MAPT, 
rather than the number of positive cells expressing APP and MAPT, 
was likely the major cause of Aβ deposition and NFT formation in the 
aged entorhinal cortex.

2.6  |  ExNs subpopulations in aged entorhinal 
cortex are prone to AD pathology

To determine correlations between cell types and AD pheno-
types	 and	 identify	 key	 cell	 types	 relevant	 to	AD,	we	 used	 Single-	
Cell	 Identification	of	Subpopulations	with	Bulk	Sample	Phenotype	
Correlation	(Scissor)	 (Sun	et	al.,	2021), which can identify cell sub-
populations associated with a given phenotype from single- cell data. 
Scissor	integrates	phenotype-	associated	bulk	expression	and	single-	
cell data by quantifying similarity between each single cell and each 
bulk sample, then optimizes a regression model on the correlation 
matrix with the sample phenotype to identify relevant subpopula-
tions	 (Sun	et	al.,	2021).	We	applied	Scissor	to	the	scRNA-	seq	data	
from the aged entorhinal cortex with bulk transcriptomes from AD 

and non- AD entorhinal cortices (Jia et al., 2021) (Figure 5a). Results 
show that aged entorhinal cortical ExNs were more prone to AD 
than the other cell types (Figure 5b, c).

Selective	vulnerability	is	a	fundamental	feature	of	neurodegen-
erative diseases, in which different neuronal populations show a 
gradient of susceptibility to degeneration. ExNs are heterogeneous 
and include multiple subpopulations with distinct molecular and pro-
jection properties (Erwin et al., 2021).	Therefore,	we	applied	Scissor,	
guided by bulk samples with AD, to identify aggressive ExNs cell 
subpopulations	within	31,617	ExNs	from	the	scRNA-	seq	dataset	of	
the aged entorhinal cortex (Jia et al., 2021). These cells were sep-
arated into 9 clusters (Figure 5d, e), which demonstrated the het-
erogeneous	nature	of	the	ExNs.	Scissor	identified	1370	cells	in	the	
ExNs	associated	with	the	patients	with	AD	(defined	as	Scissor_AD	
ExNs thereafter; Figure 5f).	The	Scissor_AD	ExNs	were	mainly	from	
clusters 4, 0, and 5 (Figure 5g). To understand the underlying tran-
scriptional	 patterns	 of	 Scissor_AD	 ExNs,	 we	 compared	 the	 gene	
expressions	of	 those	cells	with	all	other	cells.	As	a	 result,	196	up-	
regulated	 genes	 and	 16	 down-	regulated	 genes	were	 differentially	
expressed	 in	 Scissor_AD	 ExNs	 over	 all	 other	 cells,	 respectively	
(Table S8). Notably, functional enrichment analysis also confirmed 
that the synaptic signaling and adenosine triphosphate (ATP) met-
abolic	processes	were	activated	in	Scissor_AD	ExNs	(Figure 5h). To 
further demonstrate the phenotypic associations of the cell subpop-
ulations	identified	by	Scissor,	we	constructed	molecular	signatures	
based	 on	 the	 DEGs	 in	 Scissor-	identified	 cell	 subpopulations	 and	
used independent AD datasets to evaluate the functions of these 
signatures (Jia et al., 2021). As a result, the enrichment scores of 
the	corresponding	molecular	signatures	in	A	Scissor_AD	ExNs	were	
significantly higher in patients with AD than in normal controls 
(Figure 5i).	Thus,	 this	Scissor_AD	ExNs	subpopulation	could	play	a	
vital role in AD progress.

Taken	together,	Scissor	analysis	identified	ExNs	subpopulations	
that are most highly associated with AD, which could contribute to 
comprehending the underlying pathogenesis of AD and might facili-
tate disease diagnosis and therapy.

3  |  DISCUSSION

The entorhinal cortex plays a key role in cognition and memory and 
is an information exchange center for multiple brain areas (Gerlei 
et al., 2021). Abnormal entorhinal cortex function is implicated in mul-
tiple neurodegenerative diseases (Reagh et al., 2018). However, this 
brain region has received less attention than other regions such as 
the hippocampus and prefrontal cortex. In the current study, we used 
cynomolgus monkeys to construct a single- cell map of the entorhinal 
cortex and identify age- associated transcriptional changes. Our find-
ings suggested widespread transcriptional changes across multiple 
cell types during entorhinal cortex aging, thus highlighting potential 
therapeutic targets for aging- related neurodegenerative disorders.

Our results showed that the synapse signaling- related pathway 
was widely down- regulated across cell types in the aged entorhinal 
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cortex.	Cell	communication	characterized	by	ligand–	receptor	inter-
actions was also globally decreased during entorhinal cortex aging, 
suggesting an abnormal cell microenvironment in the aged entorhi-
nal cortex. Inactive synapse signaling and weak cell communication 
in the aged entorhinal cortex would likely delay information transfer 
across cell types and contribute to eventual cognitive decline and 
memory loss.

We	also	observed	acute	changes	in	the	neuronal	lineage	during	
entorhinal	cortex	aging.	Specifically,	we	found	the	highest	number	
of aging- related DEGs was observed in the neuronal lineage; genes 
associated	with	aging,	AD,	PD,	MD,	and	LD	were	significantly	more	
active in the neuronal lineages; and the overlap in aging- DEGs and 
AD DEGs was most notable in the neuronal lineage. Therefore, our 

results confirmed that the neuronal lineage was more vulnerable to 
aging in the entorhinal cortex and more susceptible to neurological 
disease.

We	 systematically	 explored	 the	 association	 between	 entorhi-
nal cortex aging and AD (Reagh et al., 2018). Integrative analysis 
reveals a huge overlap between aging DEGs and AD DEGs across 
cell types. A hallmark of AD pathology is the accumulation of Aβ 
and phosphorylated tau (Iwata et al., 2014). In our study, APP and 
MAPT gene expression levels, as well as their coexistence, were sig-
nificantly increased in most cell types in the aged entorhinal cortex, 
which is likely an important inducement of early AD. Furthermore, 
based on integration of bulk transcriptome data of AD, we identified 
ExNs subpopulations that are involved in synaptic signaling and ATP 

F I G U R E  5 (a).	UMAP	visualization	of	cells	in	aged	entorhinal	cortex.	(b).	UMAP	visualization	of	AD-	related	cells.	Red	and	gray	dots	
represent	cells	associated	with	AD	and	normal	phenotypes,	respectively.	(c).	Bar	plot	showing	constitution	of	AD-	related	cells	in	different	
cell	types.	(d).	UMAP	visualization	of	aged	ExNs	in	entorhinal	cortex,	(e).	Heatmap	showing	expression	profiles	of	subcluster-	specific	
marker	genes	in	ExNs.	(f).	UMAP	visualization	of	AD-	related	cells	in	ExNs.	Red	and	gray	dots	represent	cells	associated	with	AD	and	normal	
phenotypes,	respectively.	(g).	Bar	plot	showing	constitution	of	AD-	related	cells	in	different	subclusters	of	ExNs.	(h).	Enrichmap	plot	showing	
biological	processes	of	DEGs	between	AD-	related	and	background	cells.	(i).	Box	plot	shows	the	enrichment	scores	of	the	Scissor_AD	ExNs	in	
patients with AD and normal controls

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)
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metabolic pathways are most highly associated with AD, which pro-
vide potential therapies for the diagnosis and treatment of AD.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Nuclear isolation from NHP entorhinal cortex

The use of cynomolgus monkey's entorhinal cortex in this study was 
from	the	Jing	J	Kang	biotechnology	company	(Approval	number:	SCXK	
2018–	0002).	The	source	animals	of	these	tissues	were	confirmed	to	
have no disease history and natural death. Entorhinal cortex were 
stored	in	−80°C	and	washed	in	pre-	cooled	PBSE	(PBS	buffer	contain-
ing	 2 mM	EGTA)	 before	 the	 start	 of	 the	 experiment.	Nucleus	 isola-
tion	was	carried	out	using	GEXSCOPE®	Nucleus	Separation	Solution	
(Singleron	Biotechnologies,	Nanjing,	China)	refer	to	the	manufacturer's	
product	manual.	Isolated	nuclei	were	resuspended	in	PBSE	to	106	nu-
clei	per	400 μl,	filtered	through	a	40 μm cell strainer, and counted with 
Trypan	blue.	Nuclei	enriched	in	PBSE	were	stained	with	DAPI	(1:1000)	
(Thermo	 Fisher	 Scientific,	 D1306).	 Nuclei	 were	 defined	 as	 DAPI-	
positive	singlets.	Nuclear	isolation	was	carried	out	using	GEXSCOPE®	
Nucleus	 Separation	 Solution	 (Singleron	 Biotechnologies,	 Nanjing,	
China) per the manufacturer's product manual. Isolated nuclei were 
resuspended	 in	PBSE	to	106	nuclei/400 μl, filtered through a 40- μm 
cell	strainer,	and	counted	with	Trypan	blue.	Nuclei	enriched	in	PBSE	
were	 stained	with	DAPI	 (1:1000;	 Thermo	Fisher	 Scientific,	D1306).	
Nuclei were defined as DAPI- positive singlets.

4.2  |  Single- nucleus RNA- sequencing library 
preparation

The concentration of the single- nucleus suspension was adjusted 
to	 3 ~ 4 × 105	 nuclei/mL	 in	 PBS	 and	 then	 loaded	 onto	 a	 microflu-
idic	 chip	 (GEXSCOPE®	 Single	 Nucleus	 RNA-	seq	 Kit,	 Singleron	
Biotechnologies).	The	snRNA-	seq	libraries	were	constructed	accord-
ing	 to	 the	manufacturer's	 instructions	 (Singleron	Biotechnologies).	
The resulting snRNA- seq libraries were sequenced on an Illumina 
HiSeq	 X10	 instrument	 to	 a	 sequencing	 depth	 of	 at	 least	 50,000	
reads per cell with 150- bp paired- end (PE150) reads.

4.3  |  Generation of single- cell gene 
expression matrices

Raw reads were processed to generate gene expression matrices 
with scopetools (https://anaco nda.org/singl eronb io/scope tools). 
First, reads without polyT tails were filtered; then, cell barcodes and 
unique	molecular	 identifiers	 (UMIs)	were	 extracted.	Adapters	 and	
polyA tails were trimmed before aligning reads to the pre- mRNA 
reference	 (Ensemble,	Macaca_fascicularis_6.0).	Second,	 reads	with	
the	 same	 cell	 barcode,	 UMI,	 and	 gene	 were	 grouped	 together	 to	
count	the	number	of	UMIs	per	gene	per	cell.	Cell	number	was	then	

determined according to the “knee” method, a standard single- cell 
RNA- seq quality control approach used to determine the threshold 
at which cells are considered valid for experimental analysis. High- 
quality barcodes are located to the left of the inflection (“knee”) 
point and retained for further analysis, while low- quality barcodes 
(i.e., relatively low numbers of reads) are located to the right and 
excluded from further analysis.

4.4  |  Quality control, cell- type clustering, and 
major cell- type identification

We	removed	cells	that	had	either	<200 or >4000 expressed genes. 
Low-	quality/dying	cells	often	exhibit	extensive	mitochondrial	 con-
tamination.	 Therefore,	 we	 applied	 the	 “PercentageFeatureSet”	
function	in	the	Seurat	R	package	(version	= 4.0) to calculate the per-
centage of counts originating from mitochondrial genes (Figure S4), 
with cells showing a mitochondrial ratio greater than 1.5% dis-
carded.	Finally,	76,839	cells	were	obtained	for	downstream	analysis.	
Harmony was used as the batch effect removal method to reduce 
heterogeneity among cells of an individual.

We	used	Seurat	v4.0	to	normalize	expression	matrices	using	the	
NormalizeData	 and	 ScaleData	 functions.	 The	 FindVariable	 function	
was then applied to select the top 200 variable genes and perform 
principal component analysis (PCA). The first 10 principal components 
(PCs) and resolution 1.3 were used with the FindClusters function to 
generate 32 cell clusters. To assign one of the seven major cell types to 
each cluster, we scored each cluster by the normalized expression levels 
of the following canonical markers: astrocytes (AQP4, ADGRV1, GPC5, 
RYR3), ECs (CLDN5, ABCB1, EBF1), ExNs (CAMK2A, CBLN2, LDB2), InNs 
(GAD1, LHFPL3, PCDH15), microglia (C3, LRMDA, DOCK8), oligoden-
drocytes (MBP, PLP1, ST18), and OPCs (PDGFRA, MEGF11, OLIG1). The 
clusters assigned to the same cell type were grouped together for the 
following analyses. The results were manually examined to ensure the 
correctness	of	the	results	and	visualized	using	UMAP.	Marker	genes	
for	each	cell	type	were	identified	using	the	“FindAllMarkers”	function	
with an adjusted p < 0.05	and	|logFC| > 1	cutoff.

4.5  |  Age- related DEG analysis

DEGs for every cell type between young and old samples were 
identified	 with	 the	 “FindMarkers”	 function	 in	 Seurat	 R pack-
age	using	the	Wilcoxon	test	 (adjusted	p < 0.05	and	 |logFC| > 0.25	
threshold).

4.6  |  Identifying statistically significant differences 
in cell proportions

we	used	the	method	reported	by	Smillie	et	al.	(Smillie	et	al.,	2019), 
to identify changes in cell proportions between young and aged 
NHP	entorhinal	cortex.	We	applied	Dirichlet-	multinomial	regression	

https://anaconda.org/singleronbio/scopetools
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model, which tests for differences in cell composition between 
young and aged NHP entorhinal cortex. This regression model and 
its associated p values were calculated using the “DirichReg” func-
tion in the DirichletReg R package.

4.7  |  Transcriptional regulatory network analysis

Transcription factor regulatory network analysis was performed 
using	 the	 pySCENIC	 workflow	 (v1.1.2.2)	 with	 default	 param-
eters.	 We	 downloaded	 hg19	 TFs	 using	 RcisTarget	 (v1.6.0)	 as	
a reference. Gene regulatory networks were inferred with GENIE3 
(v1.6.0).

4.8  |  GO term analysis

The	clusterProfiler	R	package	and	Metascape	were	used	to	perform	
GO term analysis (http://metas cape.org/gp/index.html) (v3.5) (Zhou 
et al., 2019). Results were visualized using the ggplot2 R package 
(https://ggplo t2.tidyv erse.org/) (v3.2.1).

4.9  |  Cell– cell communication analysis

Cell–	cell	 communication	 analysis	 was	 performed	 using	 Cell-	
PhoneDB	(v1.1.0)	(Efremova	et	al.,	2020). Only receptors and ligands 
expressed in more than 10% of cells of any type from either young or 
old samples were further evaluated. Only those with p < 0.01	were	
used	 for	 cell–	cell	 communication	prediction	between	any	 two	cell	
types.

4.10  |  Gene set score analysis

Gene sets related to aging- related diseases were previously reported 
(Aging Atlas, 2021). Gene set scores were acquired by analyzing the 
transcriptome of each input cell against the aforementioned gene 
sets	using	the	Seurat	function	“AddModuleScore.”	Changes	in	scores	
between young and old samples were analyzed using the ggpubr R 
package	via	the	Wilcoxon	test	 (https://github.com/kassa mbara/ gg-
pubr) (v0.2.4).

4.11  |  Scissor analysis for each cell type

Three	data	sources	are	used	for	Scissor	input:	that	is,	single-	cell	ex-
pression matrix, bulk expression matrix, and phenotype of interest. 
Given	the	above	 inputs,	we	used	Scissor	to	select	the	phenotype-	
associated cell subpopulations, which were fit by a binomial re-
gression model (family =	 “binomial”).	We	 set	 the	 parameter	 alpha	
(α) = 0.01	to	choose	AD-	related	cells.
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