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A mathematical model for the treatment of cancer using chemovirotherapy is developed with the aim of determining the efficacy of
three drug infusion methods: constant, single bolus, and periodic treatments. +e model is in the form of ODEs and is further
extended into DDEs to account for delays as a result of the infection of tumor cells by the virus and chemotherapeutic drug responses.
Analysis of the model is carried out for each of the three drug infusion methods. Analytic solutions are determined where possible
and stability analysis of both steady state solutions for the ODEs and DDEs is presented. +e results indicate that constant and
periodic drug infusionmethods aremore efficient compared to a single bolus injection. Numerical simulations show that with a large
virus burst size, irrespective of the drug infusion method, chemovirotherapy is highly effective compared to either treatments. +e
simulations further show that both delays increase the period within which a tumor can be cleared from body tissue.

1. Introduction

Tumors possess mechanisms that suppress antitumor ac-
tivity such as ligands that block natural killer cells and
cytotoxic tumor infiltrating cell functions [1]. Greatly be-
cause of this, successful cancer treatment often requires
a combination of treatment regimens.

Nearly all traditional monotherapies, including che-
motherapy, surgery, and radiation therapy are not a definite
cure for cancer and are highly toxic [2]. Chemotherapy for
example, which is the most commonly used regimen, in-
volves the use of medical drugs to lyse cancer cells. +ese
chemotherapeutic drugs circulate in the body and kill
rapidly multiplying cells nonselectively, which ultimately
results into the destruction of both healthy and cancerous
cells [2, 3]. Chemotherapy can thus be toxic to a patient with
adverse side effects and can also damage their immune
system [2].

Presently, combination cancer treatment is a centerpiece
of cancer therapy [4]. +e amalgamation of anticancer drugs
increases efficacy compared to single-drug treatments.
Further, anticancer drug combination provides therapeutic
benefits such as reducing tumor growth, arresting mitoti-
cally active cells, reducing the population of cancer stem

cells, and inducing apoptosis [4]. Despite the fact that
combination therapy might as well be toxic if one of the
agents used is chemotherapeutic, the toxicity is lesser be-
cause different pathways would be targeted [4]. Moreover
with the use of combination therapy, the toxicity on normal
cells can be prevented while concurrently producing cyto-
toxic effects on cancer cells [4, 5].

In the recent past, virotherapy, a less toxic treatment has
been identified as a possible cancer remedy [6–11]. Viro-
therapy involves the use of oncolytic viruses that infect,
multiply, and directly lyse cancer cells with less or no toxicity
[9]. +eir tumor specific properties allow for viral binding,
entry, and replication [12]. Oncolytic viruses can greatly
enhance the cytotoxic mechanisms of chemotherapeutic
drugs [13]. Further, chemotherapeutic drugs lyse fast
multiplying cells and, in general, virus infected tumor cells
quickly replicate [14].

Chemovirotherapy is a combination treatment strategy
that involves the use of oncolytic viruses and chemothera-
peutic drugs. Recent experimental and mathematical studies
have shown that chemovirotherapy is a plausible cancer
treatment and leads to enhanced therapeutic effects not
achievable when either therapies are independently used
[12, 13, 15–20]. Nguyen et al. [12] gave an account of the
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mechanisms through which drugs can successfully be used
in a combination with oncolytic viruses. +ey however note
that the success of this combination depends on several
factors including the type of oncolytic virus- (OV-) drug
combination used, the timing, frequency, dosage, and cancer
type targeted. To date, the best method of OV drug delivery
is debatable [21, 22].

+e main goal of this study is to, thus, consider and
compare the efficacy of three drug infusion methods, use
mathematical analysis to predict the outcome of OV-drugs
combination treatment and determine the effect of drug
response and virus infection delays. To this end, we con-
struct a mathematical model in the form of ODEs which we
later extend to DDEs to include the virus infection and drug
response delays. +e model constructed combines elements
from existing mathematical models [10, 11, 19, 20, 23–30].
Tian [10] presented a mathematical model that incorporates
burst size for oncolytic virotherapy. His study showed that
virotherapy is highly effective provided that viruses with
large burst sizes are used. Malinzi et al. [19] constructed
a spatiotemporal mathematical model to investigate the
outcome of chemovirotherapy. +eir study suggested that
combining chemotherapeutic drugs with oncolytic viruses is
more efficient than using either treatments alone. A similar
study by Malinzi et al. [20] indicates that chemotherapy
alone is capable of clearing tumor cells from body tissue if
the drug efficacy is greater than the tumor growth rate.
Nevertheless, the study contends that oncolytic viruses
highly enhance chemotherapy in lysing tumor cells. +e
study further postulates that half the maximum tolerated
doses of chemotherapy and virotherapy optimize chemo-
virotherapy, thus answering a very pertinent question in
combination cancer therapy.

+e article is organised as follows: Section 2 presents
a comprehensive description of the both the ODE and
DDE models and the underlying assumptions made in
constructing them. In Section 3, the model without delay
is analysed. First, without any form of treatment, then
with either treatments (that is, with chemo only and
virotherapy alone) and with both treatments. +e delay
model is then analysed in Section 4 and numerical ex-
periments for both the ODE and DDE models are carried
out in Section 5. Finally, before concluding in Section 7,
a comparison of this study with related works is done is
Section 6.

2. Model Description

2.1. Model without Delay. Time-dependent cell concen-
trations of uninfected tumor cells U(t), infected tumor cells
I(t), a free virus population V(t), and a chemotherapeutic
drug C(t) in an avascular tumor localization are consid-
ered.+e uninfected tumor grows logistically at an intrinsic
rate α per day, and the total tumor carrying capacity is K
cells in a tumor nodule. +e infected tumor cells die off at
a rate δ per day. Virus multiplication in the tumor is
represented by the function βU(t)V(t), where β is the virus
replication rate measured per day per 106 cells or viruses.
+e response of the drug to the uninfected and infected

tumor is, respectively, modelled by the functions
δ0U(t)C(t) and δ1I(t)C(t) where δ0 and δ1 are induced
lysis rates caused by the chemotherapeutic drug measured
per day per cell. Virus lifespan is taken to be 1/c and its
production is considered to be bδI where b is the virus burst
size, measured in number of viruses per day per cell, and δ
is the infected tumor cells’ death rate measured per day.
Chemotherapeutic drug infusion into the body is modelled
with a function g(t) and that the drug gets depleted from
body tissue at a rate λ per day.

Drug infusion into the body is simulated using (a)
a constant rate g(t) � q, (b) an exponential g(t) �

q exp(−at), and (c) a sinusoidal function g(t) � q sin2(at),
where q is the rate of drug infusion. +e constant a de-
termines the exponential drug decay and period for the
sinusoidal infusion. Constant drug infusion may relate to
a situation where a patient is put on an intravenous injection
or a protracted venous infusion and the drug is constantly
pumped into the body [31, 32]. +e exponential drug in-
fusion may relate a situation where a cancer patient is given
a single bolus and the drug exponentially decays in the body
tissue. +is form of infusion is not common although it is
now used for some drugs, for example, a single dose of
carboplatin can be given to patients with testicular germ cell
tumors and breast cancer ([33, 34]). +e third scenario is
possible when a cancer patient makes several visits to
a health facility and is given injections or anticancer drugs
periodically [35, 36].

+e assumptions above lead to the following system of
nonlinear first-order differential equations (also similarly
derived in [11, 19, 20]):

_U(t) � αU(t) 1−
U(t) + I(t)

K
 − βU(t)V(t)− δ0U(t)C(t),

_I(t) � βU(t)V(t)− δI(t)− δ1I(t)C(t),

_V(t) � bδI(t)− βU(t)V(t) − cV(t),

_C(t) � g(t)− λC(t),

(1)

subject to initial concentrations

U(0) � U0,

I(0) � I0,

V(0) � V0,

C(0) � C0.

(2)

2.2. Delay Model. +e model is further extended to account
for delays as a result of the infection of tumor cells by the
virus and responses of the chemotherapeutic drug. In fact,
the viruses need time to develop suitable responses when
they meet the uninfected tumor cells (e.g., [37]). +e drug
does not instantaneously kill the cells (e.g., [38, 39]). By
denoting the virus and chemotherapeutic response delays as
τ1 and τ2, respectively, model (1)
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_U(t) � αU(t) 1−
U(t) +(t)

K
 − βU t− τ1( V t− τ1( 

− δ0U t− τ2( C t− τ2( ,

_I(t) � βU t− τ1( V t− τ1( − I(t)− δ1I t− τ2( C t− τ2( ,

_V(t) � bI(t)− βU t− τ1( V t− τ1( − cV(t),

_C(t) � g(t)− λC(t).

(3)

3. Mathematical Analysis of
Model without Delay

In this section, the model without delay (1) is analysed. +e
variables in system (1) are first rescaled by setting t � δt,
U � KU, I � KI, V � V0V, and C � C0C. Taking V0 � K,
the parameters are renamed to become

α �
α
δ

, β �
βV0

δ
, δ0 �

δ0C0

δ
, δ1�

δ1C0

δ
, b �

bK

V0
, c �

c

δ
,

ϕ �
q

δC0
,ψ �

λ
δ
, a �

a

δ
.

(4)

For simplicity, we drop the bars and equation (1)
becomes

_U(t) � αU(t)(1−U(t)− I(t))− βU(t)V(t)− δ0U(t)C(t),

_I(t) � βU(t)V(t)− I(t)− δ1I(t)C(t),

_V(t) � bI(t)− βU(t)V(t)− cV(t),

_C(t) � ξ(t)−ψC(t).

(5)

ξ(t) � ϕ, ξ(t) � ϕ exp(−at), and ϕ sin2(at), respectively,
are the constant, exponential, and sinusoidal infusion func-
tions. For this model to be biologicallymeaningful, its solutions
should be positive and bounded because they represent con-
centrations. Well-posedness theorems of model (5) are stated
and proved in Appendix A.

3.1. Model Solutions. To investigate the efficacy of each
treatment and their combination, we first study the dy-
namics of the system without treatment. Without any form
of treatment, model (5) is reduced to only one equation:

_U(t) � αU(t)(1−U(t)),

U(0) � U0,
(6)

whose solution is

U(t) �
U0

1−U0( exp(−αt) + U0
,

lim
t⟶∞

U(t) � 1,

(7)

implying that the tumor logistically grows to its maximum
fractional size. Next, the model (5) is analysed, with che-
motherapy, with virotherapy, and then with both treatments
incorporated. We obtain, where possible analytical and time
invariant solutions which predict the long term dynamics of
the model equation (1).

Without virotherapy (V(t) � 0), the system (5) is
transformed to

_U(t) � αU(t)(1 −U(t))− δ0U(t)C(t),

_C(t) � ξ(t)−ψC(t),
(8)

with U(0) � U0 and C(0) � C0. +e second equation in
equation (8) is a first-order linear ordinary differential
equation which can easily be solved to give

C(t) � exp(−ψt)  ξ(t)exp(ψt)dt + R , (9)

where R is a constant of integration. +e solution to the first
equation in equation (8) depends on the infusion function
ξ(t). For a fixed infusion function ϕ,

U(t) �
e αt− δ0ϕt/ψ( )+ δ0e(−ψt)/ψ( )( )

α e αt− δ0ϕt/ψ( )+ δ0e(−ψt)/ψ( )( )dt + eδ0ψ/U0( 
,

C(t) � C0 −
ϕ
ψ

 e
−ψt

+
ϕ
ψ

.

(10)

From the solution of C(t) in equation (10),

lim
t⟶∞

C(t) �
ϕ
ψ

. (11)

Biologically, it can be inferred that with a constant
drug infusion and without virotherapy, the tumor is not
completely cleared and a certain proportion of the drug
remains in body tissue. +e tumor clearance depends on the
drug induced lysis of the tumor and the drug infusion rate
which should be maximized and the tumor growth and drug
decay rate which should be minimized.

For ξ(t) � ϕ exp(−at),

U(t) �
e (aαt/a−ψ)−(αψt/a−ψ)+ cδ0e(−ψt)/a−ψ( )− acδ0e(−ψt)/(a−ψ)ψ( )+ δ0ϕe(−at)/(a−ψ)a( )( )

a  e(aαt/a−ψ)−(αψt/a−ψ)+ cδ0e(−ψt)/a−ψ( )− acδ0e(−ψt)/(a−ψ)ψ( )+ δ0ϕe(−at)/(a−ψ)a( )dt + e cδ0/a−ψ( )/U0 
,

C(t) �
C0ψ − ϕ

ψ
−
ϕe(−at+ψt)

a−ψ
 e

(−ψt)
,

(12)
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where c � (C0ψ −ϕ/ψ).
From equation (12),

lim
t⟶∞

C(t) � 0,

lim
t⟶∞

U(t) � U∗,
(13)

where U∗ is a fractional tumor cell concentration between
0 and 1. +is suggests that with a single dosage infusion of
the chemotherapeutic drug with exponential decay and
without virotherapy, the tumor cannot be cleared from body
tissue. +e drug is also completely depleted from the body.

When ξ(t) � ϕ sin2(at) is substituted in equation (8),
the resulting differential equations are solved to give

C(t) �
1
2

2R−
ψ2 cos(2at)e(ψt) + 2aψe(ψt) sin(2at)− 4a2 + ψ2( e(ψt)( ϕ

4a2ψ + ψ3 e
(−ψt)

, (14)

where

R � C0 +
ψ2 −ϕ 4a2 + ψ2( 

2ψ 4a2 + ψ2( 
,

lim
t⟶∞

C(t) � C∗ � f(a, ϕ,ψ).

(15)

+is suggests that with time, some drug concentration
remains in the body tissue.

Theorem 1. /e system (8), with constant infusion, has no
periodic solutions for positive U(t) and C(t).

Proof. Using Dulac’s criterion ([40]):
Suppose _X � f(x) and f(x) is continuously differen-

tiable on a simply connected domain D ⊂ R. If there exists
a real valued function g(x) such that ∇ · (g( _X)) � ∇ · (gf)

has one sign inD, then there are no closed orbits inD. Using
Dulac’s criterion, it is sufficient to show that

z

zU
(g _U) +

z

zC
(g _C)≠ 0, ∀U, C ∈ R2

+. (16)

Consider

g(U, C) �
1

UC
,

∇ · (g _X) �
z

zU
(g _U) +

z

zC
(g _C),

� −
α
C

+
ξ(t)

UC2 < 0, ∀U, C ∈ R
+

( 
2
.

(17)

□

Theorem 2. /e system (8) has at least two steady states for
each of the drug infusion functions:

(1) For the constant drug infusion function ξ(t) � ϕ,
there are two steady states of equation (8): (U �

0, C � (ϕ/ψ)) which is locally asymptotically stable
provided that δ0ϕ> αψ and (U � 1− (δ0ϕ/αψ), C �

0) which is locally asymptotically stable provided
that δ0ϕ + αψ > 2δ0ϕψ2; otherwise, it is unstable.

(2) For the exponential drug infusion ξ(t) � ϕ exp(−at),
equation (8) has two steady states: (U � 0,

C � 0, W � 0) which is unstable and (U � 1, C � 0,

W � 0) which is locally asymptotically stable.
(3) For the sinusoidal infusion function, there are

four steady states of equation (8): (U � 0, C � 0,

W � 0), (U � 1, C � 1, W � 0), and (U � (aαψ −
δ0ϕ/aαψ), C � (ϕ/aψ), W � (ϕ/a)) which are
unstable and (U � 0, C � (ϕ/aψ), W � (ϕ/a))

which is locally asymptotically stable if δ0ϕ> aαψ
and ϕ< 1.

Proof.

(1) It is easy to show that when equation (8) is equated to
zero, one obtains two steady states.+e characteristic
polynomial of the Jacobian matrix for equation (8)
evaluated at (0, (ϕ/ψ)) is

λ2 + −α +
δ0ϕ
ψ

+ ψ λ + δ0ϕ− αψ, (18)

whose roots λ can only be negative if δ0ϕ> αψ.
+e characteristic polynomial evaluated at (1−
(δ0ϕ/αψ), 0) is

λ2 + −2δ0ϕψ + α +
δ0ϕ
ψ

+ ψ λ− 2 δ0ϕψ
2

+ δ0ϕ + αψ,

(19)

whose roots are negative provided that δ0ϕ + αψ >
2δ0ϕψ2.

(2) By letting W � ϕ exp(−at), equation (8) is turned
into an autonomous system:

_U(t) � αU(t)(1−U(t))− δ0U(t)C(t),

_C(t) � W−ψC(t),

_W(t) � −aW.

(20)

+e eigenvalues of the Jacobian matrix for equa-
tion (20) evaluated at (0, 0, 0) which are −ψ, α, and
0 and at (1, 0, 0) which are −α,−ψ, and −a are all
negative.

(3) Similarly, by letting W � ϕ sin2 t, equation (8) be-
comes the autonomous system:
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_U(t) � αU(t)(1−U(t))− δ0U(t)C(t),

_C(t) � W−ψC(t),

_W(t) � [4aW(ϕ−W)]
1/2

.

(21)

+e eigenvalues of the Jacobian matrix for equation
(20) evaluated at (0, 0, 0) are −ψ, α, and 0 and the ei-
genvalues evaluated at (1, 0, 0) are ψ,−α, and 0. For the
third steady state to exist, aαψ ≥ δ0ϕ, and the eigenvalues
evaluated at this state are (−(aαψ − δ0ϕ/aψ),−(4aϕ/��������
4ϕ(1−ϕ)


),−ψ), implying that for it to be locally as-

ymptotically stable, δ0ϕ> aαψ; yet for this to happen, the
steady state will not exist. +e eigenvalues evaluated at
(U � 0, C � (ϕ/aψ), W � (ϕ/a)) are (−(aαψ − δ0ϕ/aψ),

−(4aϕ/
��������
4ϕ(1− ϕ)


), −ψ) implying that this steady state is

locally asymptotically stable if δ0ϕ> aαψ and ϕ< 1.
+eorems 1 and 2 show that there are no periodic so-

lutions in the dynamics of equation (8) and with a constant
drug infusion, the tumor can be eliminated from body tissue
by chemotherapy provided that the combination of the
chemotherapeutic drug-induced lysis of the tumor and the
drug infusion is greater than the combination of the intrinsic
tumor growth rate and the drug deactivation rate. +e tumor
can also be wiped out with a periodic drug infusion provided
that the combination of the tumor-induced lysis by the drug
and the dosage is greater than the intrinsic tumor growth rate
and drug decay rate. With the exponential infusion method,
the tumor is not removed from body tissue and may grow to
its maximum size.

Without chemotherapy, equation (5) is reduced to

_U(t) � αU(t)(1−U(t)− I(t))− βU(t)V(t),

_I(t) � βU(t)V(t) − I(t),

_V(t) � bI(t)− βU(t)V(t)− cV(t).

(22)

+e analytical solutions to system (22) are not easy to
obtain. +e derivatives of equation (22) are therefore equated
to zero to obtain time invariant solutions and investigate their
stability by linearizing equation (22) about the steady
states. □

Theorem 3.

(1) If β + c> bβ, the system (12) has two steady states:
a tumor free cell state (0, 0, 0) which is unstable and
an infection tumor free state (1, 0, 0) which is locally
asymptotically stable.

(2) If bβ> β + c, the system (22) has three steady states:
the tumor free state (0, 0, 0) and the infected free
state (1, 0, 0) which are unstable and a tumor dor-
mant state:

⎛⎝U �
c

(b− 1)β
, I �

αc(β(b− 1)− c)

β β(b− 1)2 + c(b− 1) 
,

V �
α(β(b− 1)− c)

(b− 1)2β2 + αc
⎞⎠, b> 1,

(23)

which is locally asymptotically stable if a0, a1, a2 > 0
and a1a2 > a0 where ai are coefficients of the char-
acteristic equation.

Proof.

(1) +e characteristic equation evaluated at (0, 0, 0) is

λ3 +(c− α + 1)λ2 +(c− αc− α)λ− αc � 0,

(λ− α)(λ + 1)(λ + c) � 0,
(24)

from which λ1 � α, λ2 � −1 and λ3 � −c, thus ren-
dering it unstable.
+e characteristic equation evaluated at (1, 0, 0) is

(λ + α) λ2 + λ(1 + β + c) + β + c− bβ  � 0, (25)

from which λ1 � −α and λ2 + λ(1 + β + c) + β+

c− bβ � 0 which are all negative since β + c> bβ.
(2) +e characteristic polynomial evaluated at the tumor

dormant state is λ3 + a2λ
2 + a1λ + a0 � 0, where

a2 � (2Aα + Aβ + Cβ− α + c + 1),

a1 � ( 2A
2αβ−Aαβ + Cαβ−Abβ + 2Aαc + Cβc + 2Aα

+ Aβ + Cβ− αc− α + c,

a0 � −2A
2αbβ + 2A

2αβ + Aαbβ + Cαβc−Aαβ + 2Aαc

+ Cβc− αc,

(26)

and A, B, C are the coordinates of the tumor
dormant state. Using Routh–Hurwitz stability
criterion, this state will only be locally asymp-
totically stable if a0, a1, a2 > 0 and a1a2 > a0. □

Since the infected tumor-free state is undesirable, the
reverse of the condition β + c> bβ is necessary for tumor
eradication from body tissue. In other words, bβ> β + c, that
is, the product of the virus replication rate and their burst size
should be greater than the sum of the burst size and virus
replication rate. We also notice from equation (23) that

lim
β⟶∞

U � lim
b⟶∞

U � 0. (27)

It is therefore evident that high virus replication rate β and
burst size b lead to lower tumor cell concentrations. +e

Computational and Mathematical Methods in Medicine 5



steady-state solutions of equation (23) involve many pa-
rameters, thereby giving rise to large expressions in the
conditions for its stability. It is therefore a difficult undertak-
ing to infer biological implications from these conditions.
Nevertheless, it can be observed that virotherapy may only
succeed in eliminating cancer from body tissue when the virus
deactivation rate is very small or even zero and the virus
replication rate very high.

Next, the model with both treatments is analysed. For
a constant drug infusion rate ϕ, the system (5) has three
steady states;

(i) Tumor-free steady state:

U � 0, I � 0, V � 0, C �
ϕ
ψ

 . (28)

Here, the tumor and viruses are cleared from body
tissue by the coupled treatment and a fraction of the
chemotherapeutic drug remains in body tissue. +e
eigenvalues of the Jacobian matrix evaluated at this
state are

λ1 � −
δ0ϕ− αψ

ψ
,

λ2 � −
δ1ϕ + ψ

ψ
,

λ3 � −c,

λ4 � −ψ,

(29)

implying that this desirable state is locally asymptoti-
cally stable if δ0ϕ> αψ. From this condition, in order to
clear a tumor, the combination of the rate at which the
drug kills the uninfected tumor cells and the drug
infusion must be higher than the tumor growth rate
and deactivation of the drug from body tissue.

(ii) Infected tumor-free state:

U � 1−
δ0ϕ
αψ

, I � 0, V � 0, C �
ϕ
ψ

 . (30)

In this state, the whole tumor is not cleared as
a fraction of uninfected tumor cells remain and all
the infected ones are cleared by the treatment
combination. Using the parameter values in Table 1,
the eigenvalues of the Jacobian matrix evaluated at
the infected tumor-free state are 0.403, 8.13, and
2.598 ± 2.418i, implying that the infected tumor-
free state is unstable.

(iii) Tumor dormant state:

⎛⎝U �
δ1ϕ + ψ( c

bψ(b− 1)− δ1ϕβ
, I �

Γc
δ1ϕ−(b− 1)ψ( β

,

V � Γ, C �
ϕ
ψ

⎞⎠,

(31)

where

Γ �
βδ0δ1ϕ

2 − bβδ0ϕψ − αβδ1ϕψ − αδ1cϕψ + αbβψ2 + βδ0ϕψ − αβψ2 − αcψ2( 

(b− 1)β2ψ2 + αβcψ2 − β2δ1ϕψ
. (32)

It is a difficult undertaking to investigate the stability of
this state without substituting parameter values because of
the many terms involved. Using the parameter values in
Table 1, the eigenvalues are −0.031, −0.025, −1.01, and −8.13,
implying that this state is stable.

With the consideration of an exponential infusion
function ξ(t) � ϕ exp(−at), the equation (5) are first
turned into an autonomous system of differential equations
by letting W � ϕ exp(−at). +is system has three steady
states:

(i) A tumor-free state where all cell concentrations
diminish to zero:

(U � 0, I � 0, V � 0, C � 0, W � 0). (33)

+is state is unstable because the eigenvalues −c,
−ψ, −a, −1, and α are not all negative.

(ii) A state where the tumor grows to its maximum
size:

(U � 1, I � 0, V � 0, C � 0, W � 0). (34)

(iii) +e characteristic polynomial evaluated at this state
is equation (25) and this state is locally asymptot-
ically stable if β + c> βc, otherwise it is unstable.

U �
c

(b− 1)β
, I �

(αb− α)βc− αc2

(b− 1)2β2 +(αb− α)βc
,

V �
(αb− α)β− αc

(b− 1)β2 + αβc
, C � 0, W � 0, b> 1.

(35)

+e eigenvalues evaluated at this steady state are also
big expressions and difficult to analyse analytically and
extract conditions for stability. With the set of parameter
values in Table 1, the eigenvalues are −0.1, −8.13, 1.054, and
−0.014 ± 0.085i, implying that this state is stable.

Similarly, with ξ(t) � ϕ sin2(at), one changes equation (5)
into an autonomous system of equations by letting W �

ϕ sin2(at). +e autonomous system has six steady states:
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(i) Tumor-free state where all cell concentrations are
wiped out of body tissue:

(U � 0, I � 0, V � 0, C � 0, W � 0). (36)

+e eigenvalues evaluated at this state are −c, −ψ,
−a, −1, and α implying that it is unstable.

(ii) A state where the tumor grows to its maximum
size:

(U � 1, I � 0, V � 0, C � 1, W � 0). (37)

+e condition for stability of this state is same
as with the exponential drug infusion case, that
is, the state is locally asymptotically stable if
β + c> βc.

(iii) Tumor-free state where some concentration of the
drug remains:

U � 0, I � 0, V � 0, C �
ϕ

aψ
, W �

ϕ
a

 . (38)

+is state is locally asymptotically stable if δ0ϕ> αψ
and (1/2)< ϕ< 1 because the eigenvalues evaluated at
this state are

δ0ϕ− αψ
ψ

,

−
δ1ϕ + ψ

ψ
,

−
2(2aϕ(ϕ− ϕ))

��������
4ϕ(1−ϕ)

 ,

−c,

−ψ,

(39)

otherwise, it is unstable.
(iv) Infected tumor-free state where all infected tumor

cells are wiped but a certain proportion of the
uninfected remains:

U �
aαψ − δ0ϕ

aαψ
, I � 0, V � 0, C �

ϕ
aψ

, W �
ϕ
a

 ,

aαψ ≥ δ0ϕ.

(40)

(v) Drug-free state where the chemotherapeutic drug is
wiped out of body tissue and proportions of all the
other cell concentrations remain:

⎛⎝U �
c

(b− 1)β
, I �

(αb− α)βc− αc2

(b− 1)2β2 +(αb− α)βc
,

V �
(αb− α)β− αc

(b− 1)β2 + αβc
, C � 0, W � 0⎞⎠, b> 1.

(41)

(vi) Tumor dormant state:

U �
δ1ϕ + aψ( c

(ab− a)βψ − βδ1ϕ
, I �

Γ2c
abψ − δ1ϕ− aψ

, V �
c2

aψ
,

C �
ϕ

aψ
, W �

ϕ
a

,

(42)

where

Γ2 �
a2αbβψ2 − abβδ0ϕψ − aαβδ1ϕψ − aαδ1cϕψ − a2αβψ2 − a2αcψ2 + βδ0δ1ϕ

2 + aβδ0ϕψ
abβψ + aαcψ − βδ1ϕ− aβψ( aβψ

. (43)

+e conditions for stability for the last three states all
depend on huge expressions from which it is hard to extract
meaningful biological implications. +is analysis, however,
suggests that with both treatments and using a sinusoidal type
infusion, the tumor can be eliminated from body tissue
provided that the combination of the drug infusion rate and
the lysis rate of the tumor is greater than the combination of
the tumor growth rate and rate of drug loss.

4. Mathematical Analysis of Delay Model

+e nondimensionalised delay model is

_U(t) � αU(t) 1−
U(t) +(t)

K
 − βU t− τ1( V t− τ1( 

− δ0U t− τ2( C t− τ2( ,

_I(t) � βU t− τ1( V t− τ1( − I(t)− δ1I t− τ2( C t− τ2( ,

_V(t) � bI(t)− βU t− τ1( V t− τ1( − cV(t),

_C(t) � ϕ(t)−ψC(t).

(44)

Without virotherapy the model (44) in nondimensional
form becomes

Table 1: Dimensional parameter values.

K α β δ c b q λ δ0 δ1
106 0.206 0.001 0.5115 0.001 10 5 4.16 0.005 0.006
[41] [41] [41] [41] [41] [42] [23] [23] Estimated Estimated
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_U(t) � αU(t)(1−U(t))− δ0U t− τ2( C t− τ2( ,

_C(t) � ϕ(t)−ψC(t).
(45)

+e system (45) has two steady states: a tumor-free
state T0 � (0, (ϕ/ψ)) and a tumor dormant state (1−
(δ0ϕ/αψ), 0), just as previously seen. Letting Z1(t) � U(t)−
U∗ and Z4(t) � C(t)−C∗ where U∗, C∗ are steady states of
equation (45), the linearized model about (U∗, C∗) of
equation (45) is

_Z1(t) � αZ1(t)− 2αU
∗
Z1(t)− δ0U

∗
Z4 t− τ2( 

− δ0C
∗
Z1 t− τ2( ,

_Z4(t) � ϕ(t)−ψZ4(t).

(46)

+e characteristic equation of equation (46) evaluated at
the tumor-free steady state is

f(λ) � (λ + ψ) λ− α +
e−λτ2δ0ϕ

ψ
  � 0. (47)

For τ2 � 0, we obtain the same characteristic polynomial
as in the ODE case (+eorem 2). For τ2 ≠ 0, equation (47) is
a transcendental equation and therefore has infinitely many
roots and also makes it nontrivial to determine these roots.
Nonetheless, the following is noticed:

Lemma 1.

(1) +e tumor-free state T0 is stable if τ2 � (ψ/δ0ϕ) and
α � (δ0ϕ/ψ), i.e., Equation (47) has a negative root
−ψ and a zero double root.

(2) T0 is stable for a sufficiently small τ2, i.e., Equa-
tion (47) has negative real roots for 0≤ τ2 ≤ τ20.

(3) Equation (47) has a pair of purely imaginary
roots ± iω if αψ ≤ δ0ϕ and the other root is −ψ.
+erefore, T0 is unstable.

Proof.

(1) If τ2 � (ψ/δ0ϕ) and α � (δ0ϕ/ψ), then

df

dλ
� 2λ− α +

δ0ϕ
ψ

e
−λτ2 − λτ2

δ0ϕe−λτ2

ψ
+ ψ − τ2δ0ϕe

−λτ2 ,

d2f

dλ2
� 2− 2

τ2δ0ϕ
ψ

e
−λτ2 + τ22δ0ϕ

λ
ψ

+ 1 .

(48)

Form equation (48),
df

dλ

λ�0
� 0,

d2f

dλ2

λ�0
�

ψ
δ0ϕ
> 0.

(49)

+us, equation (47) has a double zero root.
(2) If we denote ρ(τ2) + iω(τ2) as the root of the

equation (47), the tumor-free state is stable if

ρ(0)< 0. By continuity, if τ2 > 0 is sufficiently small,
we still have ρ(τ2)< 0 and the tumor-free state is
stable.

(3) If equation (47) has only purely imaginary roots,
then the roots should be solutions to the equation

λ− α +
e−λτ2δ0ϕ

ψ
� 0. (50)

Assume that λ � iω, ω> 0 is the root of equation (50).
Substituting λ � iω and separating real and imaginary parts,
one gets

−α +
δ0ϕ
ψ

cos ωτ2 � 0,

ω−
δ0ϕ
ψ

sin ωτ2 � 0.

(51)

Squaring both equations and adding gives

ω2
+ α2 −

δ20ϕ
2

ψ2 � 0, (52)

from which ω � ±
����������������������
((δ0ϕ/ψ) + α)((δ0ϕ/ψ)− α)


if αψ > δ0ϕ

and the critical values of τ2 are

τ2k
�

1
ω+

arccos
αψ
δ0ϕ

 , k � 0, 1, 2, . . . . (53)

Without chemotherapy equation (44) becomes
_U(t) � αU(t)(1−U(t))− βU t− τ1( V t− τ1( ,

_I(t) � βU t− τ1( V t− τ1( − I(t),

_V(t) � bI(t)− βU t− τ1( V t− τ1( − cv(t).

(54)

By letting Z1(t) � U(t)−U∗, Z2(t) � I(t)− I∗ and
Z3(t) � V(t)−V∗ where U∗, I∗, and V∗ are steady states of
equation (54), the linearized model about (U∗, I∗, C∗) of
equation (54) is

_Z1(t) � αZ1(t)− 2αU
∗
Z1(t) + αI

∗
Z1(t)− αU

∗
Z2(t)

+ βV
∗
Z1 t− τ1(  + βU

∗
Z3 t− τ1( ,

_Z2(t) � −βV
∗
Z1 t− τ1(  + βU

∗
Z3 t− τ1( −Z2(t),

_Z3(t) � bZ2(t) + βV
∗
Z1 t− τ1(  + βU

∗
Z3 t− τ1( − cZ3(t).

(55)

+e characteristic equation of equation (55) at (1, 0, 0) is

(λ + α) (λ + 1) λ + c + βe
−λτ1 − bβe

−λτ1  � 0. (56)

For τ1 � 0, we retrieve the same results as in +eorem 3.
For τ ≠ 0, we have a transcendental equation to solve. □

5. Numerical Simulations

5.1. Parameter Values. +e parameter values used were
obtained from fitted experimental data for untreated tumors
and virotherapy in mice [41]. +e tumor carrying capacity,
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K, is taken to be 106 cells per unit volume. +e number of
viruses produced per day b is to be in the range 10− 1000
[42]. Drug infusion and decay rates q and λ agree with cancer
pharmokinetic studies [33, 34].

5.2. Simulation Results. Numerical simulations of the
models (5) and (45) are presented, first with monotherapies
followed with combination treatment. In all simulations,
unless stated otherwise, initial concentrations are considered
to be U0 � 1, I0 � 0, V0 � 0.1, and C0 � 0.1 with a high
fractional untreated tumor cell count to necessitate clinical
intervention. +e equations were integrated using
a Runge–Kutta fourth-order scheme and implemented in
MATLAB. It is worth noting that the scale for the time
and concentrations is, respectively, 1 unit ≈ 2 days and 1
unit � 106 number of cells.

Figure 1 shows numerical solutions of the chemo-only
model (8). +e figure shows that despite the drug infusion
method, the tumor is not cleared from body tissue. +ese
numerical solutions agree with the analytical results obtained
in the previous sections that chemotherapy on its ownmay not
clear all tumor cells in body tissue, and the tumor grows to its
maximum size and the drug concentration decays to zero.
Section 3 revealed that total tumor clearance from body tissue
can possibly be achieved if δ0ϕ> αψ. Nonetheless, the pa-
rameter values used do not conform to this condition.

Figure 2 shows the dynamics of the viro-only model. It is
clear from this figure that virotherapy alone could possibly
clear all tumor cells from body tissue provided that the virus
infection rate is high and with a large virus burst size. Fig-
ures 2(a) and 2(b) show a variation of the fractional tumor and
virus concentrations against time for different values of the
virus replication rate. It is noticed that with a small virus
infection rate for example β � 10−6, it takes a longer time to
clear the tumor cells. Figures 2(b) and 2(c) show a variation of
the fractional concentrations with two different burst sizes.
From these figures, we notice that when b � 10, it takes about
10 days to reduce the whole tumor concentrations to zero
while it takes only about 5 days with b � 100, implying that
a high virus burst size yields a quick recovery with virotherapy
treatment. +ese numerical intimations concur with the an-
alytical results established in Section 3.1.

Figure 3 displays the dynamics of model (5) with both
treatments. +e numerical results are similar to those of
Figure 2, only that with both treatments, it takes a shorter
time to bring the tumor cell concentrations to zero. High
values of the virus infection rate and burst size lead to tumor
clearance in a shorter time period. Both Figures 2 and 3 show
that an increase in the virus multiplication rate and burst size
increase the infected tumor cells concentration. For ex-
ample, comparing Figures 3(a) and 3(b), the number of
infected tumor cells was about 0.15 × 106 when b � 15 and
this increased to 0.35 × 106 when b � 25.

Model (44) was simulated using dde23 in MATLAB.
Figure 4 displays the numerical simulations for the delay
model (44) with low and high values of τ1 and τ2, the virus,
and chemotherapeutic delays. Since secondary transcription
and viral protein synthesis can be delayed by about six to

eight hours [37], τ1 was considered to be between 0.001 and
0.01.+e chemotherapeutic response delay is higher than the
virus response delay, thus τ2 was taken to be between 0.1 and
0.3. +e figure shows that when both delays are increased,
the time it takes for cell concentration solutions to converge
is slightly increased although they converge at the same
steady states as without the delay. For τ1 � 0.001 in
Figure 4(a), it took about 4 days for the whole tumor to clear
whereas it took about 8 days with τ1 � 0.01 in Figure 4(b).
Comparing Figures 4(b) and 4(c), when τ2 was increased
from 0.001 to 0.3, the time it took for the whole tumor to be
cleared was increased from six to eight days. Initially there
are oscillations for high values of the chemotherapeutic
delay although the cell concentrations converge at the same
steady states, just as the case with no delays. Figure 5 is
a close up form of Figure 4 to display oscillations caused by
the virus and drug delays. +e oscillations only occur in the
initial stages of treatment but later fade away. Nonetheless,
the results in Figures 4 and 5 suggest that it is imperative to
design viruses and drugs which are highly responsive in
order to minimize these delays.

6. Discussion

+e results in this study contend with previous experimental
and mathematical studies that oncolytic viruses enhance
chemotherapeutic drugs in the treatment of cancer
[12,13,15–20]. A study by Ungerechts et al. [16] examined
the synergy between a reprogrammed oncolytic virus and
two chemotherapeutic drugs in the mantle cell lymphoma
(MCL).+ey investigated the efficacy of different procedures
of a measles virus in combination with fludarabine and
cyclophosphamide (CPA). +eir study suggested that that
CPA administration before virotherapy enhanced oncolytic
efficacy. An experimental study by Ulasov et al. [17] in-
dicated that the combination of virotherapy and temozo-
lomide is capable of eliminating malignant glioma. +eir
results showed that 90% of treated mice survived beyond the
100 days’ mark after being treated. Another study by Alonso
et al. [18] showed that the amalgamation of oncolytic ad-
enovirus (ICOVIR-5) with either everolimus (RAD001) or
temozolomide (TMZ) resulted in an enhanced antiglioma
effect. Recent mathematical studies by Malinzi et al. [19, 20]
assert that combining chemotherapeutic drugs with onco-
lytic viruses is more efficient than using either treatments
alone. In [20], it is indicated that although chemotherapy
alone may clear tumor cells from body tissue if drug efficacy
is bigger than the tumor growth rate, the use of both OV and
drugs leads to enhanced treatment effects.

Biologically, the reduction of a tumor to undetectable
levels in less than a week is unrealistic in comparison to
existing clinical and research studies [43]. +e duration of
cancer treatment depends on several factors including the
type of cancer being treated and the patient cells’ charac-
teristics. +is makes it hard to predict the time period to
clear a tumor in body tissue. Moreover, a tumor can be
reduced to insignificant levels but may later regrow [44].
Nevertheless, this study agrees with the fact that chemo-
virotherapy is highly likely to bring the tumor to
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Figure 1: Solutions of the model without virotherapy: equation (5) showing a variation of fractional concentrations with time, using (a)
a constant, (b) an exponential, and (c) a sinusoidal drug infusion. +e initial cell concentrations are U0 � 0.8 and C0 � 0.2.
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Figure 2: Continued.
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undetectable levels in a short time period just as previously
established in [19, 20].

+e mathematical model considered in this study is built
on a couple of simplifying assumptions and thus omits
pertinent biological aspects. For example, the drug infusion
functions considered are not pragmatic. It is thus imper-
ative to extend this study to consider more realistic drug
infusion functions that describe all the important phar-
macodynamics properties. Nonetheless, this study in-
dicates that a cancer patient should not be given a single
bolus injection as it is less effective compared to periodic or
constant drug infusions.

7. Conclusion

+e aim of this study was to investigate the outcome of the
amalgamation of chemotherapy and virotherapy in treating
cancer using three different drug infusion methods and to
compare the efficacy of using chemotherapy and virotherapy
individually.

A mathematical model in the form of nonlinear and
nonautonomous first-order ordinary differential equations
was developed. It was extended into delay differential equa-
tions to account for delays as a result of the infection of tumor
cells by the virus and chemotherapeutic drug responses. +e
model’s well-posedness was shown by proving existence,
positivity, and boundedness of the model solutions. Analysis
of themodel was done with each of the treatments and for each
of the infusion functions. Exact solutions were determined
where possible. Stability of the time invariant solutions was
carried out to determine the conditions under which a tumor-
free situation may be achieved. Numerical simulations for the
ODE and DDE models were, respectively, carried out using
ode23s and dde23 in MATLAB. +e model analysis suggested
the following:

(i) A tumor can grow to its maximum size in case
where there is no treatment.

(ii) Chemotherapy alone is capable of clearing tumor
cells in body tissue provided that the drug-induced
lysis of the tumor and the drug infusion rate are
maximized and the drug decay and tumor growth
are minimized.

(iii) Constant and periodic drug infusions are more
potent than a single bolus injection.

(iv) Successful virotherapy is highly dependent on virus
burst size and infection rate.

(v) With the use of both chemotherapy and virother-
apy, a tumormay be cleared from body tissue in less
than a month.

(vi) Successful chemovirotherapy depends on the virus
burst size and replication rate, chemotherapeutic
drug lysis, infusion and decay rates, and the method
of drug infusion.

(vii) Both the virus and chemotherapeutic response delays
increase the period within which a tumor can be
cleared from body tissue and thus treatment options
should strive to minimize them by designing viruses
and drugs which are highly responsive.

Appendix

A.1. Existence and Uniqueness

Theorem 4. /ere exists a unique solution to the system of
equation (5) in the region (U, I, V, C) ∈ R4

+.

Proof. +e Picard–Lindelöf theorem [45] is used as
follows.
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Figure 2: Solutions of model (12) without chemotherapy showing a variation of fractional concentrations with nondimensional time using
low and high values of the virus replication rate β and burst size b, that is, (a) β � 10−6, b � 10; (b) β � 10−3, b � 10; (c) b � 10, β � 10−6;
and (d) b � 100, β � 10−6.
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Consider the closed interval IT � [t0 −T, t0 + T] and the
closed ball Bd � y ∈ Rn | ‖y−x0‖≤d  inRn where T and
d are positive, real numbers. Suppose that the function

f : IT × Bd⟶ R
n
, (A.1)

is continuous and that the partial derivatives in the Jacobian
matrix Df where

Df �

zf1

zx1

zf1

zx2
· · ·

zf1

zxn

zf2

zx1

zf2

zx2
· · ·

zf2

zxn

⋮ ⋮ ⋱ ⋮

zfn

zx1

zfn

zx2
· · ·

zfn

zxn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.2)

exist and are continuous in IT × Bd. +en, there exists a δ > 0
so that the initial value problem

dx

dt
(t) � f(t, x),

x t0(  � x0,

(A.3)

has a unique solution on the interval Iδ � [t0 − δ, t0 + δ]. It is
sufficient to show that

f �

f1 ≔ αU(t)(1−U(t)− I(t))− βU(t)V(t)− δ0U(t)C(t)

f2 ≔ βU(t)V(t)− δI(t)− δ1I(t)C(t)

f3 ≔ bI(t)− βU(t)V(t) − cV(t)

f4 ≔ ξ(t)−ψC(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A.4)

Df �

zf1

zU

zf1

zI

zf1

zV

zf1

zC

zf2

zU

zf2

zI

zf2

zV

zf2

zC

zf3

zU

zf3

zI

zf3

zV

zf3

zC

zf4

zU

zf4

zI

zf4
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,

(A.5)

exist and are continuous on R4
+. +e functions (A.4)

and (A.5) are polynomials and are therefore continuous
on R4. □

A.2. Boundedness and Positive Invariance

Theorem 5. if U(0)≥ 0, I(0)≥ 0, V(0)≥ 0, and C(0)≥ 0,
then U(t)≥ 0, I(t)≥ 0, V(t)≥ 0, and C(t)≥ 0 for all t≥ 0.

+e same idea as in [10] is used to prove positiveness of
the model solutions.

Proof. Assuming that the+eory is not true, then there must
be a time t1 such that at least one of the solutions becomes
zero first. Each possible case is investigated; if U(t1) � 0 first,
then _U(t1) � 0. However, from the first equation in system
(5), by the uniqueness of the solution, we know thatU(t) � 0
for all t≥ t1. +e second equation then becomes
_I(t) � −I(t)− δI(t)C(t) and its solution is

I(t) � I t1( exp −
t

t1

1 + δ1C(s)( ds , I(t)≥ 0.

(A.6)

+e third equation becomes _V(t) � bI(t)− cV(t). If you
set

_V(t) � bI(t)− c � 0≥−cV(t) so V(t)≥V t1( exp(−ct),

V(t)≥ 0.

(A.7)

Similarly, the fourth equation becomes _C � ξ(t)−ψC(t)

and its solution is

C(t) � exp(−ψt) 
t

t1

ϕ(s)exp(ψs)ds + C t1(  , (A.8)

which implies that C(t)≥ 0 for all t≥ 0.
If I(t1) � 0 first, then _I(t1) � βU(t1)V(t1)≥ 0, implying

that when t> t1, I(t)≥ 0 since U(t), V(t), C(t)≥ 0 as
assumed.

If V(t1) � 0 first, _V(t1) � by(t1)≥ 0, implying that when
t≥ t1, V(t)≥ 0 since U(t), I(t), C(t)≥ 0 as assumed.

If C(t1) � 0 first, _C(t1) � ϕ(t1)≥ 0, so when t≥ t1,
C(t)≥ 0 since U(t), I(t), C(t)≥ 0 as assumed.

If two solutions are zero (eg., U(t1) � 0 and I(t1) � 0)
simultaneously at t � t1, then following the same steps
above, it is trivial to check that the other solutions will be
nonnegative for t> t1.

If three solutions are zero (eg., U(t1) � 0, I(t1) � 0, and
V(t1) � 0) simultaneously at t � t1, it is trivial to check that
the other solution will be nonnegative for t> t1.

If the four solutions are zero simultaneously at t � t1,
from the uniqueness theorem, U(t) � I(t) � V(t) � C(t) �

0 for t> t1. □

Theorem 6. /e trajectories evolve in an attracting region
D � (U, I, V, C) ∈ R4

+ | U(t) + I(t)≤ 1, V(t)≤ (b/c), C(t)≤

C(ϕ)}, where C(ϕ) depends on the drug infusion function
used.
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Figure 3: Solutions of model (3) with both treatments showing a variation of fractional concentrations with time using high and low virus
burst sizes, that is, b � 2 and b � 5 and with different drug infusion functions, that is, (a) constant, (b) exponential, and (c) sinusoidal.
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Figure 5: Close up images of Figures 4(c) and 4(d) showing oscillations in cell concentrations.
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Figure 4: Solutions of delay model (15) showing a variation of fractional concentrations with time using (a) τ1 � 0.001, τ2 � 0.1; (b)
τ1 � 0.01, τ2 � 0.1; (c) τ1 � 0.001, τ2 � 0.001; and (d) τ1 � 0.001, τ2 � 0.3.
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Proof. From equation (1), we know that U + I≤K. +is
implies that U + I≤ 1.

_V(t)≤ bI(t)− cV(t),

_V(t)≤ b− cV(t),

V(t)≤
b

c
−

V0 exp(−ct)

c
,

lim
t⟶∞

V(t)≤
b

c
,

_C(t) + ψC(t) � ξ(t),

C(t) � exp(−ψt)  ξ(t)exp(ψt)dt + R ,

(A.9)

where R is an arbitrary constant of integration. For the
constant infusion function ϕ, limt⟶∞C(t) � ϕ/ψ. For
ξ(t) � ϕe−at, limt⟶∞C(t) � 0, and for ξ(t) � ϕ sin2(at),
limt⟶∞C(t) � (ψ + 2a/4a2 + ψ2)− (ϕ/ψ). □

Theorem 7. /e domainD is positive invariant for the model
equation (5) and therefore biologically meaningful for the
tumor, virus, and drug cell concentrations.

Proof. +e proof directly follows from proofs of +eorems 5
and 6. □
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