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Abstract: The small size of robotic microswimmers makes them suitable for performing biomed-
ical tasks in tiny, enclosed spaces. Considering the effects of potentially long-term retention of
microswimmers in biological tissues and the environment, the degradability of microswimmers
has become one of the pressing issues in this field. While degradable hydrogel was successfully
used to prepare microswimmers in previous reports, most hydrogel microswimmers could only be
fabricated using two-photon polymerization (TPP) due to their 3D structures, resulting in costly
robotic microswimmers solution. This limits the potential of hydrogel microswimmers to be used in
applications where a large number of microswimmers are needed. Here, we proposed a new type of
preparation method for degradable hydrogel achiral crescent microswimmers using a custom-built
stop-flow lithography (SFL) setup. The degradability of the hydrogel crescent microswimmers was
quantitatively analyzed, and the degradation rate in sodium hydroxide solution (NaOH) of different
concentrations was investigated. Cytotoxicity assays showed the hydrogel crescent microswimmers
had good biocompatibility. The hydrogel crescent microswimmers were magnetically actuated using
a 3D Helmholtz coil system and were able to obtain a swimming efficiency on par with previously
reported microswimmers. The results herein demonstrated the potential for the degradable hydrogel
achiral microswimmers to become a candidate for microscale applications.

Keywords: stop-flow lithography; degradable hydrogel microswimmers; crescent; magnetic actuation

1. Introduction

Microswimmers refer to controllable swimming microrobots that are micron-sized and
can be controlled to perform tasks with high precision. The advantage of small size gives
them enormous potential in many applications such as minimally invasive surgery, envi-
ronment monitoring, and cell transportation [1]. Many different types of microswimmers
are actuated in different ways, such as chemical, magnetic, light, and electric field actua-
tion [2–5]. In particular, magnetic actuated microswimmers are one of the most promising
microswimmers because the magnetic field can penetrate most materials, and it allows
precise control of the microswimmers over a long range [6]. Over the years, researchers
have extensively studied various types of magnetic microswimmers that can swim in low
Reynolds number environments [7–9], such as helical, flexible, and 2D achiral microswim-
mers. In recent years, a heavier emphasis was placed on the practical applications of these
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microswimmers; thus, improving the degradability of microrobots to reduce the physical
legacy impact of the microswimmers after finishing biomedical or environmental monitor-
ing tasks has become one of the most pressing issues. Many degradable hydrogels have
been successfully used to prepare microswimmers, such as poly (ethylene glycol) diacrylate
(PEGDA), gelatin methacryloyl (GelMA), and poly (lactide-co-glycolic acid) (PLGA) [10–15].
Peters et al. fabricated the helical hydrogel microswimmers for theranostic cargo delivery
using two-photon polymerization [16]. This work demonstrated the concept of combining
the helical microswimmer design with degradable PEGDA hydrogel nanocomposite. Enzy-
matically biodegradable microswimmers were reported as follow-up studies demonstrating
controlled biodegradability in collagenases of different concentrations by using GelMA hy-
drogel as the fabrication material [6,17]. The magnetic nanoparticle retrieval technique was
also introduced to demonstrate the concept of removing excess particles after the bodies of
the hydrogel microswimmers were fully degraded in NaOH [12]. However, most reported
hydrogel microswimmers could only be fabricated using two-photon polymerization (TPP)
due to their 3D structures [6,16,17]. The print speed of 5–10 s for each microswimmer may
limit the preparation efficiency of the degradable microswimmers and increase the cost
of use, thus limiting the potential of hydrogel microswimmers to be used in applications
where a large number of microswimmers are needed.

Here, we proposed a new type of fabrication method for degradable hydrogel mi-
croswimmers using a custom-built SFL setup. SFL is a semi-automatic processing technol-
ogy, and it was widely used in mass manufacturing multifunctional microstructures [18–20].
Sharan et al. fabricated catalase-propelled hydrogel micromotor via SFL [21], demonstrating
the feasibility of massively manufacturing 2D shapes using SFL. The hydrogel microswim-
mers in this work feature a 2D crescent design and are composed of magnetic PEGDA
nanocomposite. The shape design and the choice of material allow for the mass fabrica-
tion of magnetically driven microswimmers with controlled degradability. The magnetic
PEGDA nanocomposite is an artificial hydrogel material with good biocompatibility, super-
paramagnetism, and degradability [22]. The components of the hydrogel nanocomposite
include cross-linkable monomer PEGDA, photoinitiator, and Fe3O4 magnetic nanoparticles.
Using a photomask with crescent patterns and hydrogel nanocomposite, we were able to
mass fabricate hydrogel crescent microswimmers. In the degradability test, the hydrogel
achiral crescent microswimmers were fully degradable in less than 70 min through acceler-
ated hydrolysis. The degradation rate of the hydrogel microswimmers was controlled by
adjusting the concentration of NaOH. Cytotoxicity assays showed that the cytotoxicities
of the hydrogel precursor and the hydrogel crescent microswimmers were relatively low.
In addition, the movement ability of the crescent microswimmers was also tested. When
actuated with an external rotating magnetic field (RMF), the microswimmers were able
to swim forward by converting rotational motion into translational motion. These exper-
iments showed that the hydrogel crescent microswimmers prepared by SFL have good
degradability and swimming efficiency, providing a new option for fabricating hydrogel
robotic microswimmers.

2. Materials and Methods
2.1. Preparation of Magnetic Hydrogel Nanocomposite

The hydrogel achiral crescent microswimmers were formed by the polymerization of
hydrogel nanocomposite through UV light. The hydrogel nanocomposite was composed
of PEGDA (Sigma-Aldrich), photoinitiator (2-hydroxy-2-methyl-1-phenyl-1-propanone,
Darocur 1173, Sigma-Aldrich), and water-based ferrofluid containing Fe3O4 nanoparticles
with 10 nm hydrodynamic size (EMG 700 SP, Ferrotec, Bedford, OH, USA). The hydrogel
precursor (30 vol% PEGDA, 3 vol% Darocur 1173, and 67 vol% water) was treated with
ultrasonic oscillation (SB-5200D, Ningbo Xinyi, Ningbo, China) for 10 min (The crosslinking
yield of PEGDA hydrogel is 33.5% and the swelling efficiency is 100.3%. The data are shown
in Table S1). An appropriate amount of water-based ferrofluid (the final mass fraction of
Fe3O4 is 5 wt.%) was added, and the mixture was under ultrasonic oscillation for 30 min
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to obtain a uniformly dispersed mixture. Tween-20 (0.05 vol%, Sigma Aldrich, St. Louis,
MO, USA) was used to prevent microswimmer loss due to sticking on tubes. Deionized
(DI) water was used in all experiments. CCK-8 kit and Calcein-AM/PI Double Stain
Kit (C2015S) were obtained from Dojindo (Kyushu, Japan) and Biyuntian Biotechnology
(Shanghai, China), respectively.

2.2. Fabrication of Microfluidic Chips

The hydrogel nanocomposite was injected into the microchannel of the microfluidic
chip using a syringe pump. The hydrogel crescent microswimmers were fabricated from
UV-curing the hydrogel nanocomposite. The microfluidic chip was fabricated using soft
lithography [23]. First, an SU-8 (Microchem) positive template was prepared with standard
photolithography technology. Second, polydimethylsiloxane (PDMS, Sylgard 184, Dow
Corning) was poured into the SU-8 positive template, evenly mixed, and kept in a vacuum
environment for 10 min to remove bubbles in the PDMS. Then, the positive template with
PDMS was placed in an oven at 80 ◦C for 1 h. Next, the molded PDMS channel was
carefully torn off from the edge and cut into a size of 4 cm × 1 cm × 7 mm. Inlet and outlet
holes were created on this PDMS channel using a hole puncher. Afterward, a glass slide
was covered with a 100 µm thick PDMS layer. Finally, the PDMS channel was bonded
to the PDMS-coated glass slide by plasma (Harrick Plasma, New York, NY, USA.). After
the bonding, the PDMS chip was kept in an oven at 60 ◦C for 30 min to obtain a stronger
bonding effect. The dimensions of the PDMS microchannel in the microfluidic chip were
40 µm high, 1100 µm wide, and 3 cm long.

2.3. Stop-Flow-Lithography Setup

A custom-built SFL setup was used for the fabrication of hydrogel achiral crescent mi-
croswimmers (the setup is shown in Figure S1). The setup consisted of a microfluidic device
and a laser system. The schematic diagram of the system is shown in Figure 1A. The laser
system included an ultraviolet light excitation system and a visible light imaging system.
The ultraviolet light was generated by a 355 nm laser source (Talon-355-15NL, Spectra-
Physics, Tokyo, Japan), and a collimated light beam was formed through an attenuator and
a beam expander, the spot diameter of which is 2 cm. The visible light imaging system
included a CCD camera, an LED light source, and an objective lens (5× or 10×), which was
used to observe the synthesis of the hydrogel microswimmers in the microchannel. The
microfluidic device consisted of five parts: a syringe pump, a 2 mL syringe, a microfluidic
chip, a photomask, and a collection tube, which were connected by soft catheters.

2.4. Fabrication of Hydrogel Crescent Microswimmers

SFL can perform flow–stop polymerization in cycles to achieve continuous production
of the hydrogel crescent microswimmers. In the flow stage, the microchannel was filled
with the hydrogel precursor suspension through the micropump. In the stop stage, the
micropump was turned off, and the hydrogel precursor flow stops in a short time. In
the polymerization stage, the 355 nm laser source was turned on to emit ultraviolet light,
which was projected into the microchannel through a patterned photomask. Under UV
exposure (light intensity around 152 mW/cm2 based on the average power, exposure
time 4 s, repetition rate 5 kHz), the hydrogel precursor was quickly cross-linked and
solidified to form the hydrogel crescent microswimmers. The effective projection area of
UV light is a circle of around 2 cm diameter, which enables the polymerization of around
400 microswimmers in the channel within one cycle. Complete fabrication cycles were
successfully run in 24 s (tflow = 5 s; tstop = 15 s; tpol = 4 s). Note that the oxygen that
penetrated the microfluidic chip inhibited the cross-linking polymerization reactions; as a
result, a 2–3 µm thick lubricating layer was formed around the microchannel, where no
crosslinking occurred. This layer is known as an oxygen inhibition layer (Figure 1B) [24].
The oxygen inhibition layer allowed the solidified hydrogel crescent microswimmers
to be easily flushed out by pressure-driven flow without sticking to the surface of the
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microchannel. The preparation of the hydrogel crescent microswimmers can be performed
continuously by repeating the flow-stop-polymerize cycle. The flushed-out hydrogel
crescent microswimmers were collected into the collection tube. Isopropyl alcohol was
added to dissolve the excess hydrogel precursor. Centrifugation (5000 RPM, 5 min) was
used to precipitate the hydrogel microswimmers, and the supernatant was removed. Finally,
the hydrogel microswimmers were washed 5 times with 0.05 vol% Tween 20 solution.
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2.5. Structural Characterization

The surface morphology and the elemental composition of the hydrogel crescent
microswimmers were characterized using scanning electron microscopy (SEM, ZEISS,
Merlin, OR, USA) at 5 keV and 1 nA and energy-dispersive spectrometry (EDS, EDAX,
Mahwah, NJ, USA, Octane Pro), respectively.

2.6. Degradation Test

The degradation behavior of the hydrogel crescent microswimmers was quantitatively
analyzed by observing their degradation rate under different NaOH concentrations [12,16].
Different hydrogel crescent microswimmers were immersed in NaOH solutions with
concentrations of 1 mol/L, 3 mol/L, and 5 mol/L, respectively. The samples were sealed
and stored at 25 ◦C. An optical microscope (Mingmei, Guangzhou, China) was used to
obtain brightfield images of the microswimmers every 10 min. The pixel statistics function
of the camera was used to mark the surface area of the microswimmer during degradation.
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2.7. Cell Culture

The L929 cells were cultured in MEM complete medium, which included 90% glucose-
free MEM (GIBCO, California, USA), 10 vol% fetal bovine serum (FBS, GIBCO), and 1 vol%
penicillin/chain Mycin (10,000 U/mL, GIBCO). The cells were maintained at 37 ◦C in
humidified air with 5 vol% CO2.

2.8. Cell Viability

The CCK-8 cell viability kit was used to quantitatively determine the cytotoxicity of
the samples. The mouse fibroblast cell line L929 was seeded in 96-well microplates with
100 µL of MEM complete medium/well at a concentration of 1 × 105 cells and stabilized
in an incubator for 12 h. Then, different samples were added to 96-well tissue culture
plates. After culturing for 24 h, 10% CCK-8 solution was added to the cell culture. The
cell culture was incubated for another 1 h at 37 ◦C. The absorbance of the samples was
measured at 450 nm using a multifunctional full-wavelength micro-plate reader (Infinite
200 pro, Tecan Austria GmbH, Grodig, Austria). Calcein acetoxymethyl ester(calcein-AM)
and propidium iodide (PI) double staining kits were used for cell live/dead staining.
The cells were seeded in 96-well cell culture plates at a density of 1 × 105 cells per well.
Then, different samples of 50 uL with the concentration of 2k microswimmers/mL were
added to the corresponding wells. the microswimmers were in full contact with the
cells. After 24 h of incubation, the cells were washed twice with PBS. Then, 100 µL Calcein-
AM/PI double stain detection working solution was added according to the manufacturer’s
instructions. After incubating for 30 min, the cells were rinsed twice with PBS. Finally, a
confocal microscope (A1R+Symp64, Nikon, Tokyo, Japan) was used to observe Calcein-
AM-stained live cells (λexcitation/λemission = 490 nm/515 nm) and PI-stained dead cells
(λexcitation/λemission = 535 nm/617 nm).

2.9. Motion Control Tests

The hydrogel crescent microswimmers were actuated using a magnetic control system
composed of an imaging system, which consisted of a microscope and a CMOS camera, and
a three-dimensional Helmholtz coil system [17,25]. The solution containing the hydrogel
microswimmers was transferred to a petri dish via pipetting. A 10 mT RMF was used
to manipulate the microswimmers. By adjusting the rotating frequency and direction of
the rotating magnetic field, the swimming velocity and direction of the microswimmers
can be tuned. The petri dish containing microswimmers was placed on the platform at
the center of the magnetic control system to get a uniform field. The imaging system
recorded the motion of the microswimmers at a frame rate of 25 Hz. An image processing
algorithm written with MATLAB was used to analyze the velocities and trajectories of
the microswimmers.

3. Results
3.1. Characterization of Hydrogel Crescent Microswimmers

Using the SFL process, the hydrogel achiral crescent microswimmers were fabricated
(the detailed fabrication process is described in the Methods Section). The SEM image
(Figure 2A) shows the porous morphology of a hydrogel microswimmer, which was caused
by dehydration of the sample. The dispersion of Fe3O4 can influence the fabrication process
of the hydrogel microswimmers as a non-uniform dispersion can lead to uneven polymer-
ization of the hydrogel precursor suspension. As shown in Figure 2B, EDS measurements
show the distribution of Fe3O4 content in the hydrogel microswimmer; the result showed
that the Fe3O4 nanoparticles were uniformly embedded inside the hydrogel microswim-
mer. The precursor suspension under the optical microscope also showed good dispersion
(Figure 2C), which enables the uniform polymerization of the magnetic hydrogel suspen-
sion. To verify that the nanoparticles were magnetic, a neodymium iron boron magnet
was placed close to the hydrogel precursor suspension to attract the nanoparticles; as
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expected, the magnetic nanoparticles inside were attracted to the sidewall of the container
and quickly aggregated (Figure 2D).
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Figure 2. (A) SEM image of a hydrogel crescent microswimmer. The inset figure in the lower right
corner is the pattern on the transparent mask used to make the microswimmers. The zoomed-in
figure shows the porous structures of the microswimmer. (B) The EDS of the iron element indicated
the presence of Fe3O4. (C) Optical image of Fe3O4 nanoparticles uniformly dispersed in the hydrogel
precursor suspension. (D) When the neodymium iron boron magnet was placed close to the hydrogel
precursor suspension, the Fe3O4 nanoparticles gathered to the position closest to the magnet.

3.2. Degradability of the Hydrogel Crescent Microswimmers

The degradability of the PEGDA hydrogel crescent microswimmers was quantitatively
studied. The degradation properties are derived from the hydrolysis of esters of PEGDA.
Water molecules break the ester groups in PEGDA (Figure 3A), resulting in the formation of
poly (acrylic acid) (PAA) and alcohol moieties (PEG or PE), all of which have low cytotoxic-
ity and can be directly excreted by the human body. Moreover, hydrolysis is accelerated
by NaOH due to the presence of hydroxyl ions. When the hydrogel microswimmers are
placed in NaOH solution, NaOH cleaves the ester group, causing the PEGDA polymer
matrix to gradually break and disintegrate. Figure 3B shows the degradation process of a
representative PEGDA hydrogel microswimmer when exposed to a NaOH solution with
a concentration of 2 mol/L. First, the hydrogel microswimmer expanded. The expansion
phenomenon happens because the PEGDA polymer matrix is broken down by NaOH,
allowing water molecules to penetrate the hydrogel. When the strength of the PEGDA
polymer matrix was greatly reduced and the original structure could not be maintained,
the PEGDA polymer matrix gradually collapsed. Finally, the volume gradually decreased,
and the microswimmer disappeared completely after 70 min. The degradation process
of the hydrogel microswimmer was observed under different concentrations of NaOH
solution (1 mol/L, 2 mol/L, and 5 mol/L), as shown in Figure 3C. The degradation rate
of the microswimmer increased with the concentration of the NaOH solution. It should
be noted that the composition of hydrogel materials can be changed to adjust the degra-
dation time [26]. This is potentially useful because faster degradation may be required to
achieve faster drug accumulation rates in actively controlled drug release applications [6].
In addition, the residual Fe3O4 nanoparticles after the full degradation of the hydrogel
microswimmers are biocompatible and can be excreted by the human body [27].
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Figure 3. (A) First row: hydrolysis of the hydrogel microswimmer; second row: accelerated hydrolysis
under the action of sodium hydroxide. (B) Optical microscope images of the degradation process of a
hydrogel microswimmer with a 2 mol/L NaOH solution; the sample size was 3. (C) Relationship
between the degradation time of the microswimmers and the concentration of the NaOH solution.

3.3. Biocompatibility of the Hydrogel Crescent Microswimmers

The biocompatibility of fabrication materials is an important consideration in the
fabrication of microswimmers for microscale applications; thus, the biocompatibility of the
hydrogel microswimmers was tested and compared using three groups of experiments:
the control group (petri dish), pure hydrogel microswimmers (microswimmers without
magnetic nanoparticles), and magnetic hydrogel microswimmers (microswimmers with
5 mg/mL Fe3O4); they will be designated as Group I, Group II, and Group III. After
24 h of incubation, the L929 cell viability of each group was evaluated by the calcein-
AM/PI staining and CCK-8 kit. The fluorescence images enabled the visualization of
live (green) and dead (red) cells in Figure 4A, which shows cell growth across the three
groups well after 24 h. Almost no red fluorescence can be seen in any of the groups,
indicating no discernible cytotoxic effect on cells. In addition, a CCK8 assay was used
for the quantitative determination of cellular viability. The cell survival rates for the
three groups were 100 ± 12.3%, 108.7 ± 8.8%, and 87.3 ± 8.1%, respectively, as shown in
Figure 4B. Group II showed a survival rate greater than 100%; this means the hydrogel
promoted cell growth, verifying the excellent biocompatibility of PEGDA. The survival rate
from Group III was less than that of Group I due to the magnetic nanoparticles being slightly
toxic to cells [27]. In general, hydrogel crescent microswimmers have good biocompatibility
and ensure the safety of the biological tissue during a task.
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Figure 4. Biocompatibility test of the hydrogel crescent microswimmers. (A) Representative image of
live/dead cell staining. Live cells (green) were stained with Calcein-AM, and dead cells (red) were
stained with Calcein-PI. Groups I–III are the control group, the pure hydrogel group (microswimmers
without magnetic nanoparticles), and the magnetic hydrogel microswimmers (microswimmers with
5 mg/mL magnetic nanoparticles), respectively. The scale bar is 200 µm. (B) Cell viability after 24 h
incubation for groups I–III. The sample size was 3.

3.4. Magnetic Actuation of the Hydrogel Microswimmers

In previous work, the swimming ability of crescent microswimmers has been proved
theoretically and demonstrated experimentally [28–30]. To further quantify the swimming
ability of the hydrogel crescent microswimmers on swimming performance, magnetic drive
tests were performed. Here, a customized three-dimensional Helmholtz coil (Figure 5A)
was used to generate a uniform RMF to drive the microswimmers. As shown in Figure 5B,
the RMF acts on the microswimmers to generate a magnetic torque and makes the mi-
croswimmer rotate synchronously with the external magnetic field; this allows the mi-
croswimmers to convert rotational motion into translational motion and swim forward
in a direction parallel to the axis of rotation. The RMF used for magnetic control can be
expressed as [31]:

B =

 Br sin(θ) cos(ωt)
Br cos(θ) cos(ωt)

Br sin(ωt)

, (1)

where Br, θ,ω, and t represent the amplitude of the rotating magnetic field, the heading
angle, the rotating frequency of the field, and time, respectively. Since the microswimmers
were actuated close to the surface, the velocity was decomposed into two components: for-
ward velocity and drift velocity [32]. Forward velocity is defined as the velocity measured
along the direction of the rotational field normal while drift velocity is defined as the veloc-
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ity perpendicular to it (Figure 5B). The drifting motion is due to the interaction between the
microswimmer and the surface of the substrate. Figure 5C shows the velocity profiles of the
hydrogel microswimmers as a function of the rotation frequency of the applied 10 mT RMF
(the corresponding information is provided in video S1). From 1 Hz to 4 Hz, the forward
velocity of the hydrogel microswimmers first rises and then falls. At 2 Hz, they have
a maximum forward velocity of 42 µm/s. The corresponding dimensionless swimming
efficiency is Vmax/(Lf ) = 0.13 (Vmax = 42 µm/s, body length L = 161 µm, frequency f = 2 Hz),
which is on par with previously reported achiral microswimmers [28]. The low step-out
frequency at 2 Hz can be explained by the low loading efficiency of Fe3O4 particles; the
same issue had been observed with previously reported hydrogel microswimmers [6,12,33].
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Figure 5. Biocompatibility test of the hydrogel crescent microswimmers. (A) Photograph of the
magnetic control system. The zoomed-in image shows a sample of the microswimmers inside a petri
dish placed at the central platform of the system. The position of the sample was adjusted to be as
close as possible to the center of the coils to ensure field uniformity. (B) Schematic of a microswimmer
and its swimming and drifting directions relative to the rotating magnetic field displayed in Cartesian
coordinates. (C) The velocity profiles of the microswimmers. The step-out frequency is 2 Hz, and the
maximum forward velocity is 42 µm/s.

4. Conclusions

In this work, we demonstrated a new type of fabrication method for degradable
hydrogel crescent microswimmers based on a custom-built SFL setup. The SFL setup
enabled the fabrication of hydrogel crescent microswimmers with high throughput and
low cost. The degradability experiments tested the degradation rate of the hydrogel mi-
croswimmers under different concentrations of a NaOH solution and demonstrated the
complete degradation of the hydrogel crescent microswimmers. Cytotoxicity experiments
showed that the hydrogel crescent microswimmers have good biocompatibility, ensuring
their biosafety to the environment. A customized magnetic control system was used to
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test the swimming motion of the microswimmers. The swimming efficiency of the mi-
croswimmers was 0.13, which is on par with previously reported achiral microswimmers.
The results showed that the hydrogel crescent microswimmers were a promising candidate
for microscale applications due to their swimming efficiency and degradability. For future
work, we will implement drug loading and controlled release functions on these hydro-
gel microswimmers to further demonstrate their potential for biomedical applications.
Furthermore, we will consider using in situ synthesis technology to further improve the
loading efficiency of Fe3O4 and magnetically align the magnetic nanoparticles during the
fabrication process to enhance the magnetic property of the hydrogel microswimmers; these
can potentially improve the swimming capability of the microswimmers by increasing the
step-out frequency.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi13050798/s1, Figure S1: The custom-built stop-flow lithography setup, Table S1: The
crosslinking yield and Swelling efficiency of the PEGDA hydrogel.
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