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Institut de Cancérologie de l’Ouest—René Gauducheau, Saint Herblain Cedex, 44805, France, 8Nantes Department of General

Practice, 1 rue G. Veil, 44000, Nantes, France and 9Medical Informatics, Tournemire, Quartier Bellevue, France

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on October 8, 2020; revised on January 21, 2021; editorial decision on January 22, 2021; accepted on January 27, 2021

Abstract

Motivation: The principle of Breiman’s random forest (RF) is to build and assemble complementary classification
trees in a way that maximizes their variability. We propose a new type of random forest that disobeys Breiman’s
principles and involves building trees with no classification errors in very large quantities. We used a new type of de-
cision tree that uses a neuron at each node as well as an in-innovative half Christmas tree structure. With these new
RFs, we developed a score, based on a family of ten new statistical information criteria, called Nguyen information
criteria (NICs), to evaluate the predictive qualities of features in three dimensions.

Results: The first NIC allowed the Akaike information criterion to be minimized more quickly than data obtained with
the Gini index when the features were introduced in a logistic regression model. The selected features based on the
NICScore showed a slight advantage compared to the support vector machines—recursive feature elimination
(SVM-RFE) method. We demonstrate that the inclusion of artificial neurons in tree nodes allows a large number of
classifiers in the same node to be taken into account simultaneously and results in perfect trees without classifica-
tion errors.

Availability and implementation: The methods used to build the perfect trees in this article were implemented in the
‘ROP’ R package, archived at https://cran.r-project.org/web/packages/ROP/index.html.

Contact: jean-michel.nguyen@univ-grenoble-alpes.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The principle of Breiman’s random forest (RF) is to build and assem-
ble complementary classification trees in a way that maximizes their
variability (Breiman, 2001). The nodes of these trees contain only
one variable. As a result, the predictive information of one variable
does not take into account other variables, and its effects cannot be
adjusted by those of other variables. In biology, events are multifac-
torial, and the effect of each variable is modulated by thousands of
other variables. In addition, in classification and regression tree

(CART) modeling, a hierarchical structure between variables that is
defined in a conditional and ordered manner is assumed. At each
step, only one variable is involved. This algorithmic structure is in-
adequate for explaining how a biological complex works. It is al-
most impossible for a single CART model to correctly explain an
event without errors, even if it has all the useful and necessary varia-
bles. The principle of using several complementary trees then
appears to be entirely judicious and appropriate. However, the as-
sembly of complementary trees does not allow the specific effect of a
variable to be evaluated when the effects of other variables have
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been taken into account. Breiman RFs, despite their statistical per-
formance, are difficult to interpret from a technical point of view
and pose a fundamental problem in describing a cascade of events.
The complexity of a biological response often involves thousands of
factors with multiple pathways of activation, and the result is quan-
titative information that, when a threshold effect comes into play,
can be reduced to a binomial variable. However, it should be pos-
sible to introduce several dozen variables into each decision node.
The advantage of a neuron is the ability to consider a very large
number of input variables. A biological response could be modeled
more effectively by putting a neuron into each node. In a previous
article, we developed a new type of tree in response to this issue
whose nodes consisted of a new type of neuron (Nguyen and
Antonioli, submitted for publication; Nguyen and Antonioli, sub-
mitted for publication). In this model, each observation is classified
at each node by a neuron as positive (false positive, FP, or true posi-
tive, TP) or negative (false negative, FN, or true negative, TN).
Moreover, we created a new architecture of classification trees that
allowed us to reinject a portion of the observations into the trunk.
Indeed, we applied two independent inductions, one for negative
observations (ŷ¼0) and another for positive observations that were
systematically reinjected into the trunk (ŷ¼1), leading to a novel
tree structure that forms a half Christmas tree structure.

We have demonstrated that the regression optimized (ROP)
model exhibits very good diagnostic performance compared to other
linear models and CART models (Nguyen and Antonioli, submitted
for publication). Thus, it is interesting to compare the RF of ROP
trees and the RF of Breiman CARTs.

We develop an RF strategy to analyze big data, including at least
30 explanatory variables, and propose a new variable selection
method. In the first part, we focus on quantitative performance by
comparing our results with those obtained by Breiman’s RF method,
in particular with the Gini index. In the second part, we compare
the genes selected and published in the GSE22513 dataset (Bauer
et al., 2010) and our gene selections.

2 Materials and methods

2.1 A new type of RF
To identify the most important predictive features, we developed a
new class of information criteria to estimate the probability of a fea-
ture making a perfect prediction (PP) and how a PP can be achieved.
We therefore go against the concepts of Breiman’s RFs by combining
perfect trees (PTs) in massive quantities to approach the exhaustive-
ness of the possibilities and activation paths leading to an event. We
define PTs as tree classifications without any classification errors,
with a sensitivity and a specificity equal to 100%. For each forest,
the number of variables included in each neuron of each tree is
therefore fixed in advance. To build a tree, the variables are ran-
domly selected from the variables in the database. Unlike in
Breiman’s method, the observations are not bootstrapped. All obser-
vations are included in the analysis only once because bootstrapping
would give different weights to the observations. Our strategy is to
explore predictive features using only PTs. To reduce the risk of
overfitting, we use PTs with a maximum of six nodes containing one
neuron per node. In this way, we fix a predefined value to the depths
of the trees. Therefore, no subsequent pruning needs to be per-
formed. The number of trees in the forest depends on the number of
features to be analyzed. We consider it necessary to have at least one
hundred instances for each feature of the PTs being built.

The probability of obtaining a PT increases with the number of
features included in each neuron and the range of simulation coeffi-
cients. The simulation range must be limited for the robustness of
the model.

A neuron including one variable would select variables very close
to the studied state and would answer the question, ‘Which features
are associated with the state?’ A neuron including more variables
would select variables essential to the pathophysiological cascade
leading to the state and would answer the question, ‘Which features
are necessary to explain the physiological pathway?’ We developed

strategies including 1, 2, or 3 selected features, and a fifteen-feature
model was used to adjust and validate the previously selected fea-
tures. The use of a simulation range (�1, 0, þ1) facilitates the inter-
pretation of the effects of the variables and reduces the calculation
time. For each ROP tree, n features are randomized, and the predic-
tion is performed on all observations with a range of (�1, 0, þ1) for
a tree with three cycles and two steps, which leads to the analysis of
six neurons and 3n combinations per neuron (Fig. 1). The number of
features included is limited by the computation time per tree (Fig. 2).

2.2 Nguyen’s information criteria (NICs)
We have developed new statistical information criteria to describe
and understand how a feature contributes to a perfect classification
(Nguyen et al., 2018) (Table 1).

The first category represents the informative and predictive qual-
ity of a feature. The second category represents the information
measuring the proximity of a feature in the pathogenic sequence to a
state Y. The third category represents the information measuring the
complexity of the relationship between a feature and state Y.

2.2.1 Informative and predictive quality

The first criterion, NIC1, is defined as the probability that a feature
will obtain an error-free prediction when it is associated with other
features. NIC1 is estimated by the ratio of the number of occur-
rences for which an error-free classification is obtained/number of
times the feature is selected at random.

The second criterion, NIC2, is defined as the probability that all
the coefficients for all neurons of a feature will be equal to zero.
NIC2 is estimated by the ratio of the number of occurrences for
which all the coefficients for all neurons are equal to zero/number of
times the feature is implied in an error-free classification. If all the
coefficients for all neurons are equal to zero, the feature offers no in-
dependent predictive information.

Sometimes a feature can have all its positive coefficients in one
tree (NIC3) and all its negative coefficients in another tree (NIC4).
The effect of this type of feature changes depending on the presence
of other factors, but its effect remains consistent for all observations
in the same tree. We defined the NIC5 paradoxical criterion as the
product of NIC3*NIC4. NIC5 measures the probability that a fea-
ture changes its effect as a function of other features. The features
that are easiest to interpret are those with a zero probability.

This situation is different from that in which the coefficients of
the same variable change sign in the same tree depending on the
observations. The NIC6 criterion measures this variability.

Features with zero coefficients for all neurons are those that do
not provide any discriminating information a priori. However, these
features can also be intermediate features whose information is con-
tained in the upstream and/or downstream features.

The most problematic features to interpret are those for which
the signs of the coefficient vary in a tree (NIC6). These features in-
crease or decrease the risk of state Y depending on the observation.
By analyzing in detail the circumstances under which the coefficient
of this type of feature changes its sign, we can identify the interac-
tions of interest for this feature. A particular case is represented by
the situation in which for all neurons, the feature has monotonic
coefficients, except for one neuron whose coefficient has the oppos-
ite sign. This situation can then be more easily exploited. Indeed, if
the coefficient of the feature changes its sign in only one neuron,
then the observations involving this neuron contain information that
the other observations do not contain. By extension, this situation is
also applicable if the feature changes sign with respect to the mean
effect expressed in the first neuron. This situation is the definition of
what we call the ghost factor and has been described in another
paper (Nguyen and Antonioli, submitted for publication) for which
an application has already been published (Castillo et al., 2016;
Vildy et al., 2017).

We regard the best features as those that have the largest NIC1
and the smallest NIC2, NIC5 and NIC6.
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2.2.2 Proximity of a feature in the pathogenic sequence to state Y

We assume that the farther away a feature is from state Y, the more
features are needed to obtain a PT. The first strategy is to count and
identify the other features that are necessary to achieve an error-free

prediction. The second and easiest strategy is to count the number of
neurons required for this feature to be associated with a PT. We de-
fine NIC7 and NIC8 as the two-node model probability and one-
node model probability, respectively.

Fig. 1. Example of a perfect tree including 2 probes [230998_at, 209860_s_at (ANXA7)] with the GSE22513 dataset.

Fig. 2. Breast cancer Wisconsin, dataset, features were intoduced into a LR model, acording to the Gini index or the NIC1 and the Akaike Information Criteria were

compared.

Random Forest of Perfect Trees 2167



Table 1. Nguyen’s information criteria (NICs)

Information typology Information name Definition Estimation Interpretation Use

Information measur-

ing the predictive

performance of the

variable for the

event Y

NIC1 Probability for a vari-

able to obtain a

free-error predic-

tion when it is asso-

ciated with other

variables

Ratio [number of

occurrences where

an error-free classi-

fication is obtained/

number of times the

variable is selected

at random]

Maximum is the best.

Estimate the prob-

ability to obtain an

error-free classifica-

tion if the classifier

is in the neuron

Asses the predictive

quality of the

variable

NIC2 Probability for a vari-

able to have all

coefficients of all

neurons equal to

zero when it is asso-

ciated with other

variables

Ratio [number of

occurrences where

all coefficients of all

neurons are zero/

number of times the

variable is implied

in an error-free

classification]

Minimum is the best.

Estimate the prob-

ability to obtain an

error-free classifica-

tion if all coeffi-

cients of the

classifier are equal

to zero

Assess the potential

confounding effect

of the variable

NIC3 Probability for a vari-

able to have all its

coefficients positive

in all neurons when

it is associated with

other variables

Ratio [number of

occurrences where

all coefficients of all

neurons are posi-

tive/number of

times the variable is

implied in an error-

free classification]

Estimate the increase

of the risk associ-

ated with the

classifier

Assess the increasing

risk of the event Y

associated with the

variable

NIC4 Probability for a vari-

able to have all its

coefficients negative

in all neurons when

it is associated with

other variables

Ratio [number of

occurrences where

all coefficients of all

neurons are nega-

tive/number of

times the variable is

implied in an error-

free classification]

Estimate the decrease

of the risk associ-

ated with the

classifier

Assess the reduction

risk of the event Y

associated with the

variable

NIC5 Probability for a vari-

able to have hetero-

geneous coefficients

between trees (posi-

tive, negative, null)

when it is associ-

ated with other

variables

NIC3*NIC4 Minimum is the best.

Estimate the prob-

ability that a vari-

able may have a

paradoxical effect

Assess the paradoxical

effect of a variable

NIC6 Probability for a vari-

able to have hetero-

geneous coefficients

within the same tree

(positive, negative,

null) when it is

associated with

other variables

Ratio [number of

occurrences of the

variable with coeffi-

cients not mono-

tone/number of

times the variable is

implied in an error-

free classification]

Estimate the probabil-

ity of interaction of

the classifier with

other classifiers

Assess the potential

interaction risk

associated with the

variable

Information measur-

ing the proximity of

the variable in the

pathogenic path to

the event Y

NIC7 Probability for a vari-

able to achieve an

error-free classifica-

tion with only two

neurons when it is

associated with

other variables

Ratio [number of

occurrences of the

variable where an

error-free classifica-

tion is obtained

using only two neu-

rons/number of

times the variable is

implied in an error-

free classification]

Maximum is the best.

Estimate the physi-

opathological dis-

tance between the

classifier and the Y

state

Assess the functional

proximity of the

variable and the

event Y

NIC8 Probability for a vari-

able to achieve an

error-free classifica-

tion with only a sin-

gle neuron when it

Ratio [number of

occurrences of the

variable where an

error-free classifica-

tion is obtained

using only a single

Maximum is the best.

Estimate a direct

action of the classi-

fier on the Y state

Assess the probability

of a direct and lin-

ear relation be-

tween the variable

and the event Y
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We regard the best features as those that have the largest NIC7
and NIC8.

2.2.3 Complexity of the relationship

In addition to the number of neurons and the number of features,

the number of combinations that lead to the same PT is used as a
measure of the potential for pathophysiological pathways. When the
number of solutions is unique (NIC10), the interpretation is easy.

On the other hand, several combinations (NIC9) or even an infinite
number of combinations can lead to the same PT.

We regard the best features as those that have the largest NIC9
and NIC10.

We can now rank the variables by ranking these 10 criteria in
order of importance. We can thus orient our classification by rank-
ing variables according to the order of the values of the NICs.

Several strategies can be discussed. We can give priority to perform-
ance by first ranking NIC1, followed by (1-NIC2), NIC8 and

NIC10 (NIC1/(1-NIC2)/NIC10/NIC8) or first ranking (1-NIC2)/
NIC1/NIC10/NIC8. This hierarchical strategy gives the first criter-
ion major importance and minimizes the weight of the other criteria.

2.2.4 NIC score

This hierarchical strategy would not allow us to consider all the
NICs we have developed. Therefore, we propose a simple score that

considers the three dimensions of the NICs, excluding NIC5 and
NIC7, because NIC5 requires normalization into a new range from
0% to 100% and NIC7 is nested into NIC8. We penalize this score

by NIC2 and NIC6, which assess the probability of null predictive
information (NIC2) and the probability of a contrary effect (NIC6).

Finally, the NIC score is calculated as follows:

NIC score ¼ NIC1�NIC2�NIC6þNIC8þNIC9þNIC10

2.2.5 Datasets

2.2.5.1 Breast Cancer Wisconsin (Diagnostic) dataset.. The Breast
Cancer Wisconsin dataset, which includes 569 complete observa-
tions, was obtained from Kaggle (Blake and Merz, 1998). Ten real-

valued features were computed for each cell nucleus. For each fea-
ture, the means, extrema and standard errors were collected, leading
to 30 features.

2.2.5.2 Markers of taxane sensitivity in breast cancer.. The public

dataset GSE22513 involves expression profiling by AffymetrixVR

arrays and includes fourteen patients with two replicates each and
54 675 features (Bauer et al., 2010). The objective of this study was

to identify molecular markers of the pathologic response to neoadju-
vant paclitaxel/radiation treatment.

3 Algorithm

3.1 Feature selection
All variables were blinded during the full-time analysis and were
renamed from a1 to a54765. An RF of perfect trees (RFPT) with

one feature per neuron was developed for the learning step. Each
feature was randomized at least 100 times. Features were ranked
according to the NIC score and compared to the hierarchical rank-

ing (1-NIC2)/NIC1/NIC10/NIC8. This comparison made it possible
to evaluate the interest of a multidimensional score compared to a

nested ranking.

3.2 Confirmation of selected features (Supplementary

Data 3)
In the first step, we built three forests with trees that included 2, 3 or
15 randomized probes per neuron (adjusted approach). In the se-

cond step, we built a forest with trees that included 15 probes, 14 of
which were unselected probes and one of which was a previously
selected probe (stratified approach).

3.3 Comparison with the support vector machines—

recursive feature elimination (SVM-RFE) method
The SVM-RFE method with a quadratic kernel was used to select in-

formative genes in classification problems (Sanz et al., 2018).
Threefold cross validation repeated 20 times was used to perform

the RFE process. We used the Matthew Coefficient Correlation
(MCC) and the coefficient of accuracy (CA) to compare the different
prediction methods. Furthermore, several classifiers were built on

the basis of each feature selection method: SVM, logistic regression
(LR) and RF. We assessed the performance of each model by

repeated cross validation.

Table 1. (continued)

Information typology Information name Definition Estimation Interpretation Use

is associated with

other variables

neuron/number of

times the variable is

implied in an error-

free classification]

Information measur-

ing the complexity

relationship be-

tween the variable

and the event Y

NIC9 Probability for a vari-

able to achieve an

error-free classifica-

tion with a finite

number of solutions

when it is associ-

ated with other

variables

Ratio [number of

occurrences where

the classification

tree has a number

of enumerated solu-

tions/number of

times the variable is

implied in an error-

free classification]

Maximum is the best.

Estimate the prob-

ability that the

number of solutions

is not infinite (no

convergence of the

model)

Assess the probability

of a number of

finites pathways be-

tween the variable

and the event Y

NIC10 Probability for a vari-

able to achieve an

error-free classifica-

tion with a unique

solution when it is

associated with

other variables

Ratio [number of

occurrences where

the classification

tree has a unique

solution/number of

times the variable is

implied in an error-

free classification]

Maximum is the best.

Estimate the prob-

ability that the solu-

tion is unique

Assess the probability

of a unique path-

way between the

variable and the

event Y

Random Forest of Perfect Trees 2169



4 Implementation

4.1 Diagnostic performance
The analysis used all 569 complete observations in the Breast
Cancer Wisconsin dataset (Blake and Merz, 1998). For each tree, 15
of the 30 available features were selected at random. In total, 27
276 trees including 15 features selected at random were built, lead-
ing to 14 368 PTs (52.68%) (Supplementary Data 4).

Features were classified according to the Gini index or NIC1. At
each step, the most important feature was introduced into a LR
model, and the Akaike information criteria (AICs) were compared
(Fig. 2). The LR models were compared using the ten most import-
ant features according to each information criterion (Supplementary
Data 2). These results achieved better selection performance based
on the AIC for the RFPT model than the RF model.

4.2 Real-world application
4.2.1 Selection of probes using the NIC score

The results published in the literature with the GSE22513 dataset
suggest that a pathological complete response (pCR) to paclitaxel
was encountered in aggressive breast tumors and that an immune re-
sponse and paclitaxel resistance were encountered in less aggressive
tumors (Bauer et al., 2010).

For the forest including one probe per node, 8 363 591 trees
were built, of which 112 481 were PTs (1.34%). Each probe was,
on average, selected at random 153 times. Among the 54 675
probes, 141 always led to PTs (NIC1¼100%) that never had all
null coefficients (NIC2¼0%). Among these 141 probes, 65.24%
(92/141) produced trees with a unique solution (NIC10¼100%),
and only 12 probes produced PTs with one node. Based on these
results, the selection of the top 12 probes (BBOX1 (205363_at),
ZNF711 (207781_s_at), MAP2 (210015_s_at), CMC4
(210212_x_at), ADAMTS3 (214913_at), ACOT9 (221641_s_at),
TOMM5 (225036_at, 228053_s_at), ERAP2 (227462_at), FAM3D
(227676_at), OTULIN (228382_at), TLCD2 (241359_at)) was
proposed. Table 2 shows the top 20 probes according to the hier-
archical ranking (1-NIC2/NIC1/NIC10/NIC8).

Using the NIC score (Table 3), a gap was clearly identified be-
tween a group of 16 probes with a NIC score equal to 4.00 and all
other probes, which had NIC scores of 2.00 or less. The top 12
probes were identical to the top 12 probes previously identified
using the hierarchical ranking method of selection. Fifteen of these
probes (PDHA1 (200980_s_at), VBP1 (201472_at), BBOX1
(205363_at), ZNF711 (207781_s_at), MAP2 (210015_s_at), CMC4
(210212_x_at), ADAMTS3 (214913_at), IFT81 (219372_at),
ACOT9 (221641_s_at), CLDN12 (223249_at), TOMM5
(225036_at, 228053_s_at)), ERAP2 (227462_at), FAM3D
(227676_at), OTULIN (228382_at)) were concordant with those
reported in the papers by Ali et al. (2014) and Bauer et al. (2010)
and/or the hypothesis that high tumor aggressiveness is associated
with a high level of pCR, and conversely, low tumor aggressiveness
is associated with a low level of pCR. Limited biological informa-
tion was available for the last probe, TLCD2 (241359_at).

These results were confirmed using adjusted and stratified analy-
ses (Supplementary Data 3).

4.2.2 Comparison with the SVM-RFE method

SVM-RFE with a quadratic kernel was used to select informative
genes in classification problems (Sanz et al., 2018). Threefold cross
validation repeated 20 times was used to perform the RFE process.
We used the MCC and the CA to compare the different prediction
methods. Furthermore, several classifiers were built on the basis of
each feature selection method: SVM, LR, and RF. We assessed the
performance of each model by repeated cross validation. The 15 op-
timal probes selected by this method were included in the top 16
probes of the RFPT-NIC score (Table 4, Supplementary Data 4).
The results showed that the top 16 probes selected by the NIC score
were a slight better than those proposed by the RFE-SVM proced-
ure, MCCSVM-RFE ¼77.2% þ/� 27.0% vs MCCRFPT-NIC score ¼

77.4%þ/�18.8%; CARFE-SVM ¼88.64%þ/�12.1% vs CARFPT-NIC

score ¼ 89.5%þ/�9.3%).
The comparison of the three top probe lists also used LR, RF

and SVM. The results showed that the metrics across the three mod-
els were consistently high, with a slight advantage for the
RFPT_NICs score method (Supplementary Data 5).

5 Discussion

We developed a new paradigm for RFs that differs from Breiman’s
approach, which is a forest that includes only perfectly classified
trees (Nguyen and Antonioli, submitted for publication).

Using a neuron in each node, we simultaneously adjusted the
effects of each feature relative to other features into a decision tree.

These innovations were accompanied by the development of new
statistical information criteria (NICs) and a score (NIC score) that
takes into account the three dimensions (performance, proximity
and simplicity) explored by these NICs.

We used different datasets to analyze the performance and repro-
ducibility of the feature selection and illustrated the use of this new
approach with a complex omics dataset.

A biochemical reaction involving molecules is written as a per-
fect model that has no room for an error term because there is no
variability in perfectly identified molecules and all the information is
known. Therefore, the idea was to start from known results and
then describe and assemble the combinatorial possibilities to obtain
results without making any errors. The problem is the exponential
Exp(n) number of combinations to be analyzed, where n is the num-
ber of variables, and randomness is used to minimize bias.

NICs are PT ratios, and thus, the amount of information that
can be analyzed increases with the number of features included in
the neurons. In the example of GSE22513 breast cancer data, this
probability was 1.34% with one feature and exceeded 99% with 15
variables per neuron. The possibility of obtaining a large quantity of
PTs was found in all the databases we analyzed. These results have
at least two consequences. The first is that this perfect tree approach
is possible as long as we have enough features. The second is that it
is also possible to conclude that the data are insufficient or inappro-
priate for drawing conclusions when PTs cannot be produced.
However, although the AIC was suitable for the statistical model,
our objective was to explain a situation without making errors ra-
ther than applying parsimony of statistical models.

To increase the robustness and precision of selection, we used
only 3 coefficients, negative, zero or positive, which allowed for dir-
ect interpretation of the effects of the variables. The restriction to
only 3 coefficients also reduced the computation time. Thus, this
method allowed us to determine whether one feature had an agonis-
tic or antagonistic effect relative to the action of the other features.
In another paper, we explained that a change in the sign of the coef-
ficient for the same feature could be interpreted as a differential ef-
fect between clusters of observations, and these situations were used
to identify gap information, which is called the ghost factor
(Nguyen and Antonioli submitted for publication; Vildy et al.,
2017). The consequence of such results is the ability to fill in missing
information and address a kind of interaction mapping between fea-
tures, and these interactions can be considered physiological path-
ways. In doing so, we expected to create a new method that allows
us to understand different possible pathophysiological pathways.
These associations may correspond to physiopathological pathways
that will have to be verified experimentally. The methodology of
this strategy is under development, and the results will be presented
in another work.

The classic approach to deep learning begins with a contribution
and continues, layer by layer, without the ability to return to previ-
ous layers. The ROP model replaces deep learning with an RF. The
complex set ‘neuron-ROP-RPTF’ can be considered a competing
process in the deep layers. In contrast to deep learning, the proced-
ure for selecting features and their effects is completely readable and
understandable, which makes it possible to understand the effects of
each feature and compare them with existing data. The main limita-
tion of the model is that it considers all data to be exact and does

2170 J.-M.Nguyen et al.
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not support missing data, as with most multivariate models. No
existing imputation method is acceptable for the ROP model, as it is
a combinatorial analysis in which the notion of a central value is not
relevant. Any inaccuracies in the data will be reflected in the results.
Our model seeks to explain a state to understand the mechanisms
involved and their respective influences. One of the important ques-
tions we ask ourselves concerns our feature selection strategy. A
hierarchical procedure was used to rank the features, which resulted
in the first criterion having too much of an influence on the others,
so the composite NIC score was developed. The results showed that
the performance criterion (1-NIC2) alone does not allow the infor-
mation associated with the importance of a variable to be taken into
account.

An important issue concerns the features identified at least once
as always having null coefficients in all PT neurons. From a statistic-
al point of view, these features have no value. However, we do not
employ a prediction model but rather an explanatory model. These
features can simply be intermediate features that may be essential,
or even limiting, features in the cascade of events. It is therefore very
dangerous to eliminate these features from subsequent analyses.

This phenomenon is why analyses should start with only one
variable per neuron to measure the potential of each variable inde-
pendently of others. Thus, we were able to verify that in the presence
of one of the 16 important and selected variables in the GSE22513
dataset, the coefficients of the 15 other variables could all be equal
to zero in a perfect tree.

However, if neurons containing one feature allow us to first se-
lect candidates, as in bivariate analysis, then neurons with several
features allow us to confirm predictive features after adjusting for
other features. Another advantage of the use of neurons that include
multiple features is the identification of associations of features that,
when taken together, would provide the best possible prediction.
Multivariate neurons provide the possibility of describing, identify-
ing and understanding the circumstances required to obtain a perfect
tree, which is an important issue in the interpretation of the set of
features used to modulate a target feature. We believe this is a very
good strategy for understanding the mechanism of how a feature
works. The ROP tree allows us to directly see the effect of each fea-
ture and identify the associations that lead to error-free classifica-
tions. This approach makes it possible to distinguish between what
is common from one set of features specific to another set, particu-
larly what modulator features are associated with features that in-
crease or decrease the sensitivity to paclitaxel. This work is ongoing.

Validation of the results obtained by the RFPT-NIC_score was
successfully conducted by comparing the selection and prediction of
features with other methods, such as the RFE-SVM procedure. The

results showed that the performance of our approach presented a
slight advantage to that of the RFE-SVM procedure. However, more

datasets have to be used to better quantify the potential gain.
Beyond the quantitative aspect of performance, we have opened

up a field of research into criteria for evaluating the pathophysio-
logical proximity of features to a biological event of interest and the
complexity of their relationships. With these two pieces of informa-

tion, we were able to propose a mapping of the cascade of features
leading to the event of interest. The mechanism explaining the ef-

fectiveness of paclitaxel is not fully understood (Lohard et al., 2020;
Weaver, 2014). Our analysis focused on the genes presented by the
authors, and all the selected features were concordant with the hy-

pothesis that high tumor aggressiveness is associated with a high
level of pCR and, conversely, that low tumor aggressiveness is asso-

ciated with a low level of pCR. Our analysis demonstrated that the
probes and genes we selected using the initial 2010 dataset were
fully consistent with the current hypotheses of paclitaxel resistance,

although they had not been identified by the authors in 2010. We
also identified a promising new probe for which limited biological
information (TLCD2) was available. Based on our results, this

probe (241359_at) should be biologically explored to confirm its
role in taxane sensitivity.

The modifications concern the neuron itself and include new
functions regarding conditioning activation and changes in the

propagation mode. These new architectures will make it possible to
discover new combinations of features and thus enrich the model
information. Another step is to improve the development of the

NIC score. However, the major change will involve the use of the
convolutional neural network architecture of deep learning by

using patterns to summarize small chains of pathophysiological cas-
cades involving at most two levels (i.e., a variable and its covariates
involved in a perfect tree). In conclusion, we have demonstrated

that the numerical and combinatorial approach used by the RFPT
model is an excellent solution for understanding the role of factors

involved in explaining an event, which opens up multiple
perspectives.

Editor

We submitted this manuscript to an independent professional editor
(American Journal Experts) to ensure that the text was edited prior
to submission.

Table 4. Selection of probes using the SVM-RFE procedure compared to the RFPT-NIC score

Number of probes SVM-RFE RFPT-NICs score

Probe set ID Gene symbol Probe set ID Gene symbol

1 200980_s_at PDHA1 205363_at BBOX1

2 201472_at VBP1 207781_s_at ZNF711

3 205363_at BBOX1 210015_s_at MAP2

4 207781_s_at ZNF711 210212_x_at CMC4

5 210015_s_at MAP2 214913_at ADAMTS3

6 210212_x_at CMC4 221641_s_at ACOT9

7 214913_at ADAMTS3 225036_at TOMM5

8 219372_at IFT81 227462_at ERAP2

9 221641_s_at ACOT9 227676_at FAM3D

10 223249_at CLDN12 228053_s_at TOMM5

11 225036_at TOMM5 228382_at OTULIN

12 227462_at ERAP2 241359_at TLCD2

13 227676_at FAM3D 223249_at CLDN12

14 228053_s_at TOMM5 201472_at VBP1

15 228382_at OTULIN 200980_s_at PDHA1

16 241359_at TLCD2 219372_at IFT81

The two methods selected the same top 16 probes. Only the ranks were different.

Random Forest of Perfect Trees 2173



Acknowledgements

This work was performed by using the HPC resources of the Centrale Nantes

Supercomputing Centre on the cluster Liger and was supported by a grant

from the Institut de Calcul Intensif (ICI) under Project #OG1811080/2019.

Financial Support: None declared.

Conflict of interest: None declared.

References

Ali,H.R. et al. (2014) Genome-driven integrated classification of breast cancer

validated in over 7,500 samples. Genome Biol., 15, 431.

Bauer,J.A. et al. (2010) Identification of markers of taxane sensitivity

using proteomic and genomic analyses of breast tumors from patients

receiving neoadjuvant paclitaxel and radiation. Clin. Cancer Res., 16,

681–690.

Blake,C.L. and Merz,C.J. (1998) UCI repository of machine learning data-

bases. University of California, Department of Information and Computer

Science, Irvine, CA. https://archive.ics.uci.edu/ml/datasets/Breast6Cancer

6Wisconsin6(Diagnostic)

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Castillo,J.M. et al. (2016) Immunohistochemical markers of advanced basal

cell carcinoma: CD56 is associated with a lack of response to vismodegib.

Eur. J. Dermatol., 26, 452–459.

Lohard,S. et al. (2020) STING-dependent paracriny shapes apoptotic priming

of breast tumors in response to anti-mitotic treatment. Nat. Commun., 11,

259.

Nguyen,J.M. et al. (2018) Trees with multivariate knots. In: ISCB Annual

Conference Melbourne. ISCB, Melbourne.

Sanz,H. et al. (2018) SVM-RFE: selection and visualization of the

most relevant features through non-linear kernels. BMC Bioinform.,

19, 432.

Vildy,S. et al. (2017) Impact of the time interval between lymph node recur-

rence and lymphadenectomy on melanoma patient survival. Eur. J.

Dermatol., 27, 166–173.

Weaver,B.A. (2014) How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell.,

25, 2677–2681.

2174 J.-M.Nguyen et al.


	l
	l
	l
	l
	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5

