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Abstract 

Purpose: Current injury surveillance efforts in agriculture are considerably hampered by the limited quantity of occu-
pation or industry data in current health records. This has impeded efforts to develop more accurate injury burden 
estimates and has negatively impacted the prioritization of workplace health and safety in state and federal public 
health efforts. This paper describes the development of a Naïve Bayes machine learning algorithm to identify occupa-
tional injuries in agriculture using existing administrative data, specifically in pre-hospital care reports (PCR).

Methods: A Naïve Bayes machine learning algorithm was trained on PCR datasets from 2008–2010 from Maine and 
New Hampshire and tested on newer data from those states between 2011 and 2016. Further analyses were devoted 
to establishing the generalizability of the model across various states and various years. Dual visual inspection was 
used to verify the records subset by the algorithm.

Results: The Naïve Bayes machine learning algorithm reduced the volume of cases that required visual inspection 
by 69.5 percent over a keyword search strategy alone. Coders identified 341 true agricultural injury records (Case 
class = 1) (Maine 2011–2016, New Hampshire 2011–2015). In addition, there were 581 (Case class = 2 or 3) that were 
suspected to be agricultural acute/traumatic events, but lacked the necessary detail to make a certain distinction.

Conclusions: The application of the trained algorithm on newer data reduced the volume of records requiring visual 
inspection by two thirds over the previous keyword search strategy, making it a sustainable and cost-effective way to 
understand injury trends in agriculture.
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Introduction
Quantifying occupational injuries are of particular 
importance in the agricultural sector, which has one of 
the highest fatality rates in the United States [1]. While 
workplace fatalities are often captured in the Census of 
Fatal Occupational Injury (CFOI) [2], collecting data 
relating to injury, especially in Northeast agriculture, is 
problematic [3]. The majority of farms in the Northeast 
are exempt from OSHA regulations, as only 10.7% of 
Northeast region farms with hired workers have 10 or 

more employees [4]. The injury and fatality estimates that 
do exist are limited [5–8]. Similarly, data has also shown 
underreporting of injuries in the forestry and logging 
sector, which is part of the agricultural super-sector [9].

Surveillance efforts have been considerably constrained 
by a lack of knowledge regarding what information to col-
lect and where to find it. These gaps in knowledge have 
impeded efforts to develop more accurate injury burden 
estimates and have negatively impacted the prioritization 
of workplace health and safety in state and federal public 
health efforts [10]. The low prioritization of occupational 
health and safety is demonstrated by NIOSH’s 0.2% share 
of all medical research and development expenditures in 
the 2016 federal budget [11, 12]. By creating a system to 
identify previously unreported agriculture related injury, 
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it will be possible to provide a more complete picture of 
injury burden in this high-risk industry.

The loss of several national surveillance efforts—the 
National Agricultural Worker Health Survey Injury 
Module [13], and the Occupational Injury Surveillance 
of Production Agriculture (OISPA) Survey [14]—fur-
ther justifies the need to invest in new strategies for sur-
veillance research. With robust computing power now 
available for little cost and the ability to obtain existing 
administrative health databases with free-text, artificial 
intelligence and machine learning methods offer prom-
ising avenues for public health research. For example, 
Koivu and Sairanen’s use of several machine learning 
methods to develop a model that predicts early still birth 
and pre-term pregnancies [15]. Rybinski et  al. applied 
natural language processing methods to identifying 
family members and diseases in free text family history 
sections of electronic health records [16]. Prieto et  al. 
developed a natural language processing method using 
logistic regression and several keywords to identify opi-
oid misuse in the narrative portion of PCRs [17]. Yang 
et al. developed a deep neural network to identify cases 
involving allergic reactions in the free text section of hos-
pital safety reports [18]. This paper describes the devel-
opment of a Naïve Bayes machine learning algorithm for 
pre-hospital care reports (PCR) to identify agricultural 
occupational injuries along with the algorithm’s utility on 
untagged datasets. Naïve Bayes methodology was chosen 
for our first effort utilizing machine learning because of 

its simplicity and effectiveness in text classification [19, 
20].

Materials and methods
The creation of a”gold-standard’ dataset has been 
described in detail elsewhere and will be briefly sum-
marized here [21]. Over 50,000 PCR records were visu-
ally inspected and tagged as to their occupational injury 
status. In order to be included in this review, the record’s 
narrative needed to contain a keyword from Table 1. This 
tagged dataset, which came from Maine and New Hamp-
shire 2008–2010 PCRs, served as the basis for training 
the machine learning algorithm. The following describes 
the training of the algorithm on this tagged dataset, and 
the subsequent application of this trained algorithm to 
newer datasets for which case determination had not yet 
been made. These newer datasets included Maine PCR 
data from 2011–2016 and New Hampshire PCR data 
from 2011–2015. The Institutional Review Board (IRB) of 
the Mary Imogene Bassett Hospital approved all proto-
cols. Additionally, approval was also granted by each par-
ticipating state’s IRB or data use board.

Preprocessing of all datasets used in these analyses
Cleaning PCR records involved two steps: (1) removing 
duplicates and (2) removing records of no interest. Dupli-
cate records were identified based on an exact match 
on four variables: gender, admission, ZIP code, and date 
of birth. For records that met these criteria, one was 

Table 1 Stemmed keywords

3_Point_hitch Chain Farmer Hors Plowshar Stall

Agricultur Chain_saw Feed Implement Poultri Straw

Anim Chainsaw Fenc Irrig Prune Tedder

Arch Chicken Fenc_post Kickback Pto Three_point_hitch

Auger Choker Fertil Kicker Ram Tie_down

Bale Chute Fop Limb Sanit Timber

Barn Cleanser Forestri Livestock Scraper Tractor

Beater Combin Gator Loader Shear Tree

Bind Compost Gear Log Sheav Trough

Blade Corral Goat Logger Sheep Turkey

Bobcat Coveral Grain_bin Manur Silag Udder

Breed Cow Greenhous Methan Silo Uncap

Buck Crop Guywir Milk Skid_steer Unhitch

Buggi Dairi Harrow Mower Skidder Vacuum_pump

Bull Debark Hay Pastur Skidsteer Wagon

Bulldoz Defac Hitch Pen Slaughter Winch

Bunker Digger Hog Pesticid Splitter Wood

Cabl Drive_line Hoof Pig Sprayer Yard

Calv Entangl Hoof_trimmer Pipelin Spreader Yearl

Cart Farm Hoov Plow Spring_pole
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retained at random. PCR records of no interest included 
those with a dispatch reason of transfer, lifting, or inter-
cept; or those with destination type of nursing home.

Training the algorithm using tagged datasets
The algorithm was trained on the gold standard PCR 
dataset from 2008 to 2010 from Maine and New Hamp-
shire using the variables shown in Table  2. After PCR 
records were cleaned using SAS 9.3 (Cary, NC), they were 
imported into Python (v 3.7) for further data processing. 
Three Python packages were used: pandas (v 1.1.1) for 
data management, nltk (v 3.5) for natural language pro-
cessing, and scikit-learn (v 0.23.2) for machine learning.

Transformation mapping was performed to link simi-
lar variables (Table  2) across state datasets between 
given years of data. These maps were applied to the fol-
lowing variables: incident location, mechanism of injury, 
dispatch reason, and primary impression. For the other 
variables in Table 2, a dummy matrix was created which 
included a (0,1) variable for each level of the variable they 
represented, a process known as one-hot encoding. For 
example, the fifty-nine levels for mechanism of injury 
were represented by fifty-nine (0,1) variables.

Narratives were prepared for the stemmed keyword 
search by lowercasing all characters, removing all punc-
tuation, and stemming all words using the Natural Lan-
guage Toolkit’s (NLTK) Snowball stemmer [22]. Next, 
narratives were scanned for any instances of the stemmed 
keywords in Table 1. Throughout this process, the algo-
rithm was trained to ignore keywords that were found 

in combination with other words or phrases that did not 
indicate an agricultural injury, such as proper names of 
emergency responders, local non-agricultural businesses, 
or keywords followed by a known address suffix or abbre-
viation [23]. Lastly, exclusions were applied for irrelevant 
words that stemmed to the identical value as a given key-
word (e.g., “animate” and “animal” both stem to “anima”; 
therefore “animate” was excluded). Based on that search-
ing process, each narrative was tagged as to the presence 
(1) or the absence (0) of each of the stemmed keywords 
in Table 1.

A four-level case-class variable was created as follows: 0 
(non-agricultural, non-traumatic/acute, or both), 1 (con-
firmed agricultural, confirmed traumatic/acute = true 
case), 2 (confirmed traumatic/acute, suspected agri-
cultural), or 3 (suspected traumatic/acute, confirmed 
agricultural) (Table  3). Naïve Bayes models were run 
for binary case (case-class 1,2, or 3 versus case-class 0). 
These models used all of these variables in conjunction to 
assign a predicted probability that the record was a true 
case.

The essential element of these analyses was to identify 
variables that occurred relatively frequently in cases and 
relatively infrequently in non-cases. Using this mecha-
nism, our goal was to train the algorithm to identify a 
posterior probability threshold for assigning a record to 
be a true case such that ninety percent (90%) of all true 
cases would be identified. To determine what threshold 
would meet this ninety percent (90%) requirement, the 
algorithm was trained on eighty percent (80%) of the 
data selected at random, and validated on the remaining 
twenty percent (20%). This procedure was repeated for 
one hundred iterations. Over these one hundred itera-
tions, the mean and standard deviation were calculated 
for the required threshold probability [in our case this is 
0.17, discussed further in the results section]. The mean 
and standard deviation of the percentage of all cases in 
the dataset meeting this threshold probability were also 
calculated. Hypothetically, on iteration three, in order for 
the algorithm to identify a subset of the records that con-
tained ninety percent (90%) of the true positive cases it 
was necessary to “tag” any record with a posterior prob-
ability of 0.17 or higher as a “hit”. This resulted in three 
percent (3%) of all records in this iteration being tagged 

Table 2 Variables within the dataset

Incident location

Mechanism of injury

Dispatch reason

Primary impression

Stemmed Keywords (Table 1)

Gender

Admit date

Date of birth

Zip code

State

Table 3 Case class choices

Case determination Description

0—not a case 0 (non-agricultural, non-traumatic/acute, or both)

1—Agriculture 1 (confirmed agricultural, confirmed traumatic/acute = true case)

2—Agriculture 2 (confirmed traumatic/acute, suspected agricultural)

3—Agriculture 3 (suspected traumatic/acute, confirmed agricultural)
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as “hits”. Therefore, the relevant data points for this itera-
tion were 0.17 (the required threshold posterior prob-
ability), and 0.03 (the proportion of all records that the 
algorithm needed to assign as “hits” in order to capture 
90% of the true hits in the file).

The proportion of records within the file that was 
tagged by the algorithm as “hits” that had been previ-
ously confirmed as case-class 1, 2, or 3 was also recorded. 
As a hypothetical example, on iteration three, the algo-
rithm was training on a file containing one hundred (100) 
records that were confirmed case-class 1, 2, or 3. In order 
for the algorithm to identify a subset containing ninety 
(90) of these confirmed case-class 1, 2, or 3 records, 3,012 
records with a posterior probability of 0.17 or greater 
were tagged as “hits”. The resulting percentage was there-
fore 90/3,012 = 0.0299 or 3%.

A receiver operator characteristic curve (ROC) with 
sensitivity (true positive rate) on the y-axis and 1-speci-
ficity (false positive rate) on the x-axis was also created 
for certain of these iterations. The area under these 
curves (AUC) was also recorded as an additional data 
point.

Sub-analyses were also performed with the goal of 
identifying the relative importance (discriminatory 
power) of the variables in Table 2. Further analyses were 
devoted to establishing the generalizability of the model 
across various states and various years. Variable impor-
tance was determined by subtracting the log probability 
of the negative class for each variable from the log prob-
ability of the positive class. This gave a measure of how 
strong a discriminator the variable was.

Application of the trained algorithm on newer un‑tagged 
datasets from Maine (2011–2016) and New Hampshire 
(2011–2015)
For each of the new untagged datasets (PCR data from 
Maine 2011–2016 and New Hampshire 2011–2015), 
the trained algorithm was used to identify the subset of 
records that had a posterior probability that was equal 
to or greater than the mean of the one-hundred (100) 
threshold probabilities obtained above. These records 
were set aside for visual inspection to determine their 
true case classification as being either a 1, 2, or 3 versus 
0 (Table 3).

Visual confirmation of records meeting the probability 
threshold as identified by the trained algorithm
The visual case determination utilized the following 
variables: state ID, state, incident ID, date of birth, gen-
der, incident location, dispatch reason, primary impres-
sion, mechanism of injury, incident date (admit date), 

stems, narrative. The research team developed an injury 
surveillance manual with specific coding rules, and this 
manual was updated throughout the visual case deter-
mination process to address any questions that arose. 
Trained coders independently assigned one of the four 
case-class levels (Table 3) to each record.

Any case that was not assigned a zero (not a case of 
interest) received a second, separate review by an addi-
tional coder; and discrepancies between the two case 
determinations were resolved by the two coders. When 
the initial review was complete, all non-zero cases and 
a random sample of 10% of zero cases were reviewed 
again by lead reviewers (Principal Investigator and 
Research Coordinator) to confirm the case determi-
nation. The lead review results were also used to pro-
vide additional training to the coders and to update the 
injury surveillance manual. In addition, coders used 
comment fields to suggest new exclusions; and these 
exclusion suggestions were reported to the study team, 
and subsequently included in future iterations of the 
algorithm’s exclusion list. The labor resource allocation 
to visual case determination was calculated in minutes 
per case, then transformed into full-time equivalents 
(FTE). For each of the untagged datasets, the percent of 
records in these tagged files that were confirmed by vis-
ual examination to be case-class 1, 2, or 3 was recorded.

Results
Results from the training of the algorithm on data 
from 2008 to 2010
Of the total of 1,072,745 records, 224,572 (20.9%) were 
eliminated in SAS as being either duplicates or irrele-
vant, leaving 848,173 records for the application of the 
algorithm. As the algorithm was trained, a total of 1557 
exclusion word or phrases were identified.

The average posterior probability cutoff over the 
training iterations that was required to produce a sub-
dataset that contained ninety percent of all true posi-
tives was 0.016 (SD 0.007). On average, fifteen percent 
(15%) of records fed into the model had a posterior 
probability > 0.016 and were thus reviewed visually. 
Averaged over the 100 iterations, 10.6% (SD 2.64) of the 
records with a posterior probability of 0.016 or higher 
were found to be agricultural cases.

The mean and standard deviation of the area under 
the ROC over the 100 80%—20% training-validation 
iterations were mean 0.95 and SD 0.01 respectively. The 
corresponding AUC values for the across year (train 
2008, 2010 test on 2009) and across state (trained on 
Maine, tested on New Hampshire) iterations were 0.94 
and 0.85 respectively (Figs. 1 and 2, Table 4).
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Results from application of the trained algorithm 
on the newer un‑tagged datasets from 2011 to 2016
Eliminating duplicates and records of no interest reduced 
the volume of records for machine learning by 791,659 
(Fig. 3). A total of 1,923,107 PCR records were imported 
into Python. Of these records, 95,545 contained a 
stemmed keyword of interest. The Naïve Bayes algorithm 

identified 29,099 records (30.5%) that had a posterior 
probability of being an agricultural case of 0.016 or 
greater and therefore met the 90% true positive thresh-
old that was derived from the training of the algorithm 
on the 2008–2010 data.

Results from visual confirmation of records
Visual inspection of these 29,099 records subsequently 
confirmed that 922 (3.2%) were in fact agricultural cases. 
The time burden for case determination is shown in 
Table 5. Initial case determination of the 29,099 records 
requiring visual inspection was estimated to require 1.7 
full-time equivalent (FTE) staff. The FTE required if we 
did not employ machine learning—visually inspect-
ing 95,545 records–would have been 5.6 FTE. There is a 
small additional amount of time for discrepancy resolu-
tion and lead review inspection, but that is a fraction of 
the time required for initial case determination.

Of the 922 records confirmed to be agricultural cases, 
coders identified 341 true agricultural injury records 
(Case class = 1) (Maine 2011–2016, New Hampshire 
2011–2015). In addition, there were 581 (Case class = 2 
or 3) that were suspected to be agricultural acute/trau-
matic events, but lacked the necessary detail to make a 
certain distinction. The top twenty variables with the 
highest discriminatory power of a true agricultural case 
are summarized in Table 6.

Discussion
The Naïve Bayes machine learning algorithm has sub-
stantially reduced the burden of identifying agricultural 
injury cases in PCRs by decreasing the number of records 
that need to be reviewed by visual inspection. Previous 
research showed that PCRs yield a higher proportion of 
occupational injury records than other types of existing 
administrative records, such as hospital data [24]. There-
fore, speeding up the process of identifying cases without 
sacrificing accuracy is a significant advancement in the 
field of injury surveillance for agriculture.

By moving from simple keyword searches to employ-
ing the use of machine learning techniques, we have 
advanced much closer to achieving an operational, 

Fig. 1 Receiver Operator Characteristic Curve for Naïve Bayes Tested 
on 2008 and 2010 Data from Maine & New Hampshire, Trained on 
2009

Fig. 2 Receiver Operator Characteristic Curve for Naïve Bayes Tested 
on New Hampshire (2008–2010), Trained on Maine

Table 4 Results from employing various variables in the naïve bayes machine learning model

Train scenario Test scenario Required true positive 
rate

Necessary false positive 
rate

AUC 

2008, 2009 2010 0.9 0.17 0.93

2008, 2010 2009 0.9 0.13 0.95

2009, 2010 2008 0.9 0.21 0.94

Maine 2008–2010 New Hampshire 2008–2010 0.9 0.44 0.86

New Hampshire 2008–2010 Maine 2008–2010 0.9 0.45 0.83
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sustainable surveillance system using existing data. The 
healthcare system is already burdened and lacks addi-
tional time for reporting; therefore we embarked on this 
endeavor utilizing data that can be imperfect, under-
standing that formatted variables are often left blank 
or not required. The onus has been on us to enhance 
the ability to find cases in the vast number of existing 
records, instead of insisting that emergency services fill 
out yet another report.

Fig. 3 Reduction of 2011–2015(6) Data Through NEC Surveillance System

Table 5 Burden for case determination (per record)

Role Activity Average Time 
(minutes/
record)

Initial reviewer First and second coding 3.5

Discrepancy review 6

Lead reviewer Verifying initial case determination 2.5

Reviewing case determination ques-
tions

5

Table 6 Top twenty variables in terms of discriminatory power (training dataset)

Variable Log Prob‑
ability Differ‑
ence

Variable 
Positive/Target 
Positive

Variable 
Positive/Target 
Negative

Variable 
Negative/Target 
Positive

Variable 
Negative/Target 
Negative

Stem: hoov 5.284761681 3 0 529 31,303

Stem: silag 4.5916145 1 0 531 31,303

Stem: three_point_hitch 4.5916145 1 0 531 31,303

Stem: grain_bin 4.5916145 1 0 531 31,303

Stem: hoof_trimmer 4.5916145 1 0 531 31,303

Stem: plowshar 4.5916145 1 0 531 31,303

Stem: 3_point_hitch 3.89846732 1 1 531 31,302

Stem: cow 3.62817699 28 37 504 31,266

Stem: slaughter 3.610785247 2 3 530 31,300

Stem: choker 3.493002212 1 2 531 31,301

Stem: harrow 3.493002212 1 2 531 31,301

Primaryimpression_Cardiac—Ventricular Fibrillation 3.493002212 1 2 531 31,301

Primaryimpression_Traumatic Injury—Electrocution 3.493002212 1 2 531 31,301

Incidentloc_Farm 3.352703645 134 232 398 31,071

Stem: hay 3.258429964 28 54 504 31,249

Stem: pastur 3.205320139 8 17 524 31,286

Stem: skid_steer 3.205320139 2 5 530 31,298

Stem: udder 3.205320139 0 1 532 31,302

Primaryimpression_Traumatic Injury—Tension Pneu-
mothorax

3.205320139 0 1 532 31,302

Primaryimpression_Vaginal Hemorrhage 3.205320139 0 1 532 31,302
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We anticipate that PCRs will continue to be a stable 
data source for years to come. Advancements in elec-
tronic reporting have improved over the last decade with 
rural areas obtaining improved connectivity by way of 
broadband internet. Most PCR data are used for quality 
assurance and quality control for emergency medical ser-
vices, but it is increasingly being seen as a viable research 
dataset [17, 25, 26]. In addition, state-based Emergency 
Medical Services Bureaus are interested in utilizing the 
results of research involving PCRs as a way to enhance 
EMS response.

It is possible to use a Naïve Bayes machine learning 
algorithm to identify agricultural injury records in Maine 
and New Hampshire. Utilizing two states and three years 
of data respectively, we examined how such a surveillance 
system performs over time, and how additional states 
may be added to the system in the future. In the case of 
cross-year and cross-state train/test splits, the necessary 
false positive rates were higher than with purely random 
splits, but still significantly better than chance (Table 4). 
The model performed best when all the variables were 
available, though it performed much better than chance 
when presented with 1) only the narrative or 2) only the 
categorical variables. This has major implications for 
expanding the surveillance system to new states, as the 
variables available through research data use agreements 
can vary by state. Results of cross-state train/test splits 
also suggest that while a model trained on one state does 
not generalize to another state perfectly, it may be an 
acceptable low-cost alternative to creating a state-specific 
training set. In addition, findings indicate that a model 
can be trained on earlier years and still generalize well to 
later years.

There is a slight decrease in the model’s performance 
when it’s applied to the newer years. Within the newer 
validation data, 30.5% of records were tagged for visual 
inspection (due to a posterior probability > 0.016) versus 
15% in the training dataset. The variables which had the 
greatest discriminatory power included stemmed key-
words which are quite unique to agriculture, for example 
hoov(e), silag(e), and grain_bin. While they showed up 
rarely in the PCR narratives, when they did they were a 
good indicator of an agricultural injury. Other variables 
that were strongly indicative of agricultural cases and 
appeared much more often include the keywords cow, 
hay, and pastur(e), as well as the incident location of 
Farm. The cost for maintaining this surveillance system 
can be reduced in two ways: by enhancing the accuracy 
of the machine learning algorithm and by altering pro-
tocols for visual inspection of records. Further review of 
the inter-rater reliability between coders will determine if 
we can reduce the time spent on visual inspection, with-
out sacrificing significant errors in case classification.

Our ability to add states to the system and continue 
to review and code timely data will rest on continued 
refinement of the machine learning algorithm. To this 
end, next steps include the exploration of active machine 
learning. Part of this process is scrutinizing how much 
tagged data is necessary to get a new state off the ground, 
or to review how well the algorithm performs over time, 
understanding that databases and their data dictionaries 
evolve over time.

The descriptive epidemiology of the injury events iden-
tified will be the subject of a separate manuscript.

Limitations
This surveillance method captures traumatic injuries for 
which EMS were involved, where the record contained a 
variable or keyword related to agriculture. Inherently, this 
leaves out injuries where medical treatment was sought 
without EMS involvement, such as those transported to 
the hospital in a private vehicle. This system is designed 
to capture ninety percent of true positive cases, knowing 
that some cases (10%) will be missed.

Since the model’s performance in later years does not 
exactly match that of the training years, further assess-
ment is needed to understand if the full 90% of case-class 
1, 2, and 3 are still captured in later years. In 2008–2010, 
the percent of records that made it to the model which 
were tagged & visually confirmed was 1.59% (15% * 
10.6%). In 2011–2015, that was only 0.976% (30.5% * 
3.2%). Assuming the base rate of true cases amongst 
records that make it to the model remains relatively 
constant over the nine year period, means that we are 
identifying a slightly smaller percent of true positives in 
2011–2015 than in 2008–2010.

To refine the machine learning algorithm, a certain 
amount of tagged data is required, and the initial step of 
tagging the large corpus is quite time consuming. For the 
newer datasets to which the algorithm was applied, we 
cannot confirm that this dataset in fact contains ninety 
percent (90%) of all true cases. Understanding that would 
require visually inspecting a vast number of cases and 
requires further study. Choosing a lower required true 
positive rate will reduce the number of false positives that 
need to be reviewed, but will also increase the number of 
false negatives.

Conclusions
This research adds substantial information to improv-
ing occupational injury surveillance using existing data 
sources. The application of the trained algorithm on 
newer data left less than two percent of records requir-
ing visual inspection, making it a sustainable and cost-
effective way to understand injury trends in agriculture. 
This system, along with companion surveillance methods 
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such as those utilizing hospital, trauma and survey data, 
provides a broader picture of worker injury in agricul-
ture. Continued investment in robust injury surveillance 
methodologies will benefit worker health and safety, by 
allowing occupational health and safety specialists to 
make informed decisions about hazards and evaluate the 
effect of injury prevention efforts over time.
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