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Abstract: Recent studies have
revealed that proteases encoded
by three very diverse RNA virus
groups share structural similarity
with enzymes of the Ovarian Tumor
(OTU) superfamily of deubiquiti-
nases (DUBs). The publication of
the latest of these reports in quick
succession prevented proper rec-
ognition and discussion of the
shared features of these viral en-
zymes. Here we provide a brief
structural and functional compari-
son of these virus-encoded OTU
DUBs. Interestingly, although their
shared structural features and sub-
strate specificity tentatively place
them within the same protease
superfamily, they also show inter-
esting differences that trigger spec-
ulation as to their origins.

The covalent attachment of ubiquitin

(Ub) to protein substrates, i.e., ubiquitina-

tion, plays a pivotal regulatory role in

numerous cellular processes [1–5]. Ubiqui-

tination can be reversed by deubiquitinases

(DUBs) [6] and, not surprisingly, various

virus groups encode such DUBs to influ-

ence ubiquitin-mediated host cell processes

[7–21]. Some of these viral DUBs resemble

proteases belonging to the Ovarian Tumor

(OTU) superfamily [22–28]. Makarova et

al. previously identified OTU proteases as a

novel superfamily of cysteine proteases

from different organisms [29], and their

bioinformatics-based analysis included sev-

eral of the viral enzymes discussed here.

Recently reported structures of these viral

DUBs include the OTU domains of the

nairoviruses Crimean-Congo hemorrhagic

fever virus (CCHFV) [22–24] and Dugbe

virus (DUGV) [25], the papain-like prote-

ase (PLP2) domain of the arterivirus equine

arteritis virus (EAV) [26], and the protease

(PRO) domain of the tymovirus turnip

yellow mosaic virus (TYMV) (Figure 1A–

1D) [27,28]. These viruses are strikingly

diverse, considering that nairoviruses are

mammalian negative-strand RNA viruses,

while the mammalian arteriviruses and

plant tymoviruses belong to separate orders

of positive-strand RNA viruses.

Ubiquitination often involves the for-

mation of polyubiquitin chains [1], which

can target the ubiquitinated substrate to

the proteasome for degradation [2] or

modulate its protein–protein interactions,

as in the activation of innate immune

signaling pathways [3,4]. Interestingly,

several cellular OTU DUBs were found

to negatively regulate innate immunity

[30–33]. Likewise, both nairovirus OTU

and arterivirus PLP2 were recently shown

to inhibit innate immune responses by

targeting ubiquitinated signaling factors

[7–9,26,34,35]. In contrast to eukaryotic

OTU DUBs, both of these viral proteases

were found to also deconjugate the Ub-like

protein interferon-stimulated gene 15

(ISG15) [7,36], which inhibits viral repli-

cation via a mechanism that is currently

poorly understood [37]. Interestingly, co-

ronaviruses (which, together with the

arteriviruses, belong to the nidovirus

order) also encode papain-like proteases

targeting both Ub and ISG15 that were

shown to inhibit innate immunity [11–

13,38–42] but belong to the ubiquitin-

specific protease (USP) class of DUBs

[6,43,44]. The presence of functionally

similar, yet structurally different proteases

in distantly related virus families highlights

the potential benefits to the virus of

harboring such enzymes.

The proteasomal degradation pathway

is an important cellular route to dispose of

viral proteins, as exemplified by the

turnover of the TYMV polymerase [45].

Moreover, the degradation of this protein

is specifically counteracted by the deubi-

quitinase activity of TYMV PRO, which

thus promotes virus replication [10]. The

functional characterization of viral OTU

DUBs remains incomplete and future

studies will likely reveal additional roles

in replication and virus–host interplay.

Polyubiquitin chains can adopt a num-

ber of different configurations, depending

on the type of covalent linkage present

within the polymer [1]. A distal Ub

molecule can be linked via its C-terminus

to one of seven internal lysine residues

present in a proximal Ub molecule via an

isopeptide bond. Alternatively, in the case

of linear chains, the C-terminus of the

distal Ub is covalently linked to the N-

terminal methionine residue of the prox-

imal Ub via a peptide bond. While human

OTU proteases often show a distinct

preference for one or two isopeptide

linkage types [46], nairovirus OTUs and

TYMV PRO appear to be more promis-

cuous in their substrate preference [22,25].

However, like most human OTU prote-

ases, they seem unable to cleave linear

polyubiquitin chains in vitro [22,25,46].

Arterivirus PLP2 has not been extensively

studied in this respect.
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Figure 1. Viral and eukaryotic OTU domain structures and viral protein context. Crystal structures of (A) CCHFV OTU (3PT2) [23], (B) DUGV
OTU (4HXD) [25], (C) EAV PLP2 (4IUM) [26], (D) TYMV PRO (4A5U) [27,28], (E) yeast OTU1 (3BY4) [57], and (F) human OTUD3 (4BOU) [46]. The b-hairpin
motifs of CCHFV OTU and DUGV OTU are indicated in boxes in panels A and B, respectively, and the zinc-finger motif of EAV PLP2 is boxed in panel
C. Active sites are indicated with arrows. The CCHFV OTU, DUGV OTU, EAV PLP2, and yeast OTU1 domains were crystallized in complex with Ub,
which has been removed for clarity. Structure images were generated using PyMol [60]. (G) Schematic representation of the CCHFV large (L) protein
[61,62]. A similar organization is found in the DUGV L protein, but is not depicted. The OTU domain resides in the N-terminal region of this protein
and is not involved in autoproteolytic cleavage events [48]. (H) Schematic representation of the EAV polyprotein 1ab [63]. PLP2 resides in
nonstructural protein 2 (nsp2) and is responsible for the cleavage between nsp2 and nsp3 [51]. (I) Schematic representation of the TYMV ORF1
polyprotein [50]. PRO resides in the N-terminal product of this polyprotein and is responsible for two internal cleavages [49,50]. Key replicative
enzymes are indicated in G, H, and I. Colored arrowheads denote cleavage sites for the indicated protease domains. HEL, helicase; PLP, papain-like
protease; RdRp, RNA-dependent RNA polymerase; SP, serine protease.
doi:10.1371/journal.ppat.1003894.g001
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It is important to note that many

positive-strand RNA viruses, including

arteriviruses and tymoviruses, encode

polyproteins that are post-translationally

cleaved by internal protease domains [47].

Thus, while CCHFV OTU is not involved

in viral protein cleavage and its activity

seems dispensable for replication

(Figure 1G) [48], both arterivirus PLP2

and tymovirus PRO are critically required

for viral replication due to their primary

role in polyprotein maturation (Figure 1H,

1I) [49–53]. Interestingly, while both EAV

PLP2 and TYMV PRO can process

peptide bonds in cis and in trans [50,51],

PRO does not cleave peptide bonds in

linear polyubiquitin chains in vitro [25]. To

date, activity of EAV PLP2 towards linear

polyubiquitin chains has not been reported.

Based on mutagenesis of putative cata-

lytic residues, arterivirus PLP2 and tymo-

virus PRO were initially generally classi-

fied as papain-like cysteine proteases

[51,54,55]. Now that crystal structures of

these proteases are available, it is possible

to search the DALI server [56] in order to

identify structurally similar domains. Us-

ing the 3-dimensional coordinates of

TYMV PRO, the most recently solved

structure of a viral OTU protease, such a

query identifies structural similarity with

eukaryotic OTU DUBs as well as the

nairovirus OTU domains and EAV PLP2

(Table 1). A superposition of these viral

protease structures with yeast OTU1 [57]

further highlights their similarities

(Figure 2A–2C), and these comparisons

together clearly position them within the

OTU DUB superfamily. Sequence compar-

isons alone were insufficient to demonstrate

this conclusively, as the similarity of viral

OTU domains to each other and to

eukaryotic OTU proteases is very limited

and mostly restricted to the areas surround-

ing the active site residues [29].

Structural characterization of nairovirus

(CCHFV and DUGV) OTU domains and

EAV PLP2 in complex with Ub revealed

that while these viral proteases adopt a

fold that is consistent with eukaryotic

OTU DUBs, they possess additional

structural motifs in their S1 binding site

that rotate the distal Ub relative to the

binding orientation observed in eukaryotic

OTU enzymes (Figure 2D, 2E) [22–26].

In the case of CCHFV OTU, this

alternative binding mode was shown to

expand its substrate repertoire by allowing

the enzyme to also accommodate ISG15.

Since TYMV PRO was crystallized in its

apo form [27,28], it remains to be

determined whether its S1 site binds Ub

in an orientation similar to nairovirus

OTU and EAV PLP2 or eukaryotic

OTU DUBs.

A remarkable feature of EAV PLP2 is

the incorporation within the OTU-fold of

a zinc finger that is involved in the

interaction with Ub (Figures 1C, 2E).

The absence of similar internal zinc-finger

motifs in other OTU superfamily mem-

bers prompted us to propose that PLP2

prototypes a novel subclass of zinc-depen-

dent OTU DUBs [26].

Finally, an interesting structural differ-

ence between TYMV PRO and other

OTU proteases of known structure is the

absence of a loop that generally covers the

active site (Figure 2F, 2G). Because of this,

TYMV PRO lacks a complete oxyanion

hole. It also lacks a third catalytic residue

that would otherwise form the catalytic

triad that has been observed in other

OTU proteases (Figure 2G). Lombardi

et al. suggested that the resulting solvent

exposure of the active site may contribute

to the broad substrate specificity of TYMV

PRO [28]. Interestingly, EAV PLP2 also

has broad substrate specificity, cleaving

Ub, ISG15, and the viral polyprotein,

even though it does possess an intact

oxyanion hole and an active site that is

not solvent exposed. Future work may

uncover additional aspects relating to the

unusual architecture of the TYMV PRO

active site.

The presence of structurally similar

proteases, each displaying unique features,

in these highly diverse virus groups suggests

that their ancestors have independently

acquired their respective OTU enzymes.

Although their origins remain elusive, one

possible scenario is the scavenging of an

OTU DUB-encoding gene that directly

enabled the ancestral virus to interact with

the cellular ubiquitin landscape [29]. The

absence of an OTU homologue in other

lineages of the bunyavirus family strongly

suggests that a nairoviral ancestor acquired

an OTU DUB through heterologous

recombination. In this scenario, the current

differences between the nairoviral and

eukaryotic OTU domains would reflect

divergent evolution. In the case of arter-

iviruses, however, it is also conceivable that

a preexisting papain-like protease that was

initially only involved in polyprotein mat-

uration acquired OTU-like features

through a process of convergent evolution.

Although rare, such a scenario would

Table 1. Three-dimensional structural alignment of viral OTU domains against selected structures in the Protein Data Bank using
the DALI server [56].

DALI Query: CCHFV OTU DUGV OTU TYMV PRO EAV PLP2

3PT2 [23] 4HXD [25] 4A5U [27,28] 4IUM [26]

Human OTUD3 14.5; 12%* 14.4; 15% 7.6; 12% 4.2; 13%

4BOU [46] 2.1 Å (123)** 2.1 Å (123) 1.9 Å (85) 2.4 Å (69)

Yeast OTU1 11.8; 16% 11.6; 20% 7.3; 12% 5.1; 9%

3BY4 [57] 2.9 Å (126) 2.5 Å (123) 2.3 Å (91) 3.3 Å (81)

CCHFV OTU 28.1; 55% 6.8; 15% 4.6; 19%

3PT2 [23] 0.9 Å (157) 3.0 Å (91) 2.6 Å (74)

DUGV OTU 6.9; 12% 4.5; 19%

4HXD [25] 2.8 Å (90) 2.6 Å (74)

TYMV PRO 3.2; 13%

4A5U [27,28] 2.8 Å (64)

*z-score (.2 indicates significant structural similarity [59]); % sequence identity.
**Root-mean-square deviation (RMSD) values are indicated, followed by the number of residues used for RMSD calculation in brackets. Value represents the average
distance (Å) between alpha carbons used for comparison.
doi:10.1371/journal.ppat.1003894.t001
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Figure 2. Superpositions of the viral OTU proteases with yeast OTU1 and one another. Superpositions of yeast OTU1 (3BY4) [57] with (A)
CCHFV OTU (3PT2) [23], RMSD: 1.8 Å over 112 residues, (B) EAV PLP2 (4IUM) [26], RMSD: 2.8 Å over 69 residues, and (C) TYMV PRO (4A5U) [27,28],
RMSD: 1.4 Å over 76 residues. Superpositions of the yeast OTU1-Ub complex with (D) the CCHFV OTU-Ub complex and (E) the EAV PLP2-Ub complex,
highlighting the difference in the orientation of Ub between the two viral OTU domains versus the eukaryotic yeast OTU1 domain. The Ub that is
complexed with yeast OTU1 is depicted in yellow, while the Ub complexed with CCHFV OTU or EAV PLP2 is depicted in orange. (F) Superposition of
EAV PLP2 and TYMV PRO, RMSD: 2.5 Å over 53 residues. (G) Close-up of the active site region (boxed) of the superposition depicted in F. Side chains
of the catalytic cysteine (Cys270 and Cys783 for EAV PLP2 and TYMV PRO, respectively) and histidine (His332 and His869 for EAV PLP2 and TYMV PRO,
respectively) residues are shown as sticks, as well as the active site Asn263 for EAV PLP2. The backbone amide group of Asp267 likely contributes to
the formation of the oxyanion hole in the active site of EAV PLP2, yet a functionally equivalent residue is absent in TYMV PRO. The Gly266 and Gly268
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account for the limited structural similarity

between eukaryotic OTU domains and

EAV PLP2, which contrasts with that

observed for nairovirus OTU (Figure 2A,

2B; Table 1). For tymoviruses, which

encode one (OTU) protease, the existence

of related viruses that do not encode a

protease domain or that encode one

(papain-like) or two (OTU combined with

a second papain-like) protease domains

complicates the development of a straight-

forward scenario describing PRO acquisi-

tion and evolution [58]. These and other

intriguing unsolved questions should be

addressed through structural and functional

studies of additional OTU-like proteases,

be they viral or cellular, the results of which

may shed more light on the various

scenarios explaining the evolution of viral

OTU domains.
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