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Abstract 

Background:  Colorectal cancer (CRC) is one of the leading causes of cancer-related 
deaths worldwide. Recent studies have observed causative mutations in susceptible 
genes related to colorectal cancer in 10 to 15% of the patients. This highlights the 
importance of identifying mutations for early detection of this cancer for more effec‑
tive treatments among high risk individuals. Mutation is considered as the key point in 
cancer research. Many studies have performed cancer subtyping based on the type of 
frequently mutated genes, or the proportion of mutational processes. However, to the 
best of our knowledge, combination of these features has never been used together 
for this task. This highlights the potential to introduce better and more inclusive sub‑
type classification approaches using wider range of related features to enable bio‑
marker discovery and thus inform drug development for CRC.

Results:  In this study, we develop a new pipeline based on a novel concept called 
‘gene-motif’, which merges mutated gene information with tri-nucleotide motif of 
mutated sites, for colorectal cancer subtype identification. We apply our pipeline to 
the International Cancer Genome Consortium (ICGC) CRC samples and identify, for the 
first time, 3131 gene-motif combinations that are significantly mutated in 536 ICGC 
colorectal cancer samples. Using these features, we identify seven CRC subtypes with 
distinguishable phenotypes and biomarkers, including unique cancer related signaling 
pathways, in which for most of them targeted treatment options are currently available. 
Interestingly, we also identify several genes that are mutated in multiple subtypes but 
with unique sequence contexts.

Conclusion:  Our results highlight the importance of considering both the mutation 
type and mutated genes in identification of cancer subtypes and cancer biomarkers. 
The new CRC subtypes presented in this study demonstrates distinguished pheno‑
typic properties which can be effectively used to develop new treatments. By knowing 
the genes and phenotypes associated with the subtypes, a personalized treatment 
plan can be developed that considers the specific phenotypes associated with their 
genomic lesion.
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Introduction
Cancer is the leading cause of death worldwide. Among different cancers, colorectal 
cancer (CRC) ranking second after lung cancer in lethality [1]. According to the Can-
cer Genome Atlas (TCGA), 16% of CRC samples show DNA damage mechanisms and 
high tumor mutational burden [1]. Accurate identification and quantification of CRC 
subtypes as well as understanding their underlying molecular mechanisms are essential 
steps to develop personalized medicine strategies that can potentially lead to effective 
treatment modalities and better clinical outcomes for patients. There is currently no 
consensus on the number of CRC subtypes. Different approaches that are proposed to 
classify CRCs based on mutation or gene expression have reported up to six subtypes. 
In 2013, Felipe De Sousa et al. [2] used a hierarchical clustering method on gene expres-
sion data from 90 CRC patients to identify three CRC subtypes. At the same time, Sad-
anandam et al. [3] analyzed gene expression data from a larger cohort comprising 445 
patients and identified five CRC subtypes [3].

In another study on gene expression data from 566 patients, Marisa et  al., applied 
hierarchical clustering using the Ward linkage method [4] to identify CRC subtypes. By 
adopting the Pearson correlation coefficient (PCC) as a distance measure on the gene 
expression profiles they identified six CRC subtypes [4]. Later on, Roepman et al., also 
used gene expression data from a cohort of 188 CRC patients, to identify three subtypes 
using an unsupervised clustering (hierarchical clustering) method [5].

Most recently, Guinney et al. [6] conducted a comprehensive study using gene expres-
sion data to identify CRC subtypes as a part of the International Consortium to Gener-
ate Colorectal Cancer Subtypes (CRCSC). This study identified four biologically distinct 
CRC subtypes called CMSs (consensus molecular subtypes [7]), each having unique clin-
ical and molecular markers. For example, they defined CMS1 as a hyper-mutations case 
and CMS2 has a high copy number alteration. This study covered 87% of all studied CRC 
cases at ICGC as well as the other remaining uncharacterized samples. They integrated 
all the data from previous studies and used Random Forest (RF) algorithm (using 5972 
genes) to build their ensemble model.

Genomic variations including point mutations and structural variants have been 
recently used to analyze human diseases as well as viruses [8–16]. There are also several 
studies that used point mutations and pathways instead of gene expression for cancer 
subtype identification [6, 12, 17–20]. Somatic mutations are widely known as impor-
tant factors for different cancers. Different mutational processes and genes related to a 
given cancer are typically linked to distinct mechanisms of tumor development, from 
which subtypes can be identified. The stable nature of somatic mutations makes them 
good candidates for cancer subtype classification. Kuijjer et al., used mutation data sets 
of 6406 samples from 23 cancer types from the Cancer Genome Atlas (TCGA). They 
hypothesized that mutation processes in cancer can be identical in different cancer types 
regardless of the tumor origin which is also referred to as Pan-Cancer analysis. Their 
analysis identified nine subtypes across all cancers [12].

Different mutational processes can lead to somatic point mutations related to can-
cers. In 2015, Alexandrov et al. [21] showed that there are 30 mutational signatures in 
cancers, most of them associated with a specific molecular mechanism to uncover the 
causality behind somatic point mutations across the genome. The proposed concept 
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demonstrated the importance of motif context in the analysis of somatic point muta-
tions in cancer genomics. It is also known that transcription factors bind to their spe-
cific sequence motifs. Therefore, sequence context of cancer mutations can potentially 
change the expression and regularization of genes including cancer driver genes. Hence, 
quantifying somatic mutations with respect to their gene-motifs instead of genes can 
provide greater discriminatory power for identification of cancer subtypes.

To the best of our knowledge, the context of mutations in highly mutated genes has 
not been used for cancer subtype classification and therapeutic biomarker identifica-
tion. Based on the merits associated with somatic mutations, in this study we propose a 
new pipeline using “gene-motifs” concept to accurately identify CRC subtypes. An over-
view of the pipeline proposed in this study is presented in Fig. 1. To build our model, we 
hypothesize that subtypes can be more efficiently identified using mutated genes and the 
mutated sequence motifs within the genes, simultaneously. We refer to this combina-
tion as “gene-motifs”. Here we first download publicly available somatic point mutations 
of 536 whole genome sequencing CRC individuals from the ICGC. We then used the 
FANTOMCAT genes list to identify the number of mutations in coding and lncRNA 
genes. After that, we used negative-binomial and beta-binomial distributions to identify 
significantly mutated genes and gene-motifs respectively to avoid bias and reduce noise 
in our data. Using 3131 candidate gene-motifs as features for a model-based clustering 

Fig. 1  An overview of our proposed pipeline. Here we first downloaded publicly available somatic 
point mutations of 536 whole genome sequencing CRC individuals from the ICGC. We then used the 
FANTOMCAT genes list to identify the number of mutations in coding and lncRNA genes. After that, we used 
negative-binomial and beta-binomial distributions to identify significantly mutated genes and gene-motifs, 
respectively. Using 3131 candidate gene-motifs as features of our model-based clustering, we identified 
seven CRC subtypes. Our comprehensive biological analysis showed that the identified subtypes have 
different mutational load in different genes. Our mutational signature analysis also showed that different 
combinations of signatures can be observed in each subtype. We also identified genes and conserved motifs 
that significantly mutated in each subtype. Finally, we performed gene ontology, pathway, and survival curve 
analyses
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technique [22], we identify seven CRC subtypes. Our comprehensive biological analysis 
shows that the identified subtypes have different mutational load in different genes. Our 
mutational signature analysis also shows that different combinations of signatures can be 
observed in each subtype. We also identify novel colorectal-associated genes and spe-
cific mutated motifs, which are represented in different CRC subtypes. We also clearly 
demonstrate how some of the subtypes are region-based supporting the findings pre-
sented in [23].

Results
To build our unique clustering framework, we used somatic point mutations from the 
International Cancer Genome Consortium (ICGC) [24], which contains data from 536 
patients (45% female, 55% male) with CRC across three projects (READ-US, COAD-
US, COCA-CN). Typically somatic point mutations are annotated within gene-coding 
regions exclusively. Therefore, we also extended annotations of somatic point mutations 
to 27,919 lncRNAs and 21,069 protein-coding genes annotated in the FANTOM CAGE 
associated transcriptome (FANTOM CAT) dataset [7].

Statistical workflow to identify significant genes and gene‑motifs

CRC samples have different mutational frequencies with diverse mutational profiles 
(Additional file 2: Figure S1). To cluster these samples, we first identified candidate genes 
and gene-motifs (as the feature for our clustering) that were mutated at a significantly 
higher level in CRC samples relative to other cancers. For this purpose, we used a Cullen 
and Frey graph [25] with 100-fold bootstrapping to identify best-fitted distribution to 
our candidate genes data. Among different distributions, the negative-binomial distribu-
tion demonstrated the best-fitted distribution (Additional file 2: Figure S2), which was 
validated by the Cramer-Von Mises test (using R package “VGAM” [26]—see the method 
section). Using a negative-binomial distribution as the most suitable distribution to cal-
culate the P-value of mutational load for each gene, we identified 382 protein coding 
genes that were significantly mutated (P-value < 0.01) in the CRC samples. The rankings 
of the significant coding genes based on their P-value (i.e. candidate genes) are provided 
in Additional file 1: Table S1.

Gene‑motif concept

Having significantly mutated genes identified, we then tested different models to iden-
tify significantly mutated gene-motifs. The Gene-motifs refer to the sequence motifs 
mutated within a gene. Here, we define motif as a 3-nucleotide sequence context of the 
mutated nucleotide, i.e. NXN-to-NYN (where X has mutated to Y, and N: A, C, G, or T). 
There is in total 96 different mutations within all possible motifs in DNA [21]. Here, we 
determine the number of each of these 96 mutation types within each gene. As described 
above, we investigated different models for fitting mutational profiles in gene-motifs and 
based on the comparison of Poisson, negative-binomial, Weibull, Gamma, log-normal 
and beta-binomial distributions in a Cullen and Frey Graph (Additional file  2: Figure 
S3), we found that the beta-binomial distribution to be the most suitable distribution 
to identify significantly mutated motifs within the significant genes (e.g. gene-motif ). 
As a result, we identified 3131 gene-motifs with P-values smaller than the threshold 



Page 5 of 24Dashti et al. BMC Bioinformatics          (2022) 23:138 	

(P-value < 0.01) as significant gene-motifs, which have been used as the feature to cluster 
CRC patients. The list of candidate gene-motifs is provided in Additional file 1: Table S2. 
An overview of the gene-motif concept is provided in Additional file 2: Figure S4.

Distinguishing subtypes based on the candidate gene‑motifs

We used principal component analysis (PCA) to investigate the effectiveness and validity 
of our selected features. As it shown in Additional file 2: Figure S5, the similar length for 
the first two principal components (PCs) demonstrates significant potential discrimina-
tory information (the variance of data along these features is almost the same) that can 
be obtained using this distribution, indicating the importance of our selected features.

We then used multi-level model-based clustering [22] on a samples versus gene-motif 
matrix to identify subtypes in CRC samples. We used this technique over other cluster-
ing methods such as hierarchical clustering due to its ability to build a formal model 
without requiring random initialization. Traditional clustering models, such as k-means 
algorithm, are randomly initialized while others like hierarchical clustering are heavily 
dependent on heuristics to build their model. Additionally, clustering models such as 
dbscan [27], hdbscan [28], and local shrinking-based clustering [29] require the user to 
specify the optimal number of clusters or other parameters. Whereas Model-based clus-
tering used here does not have such requirements, enabling us to find the most suitable 
number of clusters based on the nature of the available data. To build this model, we first 
applied clustering to all patients to produce the first level of clusters and then applied the 
model-based clustering on each cluster separately to detect if each cluster can in turn be 
divided into new meaningful groups (i.e. clusters with considerable number of patients; 
1% of the total number of samples). We repeated this process until no more meaningful 
clusters were generated (see more details in the method section).

Using the described approach, we identified two clusters with 450 and 83 patients 
at the first clustering level. These two clusters were then divided into smaller clusters, 
but still distinguishable, in the second clustering level. At this level, the first cluster was 
divided into four sub-clusters with 44, 137, 64 and 205 samples while the second cluster 
was divided into three clusters with 13, 49 and 21 samples. However, this pattern did not 
continue to the third level of clustering. At the third level, most of our clusters did not 
break down into smaller clusters. For example, in two cases (137-sample and 205-sample 
clusters) the clusters divided into a large cluster and few outliers. These outliers were 
close to the larger cluster and far from the rest of the clusters. In these cases, instead of 
introducing a new cluster, we investigated those samples as outliers to the same clus-
ter. As a result, our iterative clustering method identifies seven subtypes namely, SC1, 
SC2, SC3, SC4, SC5, SC6 and SC7 for CRC based on somatic point mutations that were 
determined on 3131 candidate gene-motifs. The patients in each cluster are shown in 
two dimensional PCAs of features in Additional file 2: Figure S6 and listed in Additional 
file 1: Table S3. Interestingly, a clustered heatmap of the fraction of mutated gene-motifs 
in each subtype shows that most of the gene-motifs are subtype specific (Fig.  2). The 
frequency of 3131 gene-motifs in each subtype is provided in Additional file 1: Table S4. 
For the rest of this paper, we will comprehensively investigate biological interpretability 
of our identified subtypes.
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Biological interpretation of CRC subtypes to identify subtype‑specific biomarkers

In this section, we comprehensively investigate the biological characterization of each 
CRC subtype to identify subtypes-specific genes, specific conserved motifs, and gene 
pathways which underlie colorectal cancer.

Gene association as the biomarker of each subtype

After determining each subtype, we comprehensively investigated the biological inter-
pretability of each subtype by identifying subtype-specific genes. The 382 candidate 
genes revealed that many of them have been previously associated to CRC and/or other 
cancers. For example, we identified PCDHGA6, TTN, TP53, FRG1BP, AP2A2, MUC6, 
H3BNH8, DOCK3, CACNA1D, SERPINB, ZBED6, ZBED6, NXPH1, NKAIN2, and 
EIF3H genes that are known to be associated with CRC cancer [15, 16, 30–33]. We also 
used Fisher’s exact test to identify subtype-specific genes and also those genes that sig-
nificantly mutated in multiple subtypes. As a result, we identified many common and 
subtype-specific genes, some of which are known to be associated with CRC or other 
cancers (Additional file  1: Table  S5). Interestingly, this analysis enables us to identify 
unique mutated genes in a specific subtype, in which none of the other subtypes have 
mutation in these genes (Additional file 1: Table S5).

Fig. 2  Clustered heatmap of 3131 gene-motifs. Hierarchical clustering of 3131 gene-motifs in seven CRC 
subtypes based on their mutational frequency. Intensity represents the frequency of mutation in each 
subtype
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For example, PCDHGA6 and TTN appeared as two of the significant genes in SC1. 
PCDHGA6 was mutated in 42 of 44 patients of SC1 samples (95%), while mutated in 
144 patients of 489 patients (29%), in other clusters. Most of the PCDHG family (e.g. 
PCDHGB3 and PCDHGA6) are calcium-dependent cell-adhesion proteins [34], signifi-
cantly mutated in SC1 patients and previously reported as diagnostic markers for cervi-
cal cancer [35]. Wang et al. reported that some of the MCDH family can be used as the 
diagnostic markers for cervical cancer [35]. The suitable guide for treatment as well as 
determining biomarker for this type of cancer may be prepared by assessment of PCDH 
family genes. TTN, which produces the very large protein called titin that has several 
functions within sarcomeres, was significantly mutated in above 90% of patients in SC1. 
One of the main function of this gene is to provide structure, flexibility, and stability of 
cell structures, which is associated to cancer [36]. We also found out that 90% of SC1 
patients have been mutated in CATG00000081433, which is a FANTOMCAT-specific 
coding gene. Importantly, this gene encompasses multiple colorectal cancer associated 
GWAS (Genome-wide association study) SNPs. This gene is also dynamically expressed 
in an induced pluripotent stem cell model of neuron differentiation dataset [7].

TP53 is the most mutated gene in SC2, which has been previously associated with a 
variety of cancers, including CRC [31]. In addition, adenomatous polyposis coli (APC) 
was also found within this sub-cluster that is known as driver gene for colorectal, pan-
creatic, desmoid, hepatoblastoma, and glioma cancers [13]. APC is a tumor suppres-
sor gene that encodes a multi-functional protein that is involved in several processes, 
including regulation of β-catenin/Wnt signalling, intercellular cell adhesion, prolifera-
tion, apoptosis and differentiation [37].

In SC3, FRG1BP, a gene previously associated with prostate cancer [38], was mutated 
in ~ 50% of samples in SC3 compared to less than 15% of samples in other clusters. 
AP2A2 is another important gene that mutated in 54% of SC3 samples and in less than 
23% of samples who are in other subtypes. AP2A2, as a component of the adaptor pro-
tein complex 2 (AP-2), is involved in clathrin-dependent endocytosis in which proteins 
are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles) [39]. 
More recently, a role for AP2A2 has been suggested in asymmetric cell division and 
self-renewal of hematopoietic stem and progenitor cell [40]. Another important gene 
is MUC6 which has mutated in 54% of SC3 samples and less than 24% in other sam-
ples. MUC6 is shown to be associated with pancreatic ductal carcinoma and small intes-
tine cancer [41]. It is also involved in “Defective GALNT12 causes colorectal cancer 1 
(CRCS1)” and “Defective GALNT3 causes familial hyperphosphatemic tumoral calcino-
sis (HFTC)” pathways based on the Reactome Pathways database [42].

H3BNH8 is the most mutated gene in SC4 samples (mutated in 61% of SC4 samples). 
This gene is an important paralog of APC (homologous genes that have diverged within 
one species); these genes arise during gene duplication where one copy of the gene 
receives a mutation that gives rise to a new gene with a new function, though the func-
tion is often related to the role of the ancestral gene. TP53 and APC are other associated 
genes to this subtype. These genes are also significantly mutated in SC2 samples.

DOCK3 is mutated in 100% of SC5 samples while it is mutated in only 5% of samples 
in other subtypes. DOCK3 is known as a modifier of cell adhesion (MOCA) and pre-
senilin-binding protein (PBP) [43, 44], which has an important role in melanoma [45]. 



Page 8 of 24Dashti et al. BMC Bioinformatics          (2022) 23:138 

CACNA1D is another cancer related gene which is Calcium voltage-gated channel subu-
nit alpha1 D [46] that is identified as an associated gene in samples of SC5. SERPINB4 
is another important cancer-related gene, which is mutated in 53% of SC5 samples and 
no mutation in other subtypes. The protein of SERPINB4 can inactivate granzyme M, an 
enzyme that kills tumor cells [47]. SERPINB4 has been previously identified as associ-
ated gene with loci 18q deletion syndrome and squamous cell carcinoma [48]. ZBED6 is 
another important gene which has been mutated in 63% of SC5 and almost no mutation 
in other subtypes. ZBED6 is known as a repressor of IGF2 that influences cell prolifera-
tion and development that affects cell cycle and growth of human CRC cells [49].

ZNF717 as one of the important genes that mutated in 85% of SC6 samples and only 
in 10% of samples in other subtypes. This gene involves many cell activities such as cell 
proliferation, differentiation and apoptosis, and in regulating viral replication and tran-
scription [50]. ZNF717 has been recently suggested as a candidate gene in the African-
American population with CRC [50]. Interestingly, 90% of SC6 samples mutated in genes 
that are related to immunoglobulins such as the IGHM and IGHV3 families.

Finally, we found NXPH1 is mutated in all SC7 samples and mutated only in 2% of 
samples in other subtypes. This protein forms a very tight complex with alpha neu-
rexins, a group of proteins that promote adhesion between dendrites and axons [51]. 
In addition, we identified 100% of SC7 samples also mutated in protein coding gene 
CATG00000086870, which was recently discovered by the FANTOMCAT consortia. 
Interestingly, this gene mutated in less than 1% of samples, who are in other subtypes. 
Moreover, using FANTOM5 expression atlas [52] we found this gene is highly expressed 
for colorectal tissue. NKAIN2 is known as a tumor suppressor in Chinese prostate can-
cer [53]. This gene also mutated in all 21 Chinese samples of SC7 but only 2% of samples 
in other subtypes. EIF3H as a CRC potential diagnostic biomarker [54] is mutated in all 
SC7 samples but in only 3% of samples in other subtypes. EIF3H is a cancer-related gene 
and suggested as a CRC potential diagnostic biomarker [54]. We provided a ranked list 
(based on significant P-value) of the candidate genes in each subtype as the Additional 
file 1: Table S5.

Mutational signature

Alexandrov et al. identified that mutational signatures in cancer genomes demonstrate 
different biological mechanisms [21, 55]. They identified 30 distinct mutational signa-
tures of all cancers (mostly from whole exome sequencing) in which four (i.e. 1, 5, 6 and 
10) are associated with CRC [21]. These CRC mutational signatures are associated to 
age of patients (signature 1), defective DNA mismatch repair (signature 6), and altered 
activity of the error-prone polymerase POLE (signature 10) [56]. To find which muta-
tional processes are active in the CRC subtypes, we used the CANCERSIGN tool [57] to 
identify mutational signatures (see the method section). Using whole genome sequencing 
data from ICGC CRC samples, we identify seven signatures overall for the CRC patients 
(Fig. 3a).

Using the Pearson correlation, we calculated the correlation between identified signa-
tures in our study and Alexandrov’s signatures (in Additional file 2: Figure S7). As shown 
in this figure, there are strong correlations between the Alexandrov’s signatures, and 
those signatures identified in this study. A linear combination of signatures 1 and 3 in 
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our study (Fig. 3a) represented COSMIC signature 10 which is also associated with CRC. 
Signature 2 in our study was a common signature between all subtypes (Fig. 3b) and Sig-
nature 4 in our study is similar to signature 5 of Alexandrov (associated to CRC but no 
known etiology), while it has a greater exposure in SC5. In addition, Signature 5 in our 
study is similar to signatures 16 and 26 Alexandrov which are not associated to CRC. 
The etiology of signature 16 is unknown, while signature 26 is possibly associated with 
defective DNA mismatch repair [56]. This signature has greater exposure in SC4 and 
SC5. Signature 6 in our study is similar to signature 6 Alexandrov, which is associated 
with CRC. This signature has greater exposure in SC3 and SC7 and possibly is associ-
ated with defective DNA mismatch repair [56]. Finally, signature 7 in our study is similar 
to signature 19 Alexandrov and is associated with pilocytic astrocytoma. Note that the 
exposure of signature 7 is greater in SC2, SC3 and SC6 (see Fig. 3b for more details). A 
detailed investigation of mutational load in coding and non-coding genes is also pre-
sented and discussed in the next section.

Mutational rates of protein coding and lncRNA genes

We then investigated the mutation rate in protein-coding genes and lncRNAs of the 
clusters, which can provide important insight into their overall impact on different CRC 
subtypes. This can help us to understand if our identified subtypes are different with 
respect to their mutational load in coding and non-coding genes. As shown in Addi-
tional file 2: Figures S8 and S9, the mutation rate in coding and non-coding genes are dif-
ferent between subtypes. Interestingly, our analysis shows that SC5 is a hyper-mutated 

Fig. 3  Cancer mutational signature analysis. We used the CANCERSIGN tool to identify mutational signatures 
in each subtype. Using CANCERSIGN and WGS somatic mutation form the CRC samples, we identified seven 
mutational signatures where were very similar with those identified by Alexandrov et al. [21] except the 
signatures 1 and 3 that the linear combination of them can represent the signature 10 COSMIC (Alexandrov 
et al.). The exposure matrix for identified signatures are also provided as the Additional file 1: Table S11. The 
evaluation plot of deciphering 3-mer mutational signatures also provided in Additional file 2: Figure S11
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subtype (Additional file 2: Figure S8). In addition, as shown in Additional file 2: Figure 
S10, the mutational rate of long non-coding genes in subtype SC7 are much higher 
than other subtypes, suggesting a potential role for long non-coding RNA genes in this 
subtype.

We also investigate the difference between our identified subtypes with respect to the 
mutational load in different functional consequence or variant types (see the method 
section). Interestingly, we observe that mutations in some of the subtypes are enriched 
in different consequence types (Additional file  2: Figure S11). For example, missense 
variants have a greater fraction in SC1, SC2, SC3 and SC4, while intron variants have a 
greater fraction in subtypes SC5, SC6 and SC7 (Additional file 2: Figure S11). Interest-
ingly, there is almost no missense variant in SC7, and our analysis also shows that most 
of the mutations in SC7 are intron variant (57.7%) and intergenic region variant (21.6%). 
Moreover, unlike other subtypes, there is no synonymous variant in SC7. In SC6, most 
of the mutations are in intron and downstream gene. A summary of this analysis is pre-
sented in Table 1.

Gene‑motif differential analysis in each subtype

Our gene association analysis revealed that there are several genes that are significantly 
mutated in multiple subtypes. This observation encouraged us to investigate if muta-
tions in these genes have different motif preferences in each subtype. To do this, we 
investigated the mutations in tri-nucleotide motifs in the significant genes for each sub-
type. We found a considerable number of genes were significantly mutated in multiple 
subtypes, and that the mutations happened in different tri-nucleotide motifs. An exam-
ple of this phenomena is TP53 which was identified as a significant gene in both SC1 

Table1  Consequence types of mutations in the CRC subtypes

Consequence SC1 SC2 SC3 SC4 SC5 SC6 SC7

3_prime_UTR_variant 3.08 3.21 2.5 2.94 2.94 2.28 0.38

5_prime_UTR_premature_
start_codon_gain_variant

0.19 0.16 0.18 0.23 0.16 0.14 0.02

5_prime_UTR_variant 0.66 0.7 0.82 0.69 0.77 0.64 0.11

downstream_gene_variant 19.94 17.54 18.68 17.79 15.17 17.22 9.26

exon_variant 10.81 10.69 9.68 10.82 8.66 8.03 0.91

initiator_codon_variant 0 0.01 0 0 0 0 0

intergenic_region 0.18 0.06 1.45 0.15 2.67 5.56 21.58

intragenic_variant 0 0 0 0 0 0 0

intron_variant 14.65 15.46 24.61 12.63 27.78 31.56 57.41

missense_variant 23.4 25.98 16.5 25.95 20.87 11.97 0.38

splice_acceptor_variant 0.32 0.23 0.26 0.31 0.2 0.15 0

splice_donor_variant 0.33 0.36 0.27 0.43 0.11 0.14 0.01

splice_region_variant 1.18 1.22 1.04 0.94 1.16 1 0.06

start_lost 0.03 0.03 0.02 0.03 0.01 0.02 0

stop_gained 1.21 1.96 0.88 2.03 2.71 0.79 0.02

stop_lost 0.02 0.01 0.01 0.01 0.03 0.01 0

stop_retained_variant 0.01 0.02 0.01 0.01 0.01 0.01 0

synonymous_variant 10.74 10.56 8.96 11.9 5.92 7.02 0.22

upstream_gene_variant 13.26 11.8 14.14 13.13 10.83 13.47 9.64
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and SC5. However, the gene was identified to have different gene-motif patterns in each 
of these subtypes. The preference tri-nucleotide motif of mutations in SC1 is CT-G.G, 
however, the preference tri-nucleotide motif of mutations in SC5 is CT-T.G. KRAS is 
another example where most of its mutations occurred in CT-A.C and CT-G.C for SC1; 
CA-A.C and CT-A.C for SC2; CT-A.C, CA-A.C, CT-G.C for SC3; CT-G.C, CA-A.C, 
CT-A.C for SC4; CT-G.C, CT-G.T, and TG-A.T for SC5; CT-A.C, CT-G.C, CA-A.C for 
SC6; and CT-A.C, CA-A.C, CA-C.A for SC7 (Fig. 4a). A full list of genes that signifi-
cantly mutated in multiple subtypes but in different tri-nucleotide motifs, is provided in 
Additional file 1: Table S6.

Mutation rate in transcripts

We then investigated the difference between our identified subtypes with respect to the 
mutational load in different transcripts of the coding genes. Our analyses revealed that 
for many of the candidate coding genes, the mutations occurred in specific transcripts 
of the genes (Fig. 4b and Additional file 2: Figure S12). Interestingly, 68.11% of coding 
genes were significantly mutated in multiple subtypes. However, the mutations enriched 
in different transcripts of the genes (Additional file 1: Table S7). For example, gene TTN 
is significantly mutated in all CRC subtypes except SC7. Interestingly, 62% of samples in 
SC5 mutated in transcript ENST00000436599 which is much higher than other subtypes 
(7%, 1%, 6%, 5% and 12% for subtypes SC1, SC2, SC3, SC4, and SC6, respectively). In 
addition, for gene PCDHA2 that is significantly mutated in subtypes SC1, SC5, and SC7 
we observe different patterns. The De Novo mutations for this gene in SC5 are enriched 
in ENST00000378132 and ENST00000520672, while in SC1 and SC7 the mutations are 
enriched in transcript ENST00000526136 (Additional file 2: Figure S12). We provide a 

Fig. 4  Enrichment of mutations in different motifs and transcripts. a Investigating the mutations in 
tri-nucleotide motifs of genes that become significant in multiple subtypes revealed a motif context 
specificity of mutations in each subtype. For example, TP53 becomes a significant gene in both SC1 and SC5. 
However, the preference tri-nucleotide motif of mutations in SC1 is CT-G.G, while in SC5, it is CT-T.G. b Our 
analysis also shows that for some of the candidate genes, the mutations are enriched in a specific transcript 
of the gene
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list of candidate genes with enrichment of De Novo mutations in different transcripts of 
the gene in Additional file 1: Table S7.

Gene ontology and pathway analyses

Next, we conducted gene ontology (GO) and gene pathway analyses to investigate 
whether candidate genes in the identified subtypes are associated with any specific 
gene ontology or pathway term [58–60]. To do this, we chose 50 highly significant 
genes in each subtype and performed GO and pathway analyses using WebGestalt [61] 
(see method section) for each subtype. As shown in Fig.  5a several unique and com-
mon GO terms have been identified for each subtype. For example, “cellular response 

Fig. 5  Gene ontology and pathway analysis. a Gene Ontology analysis. Applying the WebGestalt tool [61] 
on 50 highly mutated coding genes in each subtype revealed several unique and common gene ontologies 
in the CRC subtypes. For example, “cellular response to interferon-gamma (GO:0071346)” is only associated 
to SC3. Also “Cell development (GO:0048468)” and “regulation of cell motility (GO:2000145)” ontologies are 
uniquely associated to SC7. A full list of ontology terms that were significantly associated with each subtype 
is provided in Additional file 1: Table S9. b Gene pathway analysis. Our gene pathway analysis also revealed 
30 pathways that were associated with subtypes SC3, SC4, and SC6. Again, we identified several unique 
pathways associated to different subtypes. For example, SC4 has a unique pathway called “Signaling by 
FGFR3 point mutants in cancer” that has been previously associated with urothelial, breast, endometrial, 
squamous lung cancers and ovarian cancer [62]. More details about gene pathway analysis is provided as the 
Additional file 1: Table S9
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to interferon-gamma (GO:0071346)” was only associated with SC3, “cell development 
(GO:0048468)” and “regulation of cell motility (GO:2000145)” unique to SC7, and “self- 
proteolysis (GO:0097264)” uniquely associated with SC5. Conversely, “cell adhesion 
(GO:0007155)” is an example of common gene ontologies enriched in subtypes SC1, 
SC4, and SC5, and “regulation of postsynaptic membrane potential (GO:0060078)” com-
mon in SC2, SC5, and SC7. A full list of ontology terms that significantly associated with 
each subtype is provided in Additional file 1: Table S8. In addition, pathway analysis also 
identified 30 pathways that are associated with subtypes SC3, SC4, and SC6 (Fig.  5b). 
Similar to GO terms, we also identified several unique pathways associated with differ-
ent subtypes. For instance, SC4 has a unique pathway called “Signaling by FGFR3 point 
mutants in cancer” that has been previously associated with urothelial, breast, endome-
trial, squamous lung cancers, and ovarian cancer [62]. Additionally, “Interferon gamma 
signaling” are represented in SC3 and SC6, which can be used in immunotherapy for 
CRC [63]. More details are provided as the Additional file 1: Table S9.

Clinical report and survival analysis

We also examined clinical data, such as gender, ethnicity, and regions that were avail-
able for a subset of the CRC samples. Our findings demonstrate interesting patterns in 
our data allocated in each subtype. For example, 52.3% of the patients in SC7 are female 
while 76.9% and 60.9% of patients are male in SC5 and SC3, respectively (see more detail 
in Fig. 6a and Additional file 1: Table S10). Geographical differences were also observed 
in each subtype. For instance, 21 patients in SC7 are from China and 68.2% of patients in 
SC1 are from USA (e.g., COAD project; Fig. 6b). Additionally, our analysis also showed 

Fig. 6  Gender and geographical distributions of the patients in each subtype. a Gender distributions. Our 
gender analysis shows that 52.3% of the patients in SC7 are female while 76.9% and 60.9% of patients in SC5 
and SC3 are male, respectively. b Geographical distributions. Our geographical distribution analysis shows 
that 21 patients in SC7 are from China and 68.2% of patients in SC1 are from USA (e.g. COAD project)



Page 14 of 24Dashti et al. BMC Bioinformatics          (2022) 23:138 

that samples in SC5 are older than those in SC2. This observation is shown by the his-
togram plot for each subtype based on the age in Additional file 2: Figure S13. We also 
observed that most of the samples in SC4 had cancer, at the proximal and distal of the 
colon, especially in the rectum and cecum and ascending colon sites.

Considering the molecular data for a subset of CRC samples, we also performed a sur-
vival analysis using “survival” [64] and “survminer” [65] R packages. In many cases, we 
had the data of how many days patients were alive after joining this study for sample col-
lection. We created survival curves for all subtypes using the Kaplan–Meier method [66] 
and compared the survival curves using log-rank test and recorded those with P-value 
less than 0.0001. Our survival analysis illustrates that SC3 patients have more chance 
to survive and SC7 has a short survival duration compared to the other subtypes. The 
Kaplan–Meier plot for survival and the P-values of a log rank test has been shown in 
Fig. 7 and Additional file 1: Table S12.

Discussion
Classification of cancers into subtypes is essential because it informs personalized medi-
cine therapeutic and/or prevention strategies. The CRC Subtyping Consortium intro-
duced four consensus molecular subtypes (CMS1–4) for CRC, based on gene expression 
profiles of tumors. Recently, a study by Lochlan et  al. [18] investigated genome-scale 
DNA methylation in a large cohort of CRC patients and revealed five distinct CRC sub-
types of colorectal adenocarcinomas with different therapeutic biomarkers for CRC 
treatment. This highlights the need for a better and more inclusive subtype classification 
approach to enable biomarker discovery and thus inform drug development for CRC.

Mutation is the hallmark of cancer genome, and many studies have reported can-
cer subtyping based on the type of frequently mutated driver genes [12, 21, 67], or the 

Fig. 7  Survival analysis. Using the Kaplan–Meier method we compared survival curves of the CRC subtypes. 
The analysis illustrated that SC3 patients have more chance to survive and SC7 have short survival duration 
compared to the other subtypes
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proportion of mutational processes [21], however, none of these existing cancer subtyp-
ing methods consider these features simultaneously. In other words, the sequence con-
text of somatic point mutations in driver genes have not been taken into consideration 
in cancer subtyping and biomarker discovery. Here, we integrated these two features 
(frequently mutated genes and sequence context of mutated sites) and implemented a 
bioinformatics pipeline for CRC subtyping using the ICGC whole genome and whole 
exome somatic point mutations. Our analyses revealed 3131 driver gene-motifs, which 
were mutated at a significantly higher level in CRC samples compared to other cancer 
samples. Using 3131 gene-motifs as features, we identified seven unique CRC subtypes, 
which are associated with distinct symptoms and genotypes in CRC. As Fig.  2 shows 
some of the gene-motifs are subtype specific. For example, we found that 43% of SC7 
samples had ACG-to-ATG mutations in HDAC9, while other subtypes had no mutation 
in this motif within HDAC9. 40% of SC5 samples had TCG-to-TTG mutations within 
HDAC9, but no other subtypes had a significantly elevated mutation in this gene-motif 
(i.e. maximum rate of mutation for other subtypes in this gene-motif was 5%). Another 
example is BRAF for which we found that 41% of samples in SC1 had GTG-to-GAG 
mutations. This is significantly higher than other CRC subtypes (1%, 11%, 2%, 0% 8%, 
and 0% for SC2 to SC7, respectively). Interestingly, none of the samples from SC5, which 
is a hypermutated subtype, had mutations in BRAF (Additional file 1: Table S3). Impor-
tantly, in some cases, most of the subtypes are significantly mutated in a gene, but these 
mutations are enriched in different trinucleotide contexts. For example, Grb2-associated 
binder 1 (GAB1) is a docking protein, which is strongly implicated in CRC. This gene 
is significantly mutated in SC1, SC3, SC5, SC6 and SC7. However, the mutations are 
enriched in CCG-to-CTG for SC1 (31%), ACT-to-ATT for SC3 (100%), TCT-to-TAT for 
SC5 (35%), TTG-to-TCG for SC6 (67%), and GCA-to-GTA for SC7 (100%). These data 
suggest that, the sequence context of mutations within driver genes (frequently mutated 
genes) contains invaluable information that can be used to accurately identify CRC 
subtypes.

Our investigation of coding and lncRNA genes also revealed that there is a different 
mutational load for coding and lncRNA genes in CRC subtypes (Additional file 2: Fig-
ures S8 and S9). Our analysis indicated that 74% of cancer mutations fall within lncR-
NAs, yet their role in driving tumorigenesis is not well understood. Our data showed 
that mutational load in some lncRNAs can be as high as protein coding genes (Addi-
tional file 2: Figure S10). Specifically, for the CRC subtype SC7, which includes tumors 
with less mutated genomes, the average rate of mutations for coding and lncRNA genes 
are very similar (Additional file 2: Figure S10). Similar to protein coding genes, somatic 
mutations in highly mutated lncRNAs are also sequence context specific. For example, 
we show that the well-known CRC-associated lncRNA TTN-AS1 is highly mutated in all 
subtypes, except SC7. We found that mutations CTG- > CGG, CTG->CAG, and CAT-
>CTT are enriched in SC1, SC3, and SC5, respectively (Additional file 1: Table S6).

Additionally, our analyses revealed that for 68.11% of candidate coding genes, somatic 
mutations were enriched in different transcripts of the genes (Fig. 3b; Additional file 2: 
Figure S12, and Additional file 1: Table S7). To our knowledge, this result represents the 
first account of transcript-specific mutations in cancer and may provide a new insight 
into cancer driver mechanisms.
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We found that, on average, all CRC subtypes had small levels of mutational signatures 
1 and 3 (Fig. 3a), both of which reported for CRC patients [56]. Our data indicate that 
only a small subset of tumors within each subtype show highly increased levels of these 
two types of mutations. It has been suggested that the mutational process underlying 
these signatures (a combination of these signatures represents COSMIC signature 10) is 
altered activity of the error-prone polymerase POLE [56]. We also found that mutational 
signature 2 in our study (Fig. 3b) is common among all CRC subtypes. This signature is 
reported to be associated with an endogenous mutational process derived by sponta-
neous deamination of 5-methylcytosine. In contrast to Signatures 1, 2, and 3, some of 
the other signatures showed significantly different levels in different CRC subtypes, sug-
gesting different molecular mechanisms behind each subtype. For example, Signature 5 
showed greater exposures in SC4 and SC5. There is no known etiology for this signature. 
Signature 6 exhibited greater exposures in SC3 and SC7. This signature is likely associ-
ated with defective DNA mismatch repair [56]. Altogether, some but not all the differ-
ences present in tumors in terms of the extent of mutational processes are reflected in 
our subtypes.

With genomic medicine emerging as a routine part of the health system, tumors muta-
tional profiling will help to better understanding of the underlying genetic causes of 
cancers. The current treatments options are usually based on assessing single gene muta-
tions. Our study and the proposed pipeline to identify CRC subtype associated genes 
and the context of the mutations within these genes (either by identifying gene-motifs 
or mutation signatures) could help more precise diagnoses by assigning patients to avail-
able therapeutic targets or ongoing clinical trials targeting specific mutations; and iden-
tifying subtype-specific pathways that might be useful treatment targets for therapeutic 
intervention.

Some of the pathways we identified in the CRC subtypes, including cell cycle, apop-
tosis and DNA damage response, are frequently seen and mutated in cancer. However, 
each CRC subtype may have still their specific targeted treatment options as subtype 
specific pathways also seen for each subtype. For example, we identified “Signaling by 
FGFR3 point mutants in cancer” as potential targets for treatment of the SC4 subtype. 
FGFR3 signaling has been previously associated with multiple cancers [62]. In addition, 
several cancer-related pathways for which targeted treatment options are available are 
specifically mutated in our identified subtypes detailed in Additional file 1: Table S9. By 
considering somatic mutations in all of the genes associated with our CRC subtype-spe-
cific mutation of signaling pathways, we might be able to find additional cancer patients 
who could benefit from targeted treatment options. One the one hand, the pathways 
identified in our analysis are mutated in a large number of CRC patients, and on the 
other hand, targeted treatment options are currently available for most of these path-
ways. We therefore believe that these treatment options are worthy for further investiga-
tion to develop better therapeutic targets.

Our survival analyses show that subtype 7 (SC7) is associated with a poor outcome 
(Fig. 7). There are 100 gene-motifs (from 13 different genes) and at least 50% of samples 
in SC7 showed significantly elevated mutations in these gene-motifs, while other sub-
types had no mutation (or showed very mutations with low frequencies) in these gene-
motifs. Interestingly, most of these 13 genes (KMT2C, DPP6, PRIM2, SDK1, PTPRN2, 
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CNTNAP2, CSMD1, CTNNA3, MAGI2, EYS, HLA-DRB1, DLGAP2, FANK1) are known 
to be associated with cancer. For example, somatic mutation in Cub and Sushi Multi-
ple Domains 1 (CSMD1) gene is associated with an early age of presentation in CRC 
individuals [68]; or mutation in PTPRN2 (Receptor-type tyrosine-protein phosphatase 
N2) can promote metastatic and cellular migration in breast cancer cells through lipid-
dependent sequestration of an actin-remodeling factor [69]. Our analysis also showed 
that SC2 and SC4 had very similar survival curves. Importantly, the gene-motif profiles 
of these two subtypes are also very similar (Fig. 2). For example, all samples in both SC1 
and SC4 subtypes had mutation in the processed transcript XXbac-BPG254F23. Inter-
estingly, none of samples in other subtypes had mutation in XXbac-BPG254F23 (Addi-
tional file 1: Table S6).

In-silico techniques have been recently used widely to investigate biomarkers includ-
ing genomics biomarkers [10, 11, 17, 19, 70–80]. In this study, we developed an in-silico 
technique in integration with novel gene-motif concept to study mutational patterns 
in colorectal cancer. Both the proposed method and the gene-motif concept have the 
potential to study genomic biomarkers and potential therapeutic options in other 
cancers.

Conclusions
In conclusion, with genomic medicine emerging as a routine part of the healthcare sys-
tem and cancer individuals now frequently sequenced for specific sets of mutations, 
a large amount of whole genome and whole exome sequencing samples have become 
available for analysis. Accurate classification of cancer individuals with similar muta-
tional profiles may help clinicians to accurately identify individuals who could receive 
the same types of treatment. Here, by application of a unique statistical pipeline and a 
novel “gene-motif” concept, and integration of somatic mutations from the ICGC con-
sortium, we have identified seven subtypes with strong biological characterization in 
CRC. Our list of subtype-specific genes provides a better understanding of the underly-
ing genetic causes of CRC. More importantly, for the first time we provided a system-
wide analysis of the enrichment of de novo mutations in a specific motif context of the 
genes in CRC. By knowing the genes and motif associated with the mutations, a per-
sonalized treatment plan can be developed that considers the specific motif context of 
mutations within responsible genes. Lastly, the pipeline developed in this study is freely 
available and will be useful in the analysis of cancers and in narrowing down the causa-
tive genes within each cancer.

Method and material
Overall design

The flowchart of our pipeline is shown in Fig. 1. At the first step, mutations are anno-
tated with the FANTOMCAT robust gene list. In the next step, we find a distribution 
representing somatic mutations data and compute the P-values for each gene and gene-
motif based on negative-binomial and beta-binomial distributions, respectively and 
identify significant genes and gene-motifs using a standard threshold of P-value < 0.01. 
Then, we use model-based clustering to identify subtypes in the CRC samples based on 
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significant gene-motifs. Finally, we identify biomarkers and interpret biological charac-
terization in each subtype.

ICGC dataset

We used the ICGC dataset [24], which contains data from 19 types of cancers includ-
ing CRC. It contains 536 patients with CRC across three projects (READ-US, COAD-
US, COCA-CN) from China and USA where 45% are female and 55% are male. 96% of 
these data were captured by whole genome sequencing (WGS) technology and the rest 
of them by non-NGS technology. We have downloaded the mutational profiles of CRC 
samples in a “vcf” format from ICGC data portal. But in short, raw sequencing data were 
processed using bcl2fastq tool, and then mapped to the human reference genome hg19 
using BWA-mem v0.7.Sa tool. GATK BQSR and Haplotype Caller v3.4.46 and Strelka 
v1.0.14 were also used to call somatic mutations.

FANTOMCAT coding and non‑coding genes list

We used a robust gene list of the FANTOMCAT consortium which contains 21,069 
protein-coding genes and 27,919 lncRNAs. FANTOMCAT used cap analysis of gene 
expression (CAGE) technology to conduct high-confidence coding and non-coding 
genes. These genes are sturdily approved by transcription initiation evidence. Therefore, 
we decided to annotate mutations based on this dataset instead of other consortiums.

Statistical pipeline to identify significant genes

We identify coding and non-coding genes that significantly mutated in the colorectal 
samples in the following manner. We first count the number of samples that has muta-
tion in each gene. We next use a negative-binomial distribution as the best fit distribu-
tion for our data (Additional file 2: Figure S2) to identify significant genes. Finally, we 
calculate the P-value for each gene using the following formula:

Using the mentioned pipeline, we identify 382 coding genes (listed in the Additional 
file  1: Table  S1) that significantly mutated in the colorectal samples. We also identify 
beta-binomial distribution as the best fit compared to other methods to identify gene-
motifs that significantly mutated in the colorectal samples. Additional file 2: Figure S3 
shows the fit diagrams of different distributions on the gene-motifs. We then compute 
the P-values for each gene-motif as follow:

where B(α,β) is the beta function. Using the mentioned pipeline, we identify 3131 sig-
nificantly mutated motifs within 382 significant coding genes (listed in Additional file 1: 
Table S2). We call this concept “gene-motif”. Note that we use the R package “VGAM” 
[26] to perform the above analyses.
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Clustering

Here we use model-based clustering to identify subtypes in colorectal samples. 
Model-based clustering is one of the density-based unsupervised machine learning 
methods which is non-parametric. Hence, it does not consider any assumption for the 
number of available clusters. This feature is suitable here, as the number of subtypes 
of CRC is unknown and it is better to do clustering without any assumptions. From 
a statistical perspective, each sample is independent with respect to its number of 
mutations. Hence, via the central limit theorem we expect that if subtypes are cor-
rectly identified, the mutational load in determined features come from a Gaussian 
distribution. Model-based clustering automatically fits the best Gaussian distribution 
to samples, and finds the optimal number of clusters [29]. Here, we use model-based 
clustering in a hierarchical manner. Using the clustering method, we identify two 
clusters with 450 and 83 patients at the first clustering level. These two clusters in 
turn are divided into smaller and still distinguishable subgroups in the second clus-
tering level.

Biological characterization

Mutational signature analysis

We also use CANCERSIGN [57] to identify signatures that are represented in our 
CRC samples. CANCERSIGN uses a non-negative matrix factorization (NMF) algo-
rithm to identify optimal number of signatures. As shown in Additional file 2: Figure 
S14, in overall, we identify seven signatures in CRC samples. The exposure matrix for 
the identified signatures are also provided in Additional file 1: Table S11.

Gene, lncRNA, and transcript rates analysis

We use Fisher’s exact test to identify coding and lncRNA genes that significantly 
mutated in each subtype. To do this, we make a contingency table as follow: num-
ber of CRC samples with mutation in the gene; number of CRC samples that had 
no mutation in the gene; number of samples with other cancer with mutation in the 
gene; number of samples with other cancers that had no mutation in the gene. We do 
the same process for transcripts to identify transcripts that significantly mutated in 
each subtype.

Consequence type of mutations

The consequence type of mutations from the ICGC dataset are used to count the con-
sequence type of each mutation. We then calculate the relative frequency of conse-
quence types in each subtype.

Gene ontology analysis and gene pathway analysis on the significantly mutated coding genes

We use the gene ontology analysis tool WebGestalt to observe the over-representa-
tion of gene ontology and pathways associated with significant genes in each subtype, 
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separately. We use default values for WebGestalt parameters (FDR < 0.05, 2000 per-
mutation, minimum gene = 5). We also use the top 50 genes associated with each sub-
type as the candidate genes.

Literature search for non‑coding interacting genes

Our literature searches were focused on human studies and English language publica-
tions available in the PubMed, Scopus, and Web of Science. Both Medical Subject Head-
ings (MeSH) terms and related free words were used in order to increase the sensitivity 
of the search. We also used data and text mining techniques to extract additional related 
studies [76, 79, 81–90]. A decision tree approach and a knowledge-based filtering system 
technique have been also used to categorize the texts from the literatures search [91, 92]. 
The search terms included "noncoding RNA" or "lncRNAs" or "genes name + cancer". 
"BC" or "breast carcinoma" and "breast neoplasm".

Clinical information

We downloaded clinical data for the CRC samples from ICGC (http://​cancer.​digit​alsli​
dearc​hive.​net). Two metadata files “sample.tsv” and “donor.tsv” have been used for anal-
ysis of gender and age of patients.

Survival analysis

We use the Kaplan–Meier method to conduct survival curves for all subtypes. We use 
“survival” [64] and “survminer” [65] R packages to conduct Kaplan–Meier curves and 
obtain the significance of survival prediction for subtypes. Long-rank test was also 
applied to obtain the P-value for survival analysis.
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mutated gene-motifs. Figure S4. An overview of gene-motifs concept. We first identify 382 significantly mutated 
coding genes in colorectal cancers (candidate genes). We then used Fisher exact test to identify those motifs that 
significantly mutated within candidate genes. Figure S5. Selected 3131 features in two most significant PCAs before 
scaling. This plot shows two principal components (PCs) that demonstrates the potential discrimination that can 
be obtained from our identified features. Figure S6. Illustration of patients in two first PCAs of features. Distribution 
of CRC samples through 3131 gene-motif features by PCA analysis. Figure S7. Correlation between our identified 
signatures and Alexandrov’s signatures in each CRC subtype separately. Figure S8. Mutational load of protein coding 
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with mutation in a lncRNA. Figure S10. Mutation rates in coding and lncRNA genes in each subtype. Red color 
indicates average number of mutations in lncRNA genes and green color indicates average number of mutations 
in coding genes. Figure S11. Consequence type analysis. Figure shows fraction of mutations in different conse‑
quence types for each subtype. Figure S12. Mutation rate in transcripts in genes TTN, PCDHA2, BRAF, APC. Figure shows 
mutational rate in different transcripts of genes TTN, PCDHA2, BRAF, and APC across the CRC subtypes identified in 
this study. Figure S13. Analysis of age distribution of CRC samples in the identified subtypes. Figure S14. Evaluation 
plot for deciphering 3-mer mutational signatures in the CRC samples. We used the CANCERSIGN tool [57] to identify 
mutational signatures in CRC samples. The evaluation plot of deciphering 3-mer mutational signatures become 
optimized for seven signatures.
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