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Preeclampsia (PE) is a maternal disease that causes maternal and child death. Treatment and preventive measures are not sound
enough. The problem of PE screening has attracted much attention. The purpose of this study is to screen placental mRNA to
obtain the best PE biomarkers for identifying patients with PE. We use Limma in the R language to screen out the 48
differentially expressed genes with the largest differences and used correlation-based feature selection algorithms to reduce the
dimensionality and avoid attribute redundancy arising from too many mRNA samples participating in the classification. After
reducing the mRNA attributes, the mRNA samples are sorted from large to small according to information gain. In this study, a
classifier model is designed to identify whether samples had PE through mRNA in the placenta. To improve the accuracy of
classification and avoid overfitting, three classifiers, including C4.5, AdaBoost, and multilayer perceptron, are used. We use the
majority voting strategy integrated with the differentially expressed genes and the genes filtered by the best subset method as
comparison methods to train the classifier. The results show that the classification accuracy rate has increased from 79% to
82.2%, and the number of mRNA features has decreased from 48 to 13. This study provides clues for the main PE biomarkers of

mRNA in the placenta and provides ideas for the treatment and screening of PE.

1. Introduction

Preeclampsia (PE) is a pregnancy-specific syndrome that
affects 3-5% of pregnant women and is characterized by
edema, hypertension, and proteinuria [1]. PE is a multifactor
and multigene disease with a family genetic predisposition:
assuming a mother had PE, the incidence of PE in her
daughters is 20-40%. If a twin is a patient with PE, the inci-
dence of PE in the other twin is 22-47%. PE makes women
more susceptible to cardiovascular disease later in life and
may affect brain function. However, so far, the genetic pat-
tern is unclear. It remains a major factor in maternal and
newborn morbidity and mortality [2]. The only treatment
is the termination of pregnancy and delivery of newborns
and the placenta [3]. Although the causes of PE are still being
discussed, clinical and pathological studies have shown that
the core of the pathogenesis of this syndrome is the placenta
[4]. The placenta is an important organ shared by the mother

and the fetus. It has important biological functions such as
substance exchange, metabolism, and barrier function.
Abnormal placental function can lead to pregnancy diseases
such as PE. Many physiological and biochemical processes
related to placental function are coordinated by proteins that
form complex networks in the placenta, and the production
of proteins requires the participation of RNA.

In the study of the biomarkers of PE, genetic factors were
found to be the cause of the disease [5]. In naive Bayesian
predictive modeling and path analysis, the quantitative real-
time polymerase chain reaction (QRT-PCR) concluded that
genes in the placenta are related to PE through genetic testing
[6]. The genetic markers of normal fluff in the placenta can
express pathology and PE [7]. Clinically relevant subcate-
gories are identified by the gene expression profile of the
placenta [8].

However, research on mRNA in the placenta that can be
used as a biomarker for PE is still insufficient. mRNA is a


https://orcid.org/0000-0003-0686-6991
https://orcid.org/0000-0002-6968-4354
https://orcid.org/0000-0003-2624-5500
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6691096

direct template for directing protein synthesis, that is, trans-
ferring genetic information from DNA to RNA. mRNA is
used as a template for protein synthesis to determine the
amino acid sequence of the peptide chain produced by gene
expression proteins, and proteins such as VEGF, sFlt1, PIGF,
SENG, PAPP-A, PP13, HSP70, and HbF have shown certain
value in the prediction or diagnosis of PE [9] (review). This
helps in the understanding of the pathogenesis of PE. In these
studies, it can be inferred that an abnormal expression of
mRNA in the placenta is related to the occurrence of PE,
and there are mRNA samples that can be used to identify PE.

Traditional medical methods generally can find only a
few biomarkers, and the accuracy of disease recognition is
difficult to guarantee. Machine learning performs well in fea-
ture filtering and processing large amounts of data [10]
(review) and performs well in RNA research [11, 12]. In this
study, classification algorithms can be used to detect the
mRNA biomarkers of PE in the placenta and to screen out
the mRNA samples that can be used as biomarkers in the
dataset to avoid the omission of biomarkers. By fusing multi-
ple classifiers, the accuracy of the algorithm is improved, and
overfitting is reduced.

2. Materials and Methods

2.1. Data Source. The GSE75010 dataset used in the experi-
ment is the placental microarray dataset released on May 16,
2016, for the analysis of placental gene expression profiles. It
is a large dataset containing data from seven published studies
(N =330) [13]. This dataset was downloaded from the GEO
database and contains gene expression data from 157 pla-
centas with PE and 173 placentas without PE. For conve-
nience, we choose 157 highly annotated samples as the
experimental dataset to model and test the classification effect.

2.2. Identification of Differentially Expressed Genes. To stan-
dardize the microarray data [14], the GSE75010 dataset
downloaded from the GEO database was converted to log2
with the Limma package in R3.4.1. The dataset is divided into
two categories according to disease status: placenta with PE
and healthy control placenta. The two sets of gene expression
matrices were compared by the Limma package [15], and the
thresholds were set to |logFC| > 2 and P < 0.01.

2.3. Feature Selection. Correlation-based feature selection
(CES) [16] is a heuristic algorithm based on filter patterns.
It can improve the classification effect by evaluating the cor-
relation among features as well as the correlation between
features and categories. It finds the optimal subset of features
to avoid redundancy among the features. Differentially
expressed mRNA samples do not necessarily belong to the
mRNA samples related to PE. The purpose of CFES is to
exclude irrelevant differential genes while avoiding too many
mRNA samples participating in the classification, thereby
improving the accuracy of classification.

i
Merit, = L S (1)
k+k(k—1)rs,

Computational and Mathematical Methods in Medicine

k represents the number of features in the subset, 7; rep-
resents the average correlation between features and catego-
ries, and 7;; represents the average correlation among
features. The Pearson correlation coefficient [17] is used to
calculate 7y and 7 and can be used to measure the correla-
tion between two variables and screen out mRNA samples
related to PE.

To improve the classification efficiency of the optimal
subset, the information gain ratio algorithm is used to sort
the mRNA samples in the optimal subset from large to small
[18]. It enables the classifier to classify according to the
amount of mRNA information, thereby improving the accu-
racy of classification. This is an algorithm developed by infor-
mation entropy. The formula is as follows:

Y|

Ent(D) =~ Zl’k log, py.- (3)
k=1

|y| represents the number of categories p;, which is the
proportion of each category feature in the set. The result of
this formula represents the entropy of the information car-
ried by mRNA [19]. The smaller the information entropy
is, the purer the dataset.

The value of information gain [20] can determine
whether to use this mRNA attribute a to divide dataset D.
If the information gain is relatively large, this attribute is a
better attribute for dividing dataset D.

. [D”
Gain(D, a) = Ent(D ZT (4)
1

Information gain is biased towards selecting features with
more values in the same category, but according to the
entropy formula, the more features there are, the greater
the entropy is. To change the adverse effects of such poor

preferences, this study uses the information gain ratio [21]
as a method to judge the division of attributes.

Gain(D, a)

Gain_ratio(D, a) = —; " v
=2,-1|D"|/|D] log,|D*|/|D|

(5)

Finally, according to the results of mRNA information
gain, we sorted the mRNA samples in the optimal subset
from largest to smallest to train the classifier. On the one
hand, the information gain ratio can be a measure of the
importance of mRNA, and on the other hand, it can be used
as a node selection criterion for the C4.5 classifier.

2.4. Classification Algorithm Design. After filtering mRNA as
a feature through the above algorithm, to facilitate sample
classification, we designed a suitable model. The trained
model can use mRNA samples as attributes to identify
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whether pregnant women have PE. The disadvantage of
small sample datasets is that they are easy to overfit during
classification, and ensemble learning is one of the basic
methods to alleviate this situation to some extent. We chose
three different classifiers as subclassifiers.

Subclassifier I is a C4.5 [22] decision tree that selects attri-
butes according to the information gain ratio and has a good
classification effect on small sample datasets. To improve
operation efficiency, this C4.5 decision tree is generated in
the form of a binary tree.

Subclassifier II is a multilayer perceptron [23]. The mul-
tilayer perceptron continuously updates the weights through
the backpropagation (BP) algorithm. A learning rate that is
too low can greatly increase the training time of the model,
and a learning rate that is too large can cause underfitting,
so the learning rate is set to 0.3. When the standard BP algo-
rithm corrects the weights, a momentum factor is added to
each weight change to prevent the multilayer perceptron
from falling into a local minimum, and the momentum fac-
tor is set to 0.2. The momentum factor value is the opposite
of the value of the last weight change, thus affecting the
new weight change based on the BP method. The number
of mRNA attributes is set to the number of nodes in the hid-
den layer, the number of training iterations is initialized to
500, and the network is reset at a lower learning rate. If the
network deviates from the answer, it will automatically reset
and retrain at a lower learning rate.

1
1+e>’

S(x) = (6)

The network maps each data point to an interval (0,1) or
(-1,0) to achieve the effect of classification.

Subclassifier III is a decision stump [24] integrated by
AdaBoost [25]. The AdaBoost algorithm modifies the classi-
fier and sample weights by continuously iterating the training
dataset and integrating many weak classifiers into a strong
classifier, as shown in the following formula:

T

F(x)= ) a,f(x). (7)

t=1

T represents the number of weak classifiers, «, represents
the weight of the ¢-th weak classifier, and f,(x) represents the
prediction result of the ¢-th weak classifier. The final classifi-
cation decision rules are as follows:

1, x>0,

sgn (F(x)) = { (8)

-1,x<0.

Finally, we use majority voting to integrate subclassifiers.
This is an ensemble method that uses most of the output
results of the subclassifiers as the final classification result.
All models and algorithms are built into Weka 3.8.4 [26].

2.5. Evaluation Criteria. Cross validation (CV) [27, 28],
sometimes called rotation estimation, is a statistical method
proposed by Seymour Geisser to cut data samples into

Blue: training set
Yellow: testing set
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FiGURE 1: 10-fold cross-validation method.

smaller subsets. For small sample data, CV can avoid overfit-
ting to a certain extent, making the training model more ver-
satile, robust, and accurate. This experiment uses a 10-fold
CV method to train the model, that is, the dataset is divided
into ten parts, each of which uses 9 different parts for training
and one to verify the model to ensure that all the datasets are
tested. The idea of tenfold CV is shown in Figure 1.

To facilitate the discussion below, we set the placentas
with PE as positive samples and the healthy placentas as neg-
ative samples. We use the following indicators as the criteria
for evaluating the classifier [29-35]:
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Specificity and sensitivity are both indicators of success-
ful model classification. Specificity is an indicator that mea-
sures the probability of diagnosis, and sensitivity is an
indicator that measures the recognition ability of a classifica-
tion model. We also introduced the area under the curve
(AUC) as an indicator to measure the effectiveness of the
model. The AUC is the area between the receiver operating
curve (ROC) and the coordinate axis. Its value is in the inter-
val (0.5,1). The closer the AUC value is to 1, the better the
classifier is.

3. Results and Discussion

The results of the differential gene analysis are represented by
a volcano plot in Figure 2(green indicates a relatively low
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FIGURE 2: Volcano plot of GSE75010.

mRNA expression, red indicates relatively high mRNA expres-
sion, and gray indicated undifferentiated mRNA samples).

Figure 3 below shows the relative expression levels of the
48 differential genes screened by Limma in the preeclamptic
placenta, denoted in the figure as PE, and the control healthy
placenta, denoted in the figure as control (green indicates rel-
atively low mRNA expression and red indicates relatively
high mRNA expression).

After screening out 48 differential genes, CFS was used to
filter mRNA to remove irrelevant mRNA and redundant
mRNA. The optimal subset consisting of 13 mRNA attri-
butes was obtained (HTRA4, PROCR, MYCN, EROIA,
EAF1, PPP1R16B, CRH, FLNB, PIK3CB, PLAAT3, FBN2,
RFLNB, and TKT). The results, sorted from largest to smal-
lest by the information gain ratio, were PIK3CB, HTRA4,
ERO1A, PPP1R16B, PROCR, CRH, FLNB, PLAAT3, FBN2,
EAF1, TKT, RFLNB, and MYCN. In the table, PE represents
a sample of patients with PE, control represents a sample of
healthy pregnant women as a control group, and average rep-
resents the average of the two sets of data. The classification
results are derived from mRNA samples in the best subset
training model (see Table 1).

Next, we used 48 differentially expressed mRNA samples
that were not processed by CFS (the original differentially
expressed mRNA samples) to train the model and test the
classification effect. The results are as follows (see Table 2):

Table 2 shows that the likelihood of a sample being cor-
rectly classified as PE is 0.763, and the accuracy of the overall
classification results of the model is 0.790.

By comparing the results from the two sets of experi-
ments, it can be seen that the accuracy of the optimal subset
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of mRNA is 0.822, in which the correctly classified PE sam-
ples have increased from 61 to 63, and the correctly classified
control samples have increased from 63 to 66.

However, it is not comprehensive to select the best bio-
markers based on classification accuracy alone. We also use
recall, precision, and AUC as classification criteria to obtain
more comprehensive results.

Notably, recall, precision, and AUC reached the maxi-
mum values in Table 1; the specificity increased from 0.818
to 0.857, and the sensitivity increased from 0.763 to 0.788
(see Table 3), which can be considered as high specificity
and sensitivity.

In the study of PE, the positive accuracy of the bio-
markers discovered by Zeisler et al. was no more than 50%
[36], and the positive accuracy of the mRNA PE biomarkers
we screened for reached 0.788.

The experiments show that the use of CFS filtering attri-
butes is also applicable to mRNA. After reducing the mRNA
dimension, all indicators that have a positive significance for
the classification effect are improved.

In the research of Mehmood et al., the voting integration
method and the CFS algorithm were also used to achieve
ideal results. Although similar algorithms on different data-
sets may have very different results, for this experiment, the
CFS algorithm can exclude irrelevant differential genes, can
avoid the redundancy of related mRNA samples, and can
maintain the maximum independence among attributes,
which is necessary for our research [37].

In this study, the use of the information gain ratio to ana-
lyze differential genes can allow for the measurement of the
amount of information that mRNA carries for disease out-
comes. A variety of classification algorithms are used to test
the association between mRNA and PE, and we used placen-
tal mRNA to identify PE. Analyses and comparisons were
also conducted.

We analyzed mRNA with the highest information gain
ratio in the best subset through the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, and the results
showed that the expression of mRNA (PIK3CB and OCRL)
is related to the inositol phosphate metabolism and the phos-
phatidylinositol signaling systems. This may be related to the
biochemical process of PE.

4. Conclusions

In recent years, in the classification and screening of genes, it
has often only been possible to obtain a single result through
differential gene expression analysis. Although this result
might be related to PE, the diagnostic effect may not be good
enough. However, with the development of machine learn-
ing, the use of feature engineering can better improve the
classification efficiency, and the use of an appropriate classi-
fication model can intuitively reflect the classification effect
and indirectly reflect the advantages and disadvantages of
attribute selection. Therefore, after analyzing the differen-
tially expressed genes, to improve the classification effect,
we used a feature selection algorithm based on correlations
as the standard for dimensionality reduction. To obtain bet-
ter results, we designed a classification model based on a
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FIGURE 3: Heatmap of GSE75010.

TaBLE 1: Results and indicators of attribute classification (the
optimal subset).

TABLE 3: Specificity and sensitivity of the original differentially
expressed mRNA samples (original) and optimal subset (optimal).

TP/TN FP/FN  Precision Recall AUC Specificity Sensitivity
PE 0.788 0.143 0.851 0.788 0.822 Original 0.818 0.763
Control 0.857 0.213 0.795 0.857 0.822 Optimal 0.857 0.788
Average 0.822 0.177 0.824 0.822 0.822

TaBLE 2: Results and indicators of attribute classification (the
original differentially expressed mRNA samples).

TP/TN FP/FN Precision Recall AUC
PE 0.763 0.182 0.813 0.763 0.790
Control 0.818 0.238 0.768 0.818 0.790
Average 0.790 0.209 0.791 0.790 0.790

voting mechanism to address the features of small sample
datasets that are prone to overfitting. Finally, we used 13
mRNA samples as attributes to obtain satisfactory results.
When training the model, we used 10-fold CV to enhance
the robustness of the model.

The results show that an accuracy of 82.2% is achieved by
the 13 mRNA samples screened out, and the specificity and
sensitivity reach 0.857 and 0.788, respectively. The recall of
the model is 0.822, the precision is 0.824, and the AUC value
reaches 0.822. These indicators reflect that the model has
good robustness and a certain generalization ability.

Through the KEGG analysis of the genes in Table 1,
PIK3CB and OCRL were found to be involved in the phos-
phoinositide metabolism and the silanol phosphatidylinositol
signaling systems. This can explain the cause of PE from one
angle and provide clues for the future treatment of PE.

The optimal subset selected by the CFS algorithm is eval-
uated by the Pearson coefficient, but the Pearson coefficient
cannot screen out important mRNA samples that are nonli-
nearly related to PE. How to select the optimal subset of



mRNA samples that contain nonlinear correlations is still
under discussion.
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