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A statistical tool for comparing
seasonal ILI surveillance data

René Ferland & Sorana Froda

In this paper, we consider the yearly influenza epidemic, as reflected in the seasonal surveillance
. data compiled by the CDC (Center for Disease Control and Prevention, USA) and we explore a new
Accepted: 21 December 2018 : methodology for comparing specific features of these data. In particular, we focus on the ten HHS
Published online: 05 February 2019  : (Health and Human Services) regions, and how the incidence data evolves in these regions. In order to
. perform the comparisons, we consider the relative distribution of weekly new cases over one season
and replace the crude data with predicted values. These predictions are obtained after fitting a negative
binomial regression model that controls for important covariates. The prediction is computed on a
‘generic’ set of covariate values that takes into account the relative size (population wise) of the regions
to be compared. The main results are presented in graphical form, that quickly emphasizes relevant
features of the seasonal data and facilitates the comparisons.
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The yearly flu season in North America (defined as starting in the 40th week of each year, i.e. the first full week
in October) has an important yearly impact, both in morbidity and mortality. Since October 1997 the Center for
Disease Control and Prevention (in short CDC) has systematically collected data on the flu season through various
channels, one being the weekly new cases of influenza like illness (abbreviated as ILI) that are reported by the U.S.
Outpatient Influenza-like Illness Surveillance Network (abbreviated ILINet). As detailed in', these are volunteer
outpatient healthcare providers (according to!, in the past few years, there were more than 2800 such practices); the
enrollment covers all 50 states, Puerto Rico, the District of Columbia, and the U.S. Virgin Islands. Every Tuesday,
these health practitioners report the total number of patients seen the previous week (i.e. Sunday to Saturday) for any
reason (‘visits’) and how many patients had influenza-like illness (ILI). In! the ILI is defined as fever (temperature
of at least 100 deg. F or 37.8 deg. C) and a cough and/or a sore throat, when there is no other known cause for the
condition. The providers also indicate the age group (0-4 years, 5-24 years, 25-49 years, 50-64 years, and >65 years)
of each patient. Such surveillance data are made public, lately through the Flu View tool posted on the CDC website.
On this site, one can access national data and two types of regional data, namely: as distributed in ten HHS (Health
and Human Services) regions or in nine census divisions. In this paper, we consider the ten HHS regions (the full
list is available as Supplementary Information). During the first four seasons, i.e. from 1997-1998 to 2000-2001, the
CDC posted the data for the first 33 weeks of the flu season only (i.e. from October till end of May). The definition
of age groups slightly changed over time as well, as before the 2009-2010 season there were only 4 age groups (0-4
years, 5-24 years, 25-64 years, and >65 years) but this has no impact on the present analysis.

Given the nature of the surveillance data, the CDC is noting that it can be inappropriate to compare (across
regions or years) either the total number of new cases or their incidence among visits. One such reason for ren-
dering comparisons difficult is that the type of participating health practices can vary across regions, e.g. the
proportion of pediatric ones can be more important in some areas. When comparing years, the difficulty comes
from the fact that the number of participating health providers has steadily increased over time, and thus there
is also an increasing trend in the reported cases. One could remedy this by working with incidence rates; on the
other hand, even in the same season these incidence rates are still quite variable (an example of such crude data
is given in the last section). In its published graphs (national and regional) the CDC is weighting the observed
incidence rates by a factor that takes into account the population size but the final values are not qualitatively
different from the crude data.

This being said, there has been a genuine interest in the literature to assess the evolution of flu epidemics over
time and space, and perform various comparisons, across regions, cities, and even countries. If we restrict our
attention to the flu season, i.e. we do not consider the pandemic years, we can note two major research direc-
tions: either to compare the data collected by health agencies (viewed as benchmark or golden standard) with
the ones produced by Google, Twitter or other social media as in*~ or, indeed, to compare the seasonal evolution
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of epidemics as reported by various national or regional health agencies, as in®%. These last authors are mainly
preoccupied with the time synchrony of epidemics and have used time series fitting techniques. Moreover, some
authors, e.g.’, deal with mortality data rather than disease incidence. Another area of active research is to explore
alternative ways of performing influenza surveillance, by relating traditional influenza surveillance systems to
other measurement methods, for example the total number of specific medication prescriptions, as in® or'°.

In this paper, we take a different view from the above authors as we propose to treat time as a categorical vari-
able: we consider k = 33 classes (first 33 weeks of the flu season, i.e. from the first week in October until the last
week in May). This choice is justified as these 33 weeks are reported in all seasons since 1997 and in every season
most flu cases are declared before May. Further, we change the focus of the analysis, as we consider comparing the
relative distribution of the weekly total number of new cases, or how the seasonal new cases are spread among the
weeks of a given flu season. In other words, this comes to dividing the weekly number of new cases by the total
case count over that season and comparing the resulting weekly proportions. One could compute these propor-
tions based on the crude data but the CDC expresses reservations and adds cautionary notes on performing
comparisons based on this type of crude data. To illustrate this point, assume that we want to compare the pro-
portion of ILI cases in two regions, during the same week, and in each region we deal with two age groups.
Further, assume that the two age groups are distributed as (r, 1 — ) in Region 1 and (,, 1 — r,) in Region 2; for
the sake of the argument, let the first age group be “young” (children) and more prone to falling ill. Further,
assume that the proportion of cases in each age group is the same in both regions, with p the proportion in age
group “young’, q in the other age group, and p > g. Then, the difference in the regional proportion of cases, 7,
,, depends only on the age distribution inside each region, since:

m=p-ntqg 1-n=F-q9 ntq<@p—-9g ntqg=m ifrn<n (1)

m=p-ntq-0-n=pP-q -n+tq=p—-q -nt+tqg=mn if n=rn ()

Thus, in equation (1) the proportion 7, in Region 2 is higher due to the over representation in Region 2 of the
age group that has a higher proportion p of cases. This over representation can be due to factors related to the dis-
ease but also to the way the data are collected, which is one of the caveats noted by the CDC. Indeed, if we base the
analysis on crude proportions the following can happen: in one region there could be more pediatric participating
practices and thus ILI cases that are children (age group “young”) could be over represented in this region and
convey a “false” impression, based on an inequality like the one in equation (1). Of course, all this is a conceptual
argument that can be applied when considering other factors.

Therefore, in order to address such issues, we propose to compare predicted proportions of weekly new cases
that are adjusted for important explanatory variables that control for the time trend and some heterogeneities in
the data. In this type of comparison, the impact of the regional fluctuations in the explanatory variables is con-
trolled. Indeed, if we consider two estimated regional functions #; = f.(r, u, v, ...), j = 1, 2 (where r, u, v, etc
are explanatory variables) and evaluate them at the same values of these variables (in particular the proportion »
defined above), then the inequality #; < 7, is not determined by the specific value of r (or u, v etc) but mainly
reflects the difference in the flu progress between regions. The mathematics of how this is achieved in the gener-
alized linear approach considered here (see next section) is too complex to be summarized analytically but one
can give an elementary illustration on the difference between crude and predicted values in the case of simple
linear regression (weighted or unweighted): assume that, fori = 1, ..., n, one observes (x;, ) in Region 1 and
M- x; yi), A > 0in Region 2, and consider a linear fit § = a;, + bx, j = 1, 2, one for each region. In this case,
the intercepts a, = a, but the slopes differ and satisfy b, = b,/ X. Hence, the predictions for fixed values of x are
quite different in the two regions, although the observed Yoi=1...n values are identical. As for the chosen
explanatory variables in our application, we had to resort to the available information; we decided to take into
account the total volume of visits to the health provider (that accounts for the yearly fluctuation), the number of
participating practices (in order to account for the time trend over seasons), as well as the reported ILI cases that
are in the 0 to 4 years age group. This information is readily available (i.e. in the public domain) and plays a crucial
role in the seasonal distribution of new flu cases.

The details of our proposed comparison tool are given in the next section, while the difference between our
approach and a comparison of crude proportions is illustrated in the last section.

Method: Main Idea
The outpatient ILI data is based on reports made by the participating medical practices, which, at the national
USA level, increased steadily from about 200 to more than 2500 between 1997 and the present day. Therefore,
over time, there was a net increase in the reported number of visits and, in parallel, of reported cases; in Fig. 1 we
represent as function of time both the reported number of visits and the reported number of flu cases, ILI. The
data are in logarithmic scale and a smoother was used to indicate the trend.

In order to find a way of comparing the relative regional distribution of incident cases over one season we
propose the following methodology that takes into account this time trend, among other:

a. fitaregression model based on the regional data, collected from 1997 till the present; this gives 10 regional
prediction equations;

b. create specific ‘generic’ data sets, one for each region and each season, based on the same weekly distribu-
tionina particular season;

c. apply the regional prediction equation to the corresponding generic data set and compare the resulting
regional predictions.
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Figure 1. Trend of reported visits and ILI cases over 21 years. Logarithms of number of visits (full line) and
number of flu cases (dotted line) and their trend, in 21 flu seasons (33 weeks per season), from October 1997
until May 2018.

In the sequel, we explain in detail each step.

Step a. We start by fitting an appropriate regression model to the incidence rate of ILI cases, in each HHS
region; this rate is the total of newly diagnosed ILI cases divided by the number of visits in a given week of the flu
season. Thus, the main explanatory variable is the week (viewed as a categorical variable) and we propose to adjust
the fitting by controlling for two other explanatory variables: the total number of participating health providers
(as a proxy for the variation over time) and the total of ILI patients who are in the 0-4 age group (as a proxy for
the number of pediatric practices among the surveillance clinics). An equivalent formulation is to regress the total
number of cases on three explanatory variables, with the number of visits added to the previous two regressors.
More precisely: we deal with count data (new ILI cases in a specific week) and we propose to fit a negative bino-
mial regression model, which is a standard approach in cases where over dispersion is present; see e.g.'’. In such
a count model, the link function is log E[Y], where in our context Y is the number of new ILI cases in a given
region in a specific week (for instance, in our data analysis, there were n = 660 weeks in total).

Thus, each regional model can be written as follows (two equivalent equations, we omit the subscript for
region):

33
logE[Yj] = log(Vj) + By + ﬁ11VIJ + ﬁzAj + ﬁ?,MjAj + Z'Ykljk
k=2

(3)
Y, 33
<logE viI= By + BiM; + BrA; + BsMA; + Z’Ykljk,
j k=2 (4)
where, for j = 1, ..., n(n weeks in all): Y] is the total number of ILI incident cases, Vj is the total number of visits,

M; is the number of participating medical practices, A; is the number of ILI cases aged 0 to 4, and
I, k =2, 3, ... 33 are the indicator variables corresponding to 32 weeks of one season (2nd to 33d); the first
week of the season is the base category. In the formulation given in equation (3), where we regress the total num-
ber of incident cases (in logarithmic scale), log(V)) is the offset. We suspected that the impact of the number of
health providers could be affected by the volume of participating pediatricians and therefore introduced the
interaction term between the variable that serves as a proxy for the latter (ILI cases that are in the 04 age group)
and the number of participating health practices. Our guess was confirmed by the statistical analysis as the inter-
action term improved the fit substantially.

Step b. As our aim is to compare the progress of the flu epidemic over a given season across regions, we sug-
gest to plot (or tabulate) the predictions given by the model(s) obtained above (in Step a.) as applied to a common
data set of explanatory variables. The challenge is in defining such a common data set, as the size of the regions
varies a lot; for instance, inserting the observed national values in the regional equation (3) does not make much
sense, as in some cases the national values can be twenty times bigger than the original regional values. Therefore,
we propose the following approach: for a given season, compute the national relative distribution (by week, out of
33 weeks) of each explanatory variable and further create ‘generic’ regional data by applying this relative distribu-
tion to the regional total (of each variable) over one season. For illustration, let the season be fixed and let M be
the national value and M;" be the observed regional value, during week k of that season, k = 1, 2, ..., 33. Then,
the generic value M "R of the explanatory variable M in region R is computed as follows:

33 MmN
MER=\SM| - 5 k=1,2,...,33.
=1 SilaM
This way, the relative distribution over one specific season of the ‘generic’ values M R k=1,2,...,33isthe

same in all regions, while their order of magnitude corresponds to the one of the original data in each region.
Step c. Once the ‘generic’ regional data set is created, insert it in equation (3) (one such equation per region)
which gives the corresponding predicted number of incident cases per week, Y. The seasonal predicted values
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Figure 2. Season 5: comparison of predicted relative proportions, regions grouped by population size.

Y, Yy, ..., Yy, are further divided by their sum and the resulting proportions by> Py -+ Py; can be graphically
visualized or otherwise compared.

A final important remark is that in such an approach one cannot expect to have curves lying above one
another for the whole time period, as they correspond to a relative distribution of new (incident) cases among
the 33 weeks of the season. For example, if at the start of the season the proportion of cases is higher in location A
than in location B, then later in the season this proportion is necessarily lower in location A than in location B, as
the seasonal proportions sum up to one in both locations.

Results
Our analysis is based on the data from #n = 660 weeks, chosen as follows: out of 21 seasons, we eliminated the
pandemic flu season (2009-2010); also, to gain power, we excluded the category “week 53 as there was such a
week only three times in 21 years. Further, we applied the method described in the previous Section: we per-
formed the negative binomial fitting based on n = 660 weeks and further we computed predictions. To illustrate
our methodology, we focus on some selected seasons. As can be noted in Fig. 1, one can divide the observed sea-
sons 1997-1998 to 2017-2018 into three regimes (we exclude the pandemic year 2009-2010), whether by volume
of medical visits or by number of new cases which mirror them: low, medium, high. These regimes do not corre-
spond to an increase in the number of cases, but are mainly a reflection of the fact that the number of participat-
ing health providers (and therefore the number of visits) has steadily increased over time. Thus, although our
fitting method takes into account this crucial factor, we found interesting to consider a typical season in each such
regime, and illustrate our method by considering the following three selected seasons: Season 5 (2001-2002, Tow’
regime), Season 10 (2006-2007, ‘mediun’ regime), and Season 16 (2012-2013, ‘high’ regime). Further, it must be
noted that the population of the ten HHS regions varies a lot, as some are much more populated than others. This
way we identified three region sizes: small (less than 5% of the USA population), medium (between 9.5% and
12.8% of the USA population), large (more than 15.5% of the USA population).

So, in order to facilitate the graphical comparison, we divided the ten HHS regions in three classes according
to two criteria:

» geographical location: East (regions 1 to 4), Central (regions 5, 6, 7), West (regions 8, 9, 10);
o size of regions, as described above: small (regions 1, 7, 8, 10), medium (regions 2, 3, 6), large (regions 4, 5, 9).

Further, we compared the regions inside each class.

The results are presented as curves as follows: Figs 2, 3 and 4 give the comparisons where the regions were
grouped by population size, while Figs 5, 6 and 7 give the comparisons where the regions were grouped by geo-
graphical location.

How can one read these results? Given the way the curves are created, we address the following matter: to
compare the seasonal progress of the epidemic across regions, when the weekly distribution of relevant explan-
atory variables is the same (in other words, under identical conditions for all regions). Thus, the procedure ren-
ders the regions much more comparable and performs a certain amount of smoothing, without hiding essential
features, like the bimodal character in Season 16. This is quite different from a multi-modality that may be an
artificial by-product of the way the cases are reported.

Finally, it is worth noting that'? have also considered the issue of rendering epidemic curves comparable; their
research proposes a way of aligning epidemic curves corresponding to laboratory tests data, in order to compare
influenza seasons.

Discussion and Conclusion

To summarize, the paper introduces two novel ideas in comparing the dynamics of an epidemic season: a first one
is to compare relative distributions rather than crude incidence rates and the second one is to resort to predicted
rather than crude data values. Our focus is mainly methodological, and our specific illustrations indicate that
the method can highlight features like the size of the difference between the number of new cases at the height
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Figure 3. Season 10: comparison of predicted relative proportions, regions grouped by population size.
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Figure 4. Season 16: comparison of predicted relative proportions, regions grouped by population size.
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Figure 5. Season 5: comparison of predicted relative proportions, regions grouped by geographical location.

of the flu season and at its beginning or end, and distinguish regions according to such features: e.g., in some
areas the epidemic has a very distinct peak, while in others it is more flat and cases are more evenly spread over
the season; also, the distribution of cases can be more skewed to the right (end of season) or left (beginning of
season). Another important finding is the different behavior across seasons. Given the seasonal aspect, in our
comparisons we decided to group the regions according to their geographical location but we found interesting
to take into account their population size as well, given the huge differences among regions; this led to a second
grouping. In the medium size group, we observe a combined effect of these two factors (size and location): region
6 is consistently different from the other two, and it turns out that its location is in the Central part of the U.S.A.,
while the other two medium size regions are on the East Coast. In contrast, the large size category exhibits homo-
geneous dynamics. This being said, other groupings could be considered depending on the focus and interest of
each practitioner. Also, note that the same methodology (for comparing predictions) can be applied to mortality
or hospitalizations data.
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Figure 6. Season 10: comparison of predicted relative proportions, regions grouped by geographical location.

o] <} e}
S S S
< | N — Regl < | Y —— Reg5 < | . —— Reg8
) " "7 Reg2 ) A -7 Reg6 )
S A SR S VoA S
=] = . S
g - g g
(=} (=] (=]
o () o
S S S
(=} (=] (=]
o o - o -
T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Week Week Week
(a) East (b) Central (c) West

Figure 7. Season 16: comparison of predicted relative proportions, regions grouped by geographical location.

It can be instructive to contrast the present method to a comparison of the crude data. For illustration, we
considered the four regions in the geographical location ‘East’ and the Season 5 (2001-2002) and analyzed them
in three different ways; see Fig. 8. In the top panel of Fig. 8 there are the observed incidence rates (which is similar
to what is reported by the CDC), while the other two panels represent seasonal proportions of observed ILI new
cases (middle panel) and predicted ILI new cases (bottom panel). We can note big differences among the three
approaches.

Indeed, in the middle panel we compute the relative distribution of the observed cases which corresponds in
spirit to the proposed fitting method (proportion of new cases per week, among all 33 weeks); thus, unlike the top
panel, in this middle panel the curves are better aligned; moreover, they necessarily have a similar order of mag-
nitude, as they are on the same scale, and represent values from 0 to 1. Still, even after taking relative proportions,
the curves in the middle panel (observed) and bottom panel (predicted) remain quite different. In the bottom
panel (predicted values) Regions 3 and 4 have very similar behaviors (unlike what is seen in the middle panel), all
three curves peak at about the same time (week 20 or mid-February), and the peak of Region 1 is higher than the
one in the other three regions; this makes sense as Region 1 comprises New England. An interpretation of such a
result is that in Region 1 there is a more pronounced peak in mid-season, while in the other regions the propor-
tions of new cases evolve in a more even way. Applying this comparison methodology at local levels (counties,
e.g.) may prove useful in planning health resources at specific times of the year. As noted above, in other seasons
(like season 16 for example) the predictions can have a much more jagged aspect.

Another comment is on the variables that were retained in equation (3): our main concern was to avoid
over-fitting, given the large number of degrees of freedom corresponding to the week factor. This being said, the
empbhasis of the paper is on the comparison methodology, and not on proposing the best model for this kind of
data; moreover, the available information on relevant explanatory variables is quite limited.

Therefore, for future developments, it could be interesting to take into account some additional available
information; for example, on hospitalizations, mortality data or circulating virus strains. In the present analysis
we decided to not include this type of information, given two main reasons. One is to avoid some over-fitting as
stated above, while another one is more conceptual: this additional information is collected in a completely dif-
ferent way than the ILI data; hence, its inclusion must be treated with some caution as it may require a more elab-
orate theoretical development. Further, another line of future research is to define the generic data sets in other
ways, e.g. as partially reconstructed data from a multivariate analysis of the regions. This idea seems interesting
but implies a more involved analysis that goes beyond the scope of this paper.
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Figure 8. Three methods for comparing flu epidemics (season 5, East): observed incidence rates (top panel),
proportions of observed incident cases by week (middle panel), proportions of predicted incident cases by week
(bottom panel).

Finally, it is worth noting that the proposed methodology could be easily adapted for comparing incidence
rates across years, in the same region. An important practical application of such a comparison would be to con-
sider an unusual year (like a pandemic year) and try to assess its differences with regular flu seasons, in the same
area, by comparing observed and predicted values. Assessing the size of a pandemic outbreak, or of an epidemic
at the beginning of the flu season, are issues of great interest to epidemiologists and public health practitioners
(see, e.g.>1>1),

Data Availability
The datasets analyzed during the current study are available at https://www.cdc.gov/flu/weekly/fluviewinteractive.
htm.
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