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Accurate optic disc (OD) detection is an essential yet vital step for retinal disease diagnosis. In the paper, an approach for
segmenting OD boundary without manpower named full-automatic double boundary extraction is designed. 1ere are two main
advantages in it. (1) Since the performances and the computational cost produced by iterations of contour evolution of active
contour models- (ACM-) based approaches greatly depend on the initialization, this paper proposes an effective and adaptive
initial level set contour extraction approach using saliency detection and threshold techniques. (2) In order to handle unreliable
information generated by intensity in abnormal retinal images caused by diseases, a modified LIF approach is presented by
incorporating the shape prior information into LIF. We test the effectiveness of the proposed approach on a publicly available
DIARETDB0 database. Experimental results demonstrate that our approach outperforms well-known approaches in terms of the
average overlapping ratio and accuracy rate.

1. Introduction

Optic disc (OD) is a bright yellowish approximately circular
or oval-shaped object in the retinal images [1], as shown in
Figure 1.

Accurate OD localization and segmentation play an im-
portant role in retinal image analysis and eye diseases di-
agnosis. For instance, the localization of the OD is a crucial
step for fovea detection, vessel tracking, measurement, and
automated diabetic retinopathy (DR) screening [2]. Mean-
while, the segmentation of the OD can be used for diagnosing
other diseases including glaucoma, papilledema, hypertensive
retinopathy, and neovascularization of the disc (NVD) [3, 4].
However, in many real applications, there are some chal-
lenging problems for OD segmentation due to the complex
OD appearance caused by some anomalies, such asmyelinated
nerve fibers, peripapillary atrophy (PPA), blood vessels cov-
ered, and poor image quality. Hence, many scholars have been
proposing a series of approaches to improve the precision of

OD boundary extraction. 1ese approaches can be divided
into four categories including classification-based [5–9],
template-based matching [10–17], morphology-based [18–
20], active contour models- (ACM-) based approaches
[15, 21–24].

Plenty of classification-based OD boundary extraction
methods have been presented by Cheng et al. [5], Dutta et al.
[6], Tan et al. [7], and Zhou et al. [8, 9]. 1ey utilized image
pixel-level features or superpixel-level features extracted from
retinal fundus images to segment OD. However, these ap-
proaches are easy to be influenced by sample size. Namely, the
segmentation results of OD have a larger bias if there is only a
small amount of training data. Besides, it is also time con-
suming when dealing with a large amount of training data.

Template-based matching methods consider the shape
prior information of the OD, i.e., the circular or elliptical
shape, to match the edge maps extracted from retinal fundus
images [10–17]. However, these methods always fail to detect
the ODs with varied shapes.
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Some morphology techniques are used to extract OD
boundary, e.g., Reza et al. [18] andWelfer et al. [19]. In these
approaches, the shape and bright of the OD are modeled by
some morphology techniques. Nevertheless, the main dis-
advantage of these approaches is that bright lesions can affect
their performance.

Srivastava et al. [20] applied a deep neural network
composed of (unsupervised) stacked autoencoders followed
by a supervised layer to distinguish OD from retinal fundus
images. But it cannot deal well with the problem when the
PPA is very similar to the OD.

Compared with the aforementioned approaches, ACM
will obtain an excellent OD segmentation result due to the
combination of the profound mathematical properties and
prior knowledge of the OD. Hence, ACM-based approaches
have become the most promising technique to detect the OD
boundary [25]. Lee and Brady [21] firstly proposed a gra-
dient vector flow (GVF) base active contour model for
extracting the optic disc boundary with a fixed size initial
contour followed by reducing the effect produced by high
gradient at vessel locations. Mendels [22] presented a novel
active contour approach using the gradient vector-flow-
driven contour initialized manually to determine the OD
boundary after preprocessing the image based on local
minima detection and morphological filtering. A modified
version of the conventional level-set method proposed by
Wong et al. [15] is used to obtain the OD boundary with a
constant scale initial contour from the red channel, and the
contour is subsequently smoothened by strictly fitting a
ellipse. Yu et al. [23] applied a fast, hybrid level set model, in
which the deformable contour is driven by the local edge
vector and the region information converging to the true
optic disc boundary based on fixed size initial contour de-
termined by experience. A variational-level set deformable
model designed by Esmaeili et al. [24] has higher convergence
property and better computational efficiency compared with
other segmentation active contour models when extracting
the OD boundary with an empirical estimation initial contour
around the detected OD center. 1ese ACM-based methods
can accurately segment ODs with strong boundary, but they

are always influenced by intensity inhomogeneities and blood
vessels occlusion which are highly sensitive to interferences
around the boundary, especially for bright lesions adjacent to
the boundary of ODs, reducing their performance.

Seen from the above-mentioned OD detection methods,
although the exiting ACM-based approaches can achieve better
performance than classification-based approaches [5–9],
template-based matching approaches [10–17] and
morphology-based [18–20], most of ACM [15, 21–24] evolving
the contour using the imprecise initial contour which is labeled
by hand or is set based on fixed size. It not only reduces the
performance for ACM but also generates the expensive
computational cost. Besides, these ACM-based methods are
misguided by unreliable information generated by intensity for
extreme situation in abnormal retinal images caused by dis-
eases, e.g., blurry OD boundary, bright peripapillary atrophy
interference, and thick blood vessel coverage.1ey also need to
remedy the insufficient information lost through image pre-
processing which has been changed along with the different
segmentation methods, making the key information lost, and
have a complex operation. To address these issues, this paper
proposes a novel approach by combining the local image fitting
energy and shape prior information to extract OD boundary.
1e main contributions are as follows: (1) an automatic and
robust adaptive initial level set contour extraction method by
combining saliency detection and threshold techniques is
designed to achieve the optimized contour evolution. (2) A
novel ACM-based approach named local image fitting model
with oval-shaped constraint (LIFO) is presented, which in-
tegrates the model with oval-shaped constraint into a united
framework remedying the deficiency of only considering the
information of intensity.

2. Methods

2.1. Optic Disc Localization. In this paper, we use our pre-
vious work [26] to locate the OD. In [26], a series of OD
candidates can be firstly extracted using morphological
opening by reconstruction.1en, a set of features are used to
distinguish the true optic disc from the nonoptic disc
candidates (for more details, refer [26]).

2.2. Optic Disc Segmentation

2.2.1. Rough Boundary Extraction of the OD. Based on the
cropped region of interest around optic disc, we can further
extract the optic disc boundaries. Since the contour initiali-
zation is the basic step to initialize the proposed active contour
model, we propose a novel and robust contour initialization
approach by combining saliency detection and threshold
techniques together in this paper. 1e details are as follows.

Since the optic disc region is usually of a brighter pallor
than the surrounding retinal areas, it can be regarded as a
salient objective in retinal fundus images. Recently, inspired by
saliency detection techniquewhich aims at finding out themost
important part of an image, we adopt a cellular (i.e., superpixel)
automata-based saliency detection approach [27] by taking
both global color and spatial distance matrices into consid-
eration to contour initialization. First, cellular automata-based
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Figure 1: Major structures of the optic disc. Red line: the optic disc
boundary.

2 Journal of Healthcare Engineering



saliency detection approach [27] is done on the tailored image.
Figure 2(a) is the obtained saliency map in which the cor-
responding output saliency value of each superpixel is con-
tinuous between 0 and 1, as shown in Figure 2(b). 1en, a
mean filter is found to be a good choice [5] which is then
applied on the saliency map to achieve smoothed map values,
as shown in Figure 2(c). Next, the smoothed map values are
then used to acquire the binary decisions for all the pixels with
a threshold. In our experiment, we obtain the threshold by
Otsu’s thresholding and assign 1 and 0 to optic disc and
nonoptic disc. After we obtain binary decisions for all the
pixels, the values with 1 are regarded as object (optic disc) and
0 as background. Finally, the largest connected object (i.e., the
connected region with the largest number of the pixels) can be
obtained through morphological operation, as shown in
Figure 2(d). And its boundary is used as the raw estimation of
the optic disc, i.e., the optic disc initial contour in green, as
shown in Figure 2(e).

2.2.2. Accurate Boundary Curve Extraction. Considering the
intensity inhomogeneity is a frequently occurring phe-
nomenon in the optic disc region [28]; the optic disc
boundary extracted by general segmentation methods is
usually inaccurate due to intensity inhomogeneity caused by
imperfection of image devices or illumination variations. In
order to deal with this problem, the local image fitting (LIF)
model presented by Zhang et al. [28] is introduced; it defines
local image fitting energy in a variational formulation which
incorporates local intensity information into the active
contour model. 1e LIF model can be described as follows:

E
LIF

�
1
2


Ω

I− I
LFI




2

dx, (1)

where

I
LFI

� m1H(ϕ) + m2(1−H(ϕ)), (2)

m1 � mean( I ∈ ( x ∈ Ω |ϕ(x)< 0 ∩W(x), (3)

m2 � mean( I ∈ ( x ∈ Ω | ϕ(x)> 0 ∩W(x), (4)

where I denotes an input image; ILFI is a local fitted image
(LFI) formulation, m1 and m2 are, respectively, defined
as local mean near the point x described by equations (3)
and (4). x is the variable to express the location in-
formation of pixel for global, Ω is the image domain, ϕ
is a level set function, H(ϕ) is the Heaviside function,
and W(x) is a rectangular window function defined
in [28].

Considering that the fundamental anatomical structure of
the OD, e.g., it is a bright approximately circular or elliptic
region, we can regard the anatomical structure as a shape
prior constraint and take it into our model. In this paper, we
incorporate both the smoothing item and an oval-disc prior
constraint into LIF model, and the novel model named local
image fitting model with oval-shaped constraint (LIFO) is
proposed for OD boundary extraction.1emodel can remedy
insufficiency of LIF, such as the LIF model will fail to extract
the OD boundary with some blood vessels as shown in
Figure 3(b). Seen from the result in Figure 3(c), the novel
model overcomes the influence of blood vessels and intensity
inhomogeneities achieving a precise OD boundary extraction
of Figure 3(a).

Seen from the above results, it is necessary to introduce
the smoothing item and shape prior information into LIF
model aiming to acquire a whole boundary of the OD. 1ey
can be formulated as follows:

E
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where ∇ is the gradient operator; δ(ϕ) is the smooth Dirac
function; xi and yi are, respectively, x-coordinate and y-
coordinate for global pixel information x; xe and ye are
oval center coordinates; θe is the angle of rotation; ae
denotes scaling factors of semimajor axis length; and be
is defined as semiminor axis length. ϕe is the level set
based on ellipse shape. Both of them are constantly
changed with the curve evolution. In fact, the purpose for
calculating equation (5) is to acquire the level set ϕ which
is similar to ϕe. 1e novel model named LIFO can be
obtained by combining equations (1) and (5) into a unified
framework:
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(10)

where α is the constraint coefficient for ellipse which decides
the weight of elliptic constraint and v is the coefficient of the
weighted length of zero level curve of ϕ.

1ere are three terms in the LIFO model (equation (10))
and each of them has its unique function to deal with
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different problems in OD boundary extraction.1e first term
ELIF is used to deal with the commonly occurred phenom-
enon in the optic disc regions that are always influenced by
intensity inhomogeneity.1e second term is the smooth item,
which is used to handle drastic protuberance and sunken for
evaluated contours by penalizing arc length of zero level
contour of ϕ. 1e third term is the oval-shaped constraint
term for ensuring the evaluated contour which can satisfy
with the physical anatomical structure of optic disc, reducing
the impact of complex environments. 1e LIFOmodel can be
solved by the standard gradient descent method [28]. After a
series of calculations, the solution is obtained in Appendix.

1e flow diagram for segmentation of the OD is as follows:

(1) Initialization: v � 0.0001 × 255 × 255, α � 1.0, xe �

width/2, ye � height/2, θe � 0, ae ���������������

width2 + height2


/8, be �

��������������

width2 + height2


/8 (the
width and the height are, respectively, the width and
the height of the cropped region for the original
image), the level set functions ϕl � ϕ0, ϕl

e � ϕ0e , and l

and r denote iterations.

(2) Update m1 and m2, respectively, using equations (3)
and (4).

(3) Update ILFI using equation (2).
(4) Using the standard gradient descentmethod, evolve the

parameters of elliptical level set of the OD including xe,
ye, θe, ae, be according to equations (A.1)–(A.5); if xr

e,
yr
e, θ

r
e, ar

e, br
e satisfy the stationary condition, then stop;

else r � r + 1 and return to Step 4.
(5) Update ϕl

e using equation (8).
(6) Evolve the level set functions, according to equation

(A.6). If ϕl satisfy the stationary condition, stop;
otherwise, l � l + 1 and return to Step 2.

3. Experimental Results

In this section, the public Standard Diabetic Retinopathy
Database “Calibration Level 0” (DIARETDB0) [29] and the
public dataset of retinal images namely DRISHTI-GS [30] are
applied to verify the availability of our method. 1e DIA-
RETDB0 and DRISHTI-GS are available and can be down-
loaded from the web pages http://www.it.lut.fi/project/
imageret/diaretdb0/ and http://cvit.iiit.ac.in/projects/mip/
drishti-gs/mip-dataset2/Home.php._1e_DIARETDB0 data-
base is made up of 130 RGB color fundus images of which 20
are normal and 110 are abnormal (illness) with the fixed
1500 × 1152 resolution and 50° field of view.1e ground truth
is collected from two ophthalmologists.1e final ground truth
is acquired by averaging boundary results extracted from two
ophthalmologists. 1e DRISHTI-GS dataset totally has 101
images of which 31 are normal and 70 are abnormal (illness).
1ese images are produced with 30° degree field of view and
have a resolution of 2896 × 1944. For each image, the OD is
correctly marked by four glaucoma experts. To compensate
for interobservermarking variations, we also derive amajority
voting manual marking as the final ground truth indicating
that agreement among at least three experts [30] to quali-
tatively evaluate the proposed method.

Seen from Figure 4, compared with different contour
evolution approaches using adaptive initial contour and

(a) (b) (c)

Figure 3: 1e result of OD boundary extraction obtained by LIF
model and LIFO model, respectively; the ground truth is marked
with a green line.

(a) (b) (c) (d) (e)

Figure 2: Contour initialization. (a) Cropped ROI around optic disc; (b) saliency detection result; (c) smoothed image of (b); (d) the largest
connected object; (e) optic disc initial contour in green.
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different initial circular contours based on the fundamental
anatomical structure of the OD, there are some advantages
for the proposed approach. First, most of ACM-based ap-
proaches are sensitive to the initialization of the contour
[32]. However, the proposed initial contour can better guide
the motion of the active contour since it is close to the
ground truth of OD boundary. Second, the adopted initial
contour which is near the OD boundary can reduce itera-
tions of contour evolution. 1erefore, it can reduce the
computational cost [33, 34]. Furthermore, compared with
the original LIF [28], our approach is more robust to the
influence caused by the blood vessels due to the fact that the
oval-shaped constraint is incorporated into our model.

1e criterion is adopted to further assess the availability of
LIFO model with different initial contours; it is considered that
the overlapping ratio T which is computed based on the over-
lapping area between the true optic disc region in the ground
truth and the detected optic disc region is no less than 75% for
successful segmentation in terms of [11]. 1e accuracy ratio is
the percentage ratio of successfully classified images to the total
number of images. 1e overlapping ratio T is defined as

T �
area(G∩D)

area(G∪D)
, (11)

whereG andD are, respectively, the area of ground truth and
the area extracted by the methods. Table 1 shows accuracy
rate acquired by different initial contours.

Seen from Table 1, the proposed method achieves the
best segmentation result with adaptive initial contour, and
the accuracy rate is, respectively, 96.30% and 96.10% on the
DIARETDB0 database and the DRISHTI-GS database.

In order to better verify the effectiveness of the proposed
method, we compare our method with some related and
newest approaches for segmentation in medical image pro-
cessing area such as Hough transform method [31], modified
radial symmetrymethod (MRS) [35], GVFmethod [36], Chan-
Vese (CV) ACM [37], LIF ACM [28], and LSACM ACM [38].
1e different segmentation results obtained by all five methods
from retinal images are given in Figure 5, in which the green
line denotes the ground truth obtained from the experts’
marking and the red line represents some segmentation results
extracted by different approaches. 1e examples of the OD
having peripapillary atrophy are shown in the first three col-
umns, and the OD with irregular shape and high gradient
variations is shown in the fourth column. 1e Hough trans-
form and the GVF model fail to extract the whole OD
boundary due to the fact that they are sensitive to the varying of
local gradient. AlthoughMRS can achieve more accurate result
than Hough transform, it ignores that the OD is an approx-
imately circular or elliptic region rather than rigid circular

(a)

(b)

(c)

(d)

Figure 4: 1e comparisons for different segmentationmodels with different initial contours andHough transformmethod.1ey, respectively, show
the comparison results based on adaptive initial contour andmanual initial circular contour drawing outside of theOD, inside of theOD, and intersect
of the OD. 1e ground truth is marked with a green line. (a) Initial level set contour. (b) Presented LIFO. (c) LIF [28]. (d) Hough transform [31].

Table 1: Performance measurement based on overlapping areas
between different initial contours on the DIARETDB0 database
and the DRISHTI-GS database.

Initial contour
Accuracy rate
(DIARETDB0)

(%)

Accuracy rate
(DRISHTI-GS)

(%)
Contour intersecting the OD 94.50 94.10
Contour within the OD 94.80 94.50
Contour outside the OD 95.10 95.30
Adaptive contour 96.30 96.10
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

Figure 5: Continued.
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region. However, the CV model models image as piecewise
constant function which fails to handle intensity inhomoge-
neity in retinal image, and thereby achieves unsatisfactory
segmentation result. Although the LIF model can deal with
these local gradient variations well compared to GVF and
Hough transform and reduce the influence of intensity inho-
mogeneity because of considering local intensity information; it
is severely influenced by blood vessel covering the OD surface.
1e LSACM model also can handle the intensity inhomoge-
neity and achieve more integrated OD boundary compared to
the LIF model because it models the objects as Gaussian
distributions of different means and variances; however, it is
defeated by blood vessels and PPA obtaining a deficient seg-
mentation result. Seen from the aforementioned methods, our
method performs better and captures the whole OD boundary,
which overcomes the influence caused by intensity in-
homogeneity, PPA, and blood vessels.1e fifth column shows a
successful result segmented by LIFO model in blurry OD
region with smooth transition boundary. 1is is mainly due to
the fact that the prior shape information in some regions is a
stronger cue than the intensity information. 1erefore, com-
bining the prior information and intensity information to-
gether can obtain the smooth and precise OD boundary.

Table 2, respectively, shows the average overlapping ratio
and accuracy rate acquired by different models.

As seen from Table 2, we can clearly see that our method
can get a better performance from DIARETDB0/DRISHTI-
GS compared with other methods in terms of average
overlapping ratio 66.59%/65.61% and accuracy rate 96.30%/
96.10% for successful segmentation in retinal images in-
cluding normal and abnormal (illness). 1e average over-
lapping ratio of segmentation obtained by proposed method
in retinal image for normal/abnormal is 67.33% and 66.25%/
65.53% and 64.87%; the accuracy rate of segmentation
obtained by the proposed method in retinal image for
normal/abnormal is 98.40% and 98.90%/95.90% and 94.90%
on the DIARETDB0 and the DRISHTI-GS, respectively.

Besides, we also use an important evaluationmetric F-score
(F) which is the harmonicmean of precision and recall between
the achieved boundary by the method and ground truth to test
the performance of the proposed model. 1e pixelwise pre-
cision and recall values are, respectively, defined as

precision �
tp

tp + fp
,

recall �
tp

tp + fn
,

(12)

where true positive (tp) indicates the number of pixels in the
coverage areas between the ground truth and achieved
segmented area by the methods; false positive (fp) expresses
the number of pixels in the area where the pixel is classified
only in the segmented area by the methods and is excluded
belonging to the ground truth; false negative (fn) is the
number of pixels in the area where a pixel is classified only in
the ground truth and is excluded belonging to the segmented
area by the methods. 1en, the single performance measure,
namely, F-score (F) is computed and defined as

F � 2
precision · recall
precision + recall

. (13)

1e value of F-score always lies between 0 and 1 and will
be high if the performance of method is good.

Table 3 depicts the quantitative assessment for seg-
mentation results in terms of the F-score. 1e best and the
worst achieved by the proposed method are, respectively, the
best case and the worst case for fundamental results of the
optical disc from the DIARETDB0 and the DRISHTI-GS.
Seen from Table 3, it can be inferred that our method has a
significant improvement in the segmentation results com-
pared to others methods.

4. Conclusions

In this paper, we design a strategy to accurately segment OD
boundary without manpower. First, an automatic and robust
adaptive initial level set contour extraction method consisting
of saliency detection and threshold techniques is presented for
making the contour evolution. 1en, in order to remedy the
deficiency that only considers the intensity and ignores the
prior information for OD shape, an excellent local image fitting
model with oval-shaped constratint (LIFO) is presented to
extract the whole and precise OD boundary. Comparing with
the original LIFmodel only based on intensity information, the
LIFO model uses both of the intensity information and shape
information which has the following advantages. First, the
original model is easily influenced by PPA, blood vessels, and
noise due to only considering the intensity information. On the
contrary, the proposed model can overcome these issues by
using both of the intensity information and the shape prior
information without any preprocessing. Second, the proposed
model introduces the shape prior information based on the
physical anatomical structure of the optic disc, and it can
extract the whole boundary of the optic disc especially for the
irregular shape of the optic disc. 1e experimental results

(i)

Figure 5: OD segmentation results: (a) original image with the ground truth; (b) adaptive initialized contour; (c) Hough transform results [31];
(d) MRS results [35]; (e) GVF model results [36]; (f) CV model results [37]; (g) LIF model results [28]; (h) LSACM model results [38]; (i)
proposed LIFO model results. Green color indicates boundary marked by the expert and red color indicates achieved boundary by a method.
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demonstrate the availability of the proposed method. Now, the
deep learning has attracted attention and achieves a good
performance when the number of training samples is enough.
However, it is hard to collect enough data in medical field such
as the retinal fundus images, which will greatly reduce the
performance of model.1at is the main reason why we did not
employ the deep learning technique to segment the optic disc
and optic cup. In the future, we will try to use the deep learning
approaches on the larger database.

Appendix

1e LIFO model can be solved by the standard gradient
descent method [28]. After a series of calculations, the so-
lution is obtained as follows:

dxe

dt
� α
Ω

H(ϕ)−H ϕe( ( δ ϕe( 
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Table 3: Performance measurement based on F-score between the
proposed approach and other segmentation approaches on the
DIARETDB0 database and DRISHTI-GS database.

Methods F-score (average)
(DIARETDB0)

F-score (average)
(DRISHTI-GS)

Hough [31] 0.853 0.841
MRS [35] 0.865 0.859
GVF [36] 0.885 0.882
CV [37] 0.792 0.786
LIF [28] 0.915 0.908
LSACM [38] 0.937 0.919
Ours(LIFO) 0.951 0.946
Best 0.986 0.990
Worst 0.658 0.646

Table 2: Performance measurement based on overlapping areas between the proposed approach and other segmentation approaches on the
DIARETDB0 database and DRISHTI-GS database.

Average overlapping ratio
(DIARETDB0) (%)

Accuracy rate
(DIARETDB0) (%)

Average overlapping ratio
(DRISHTI-GS) (%)

Accuracy rate
(DRISHTI-GS) (%)

Hough [31] 61.42 89.60 60.55 88.10
MRS [35] 61.96 90.80 60.81 88.60
GVF [36] 63.66 92.80 61.86 91.30
CV [37] 55.15 86.10 55.15 85.30
LIF [28] 63.89 93.10 63.02 91.70
LSACM [38] 64.24 93.90 63.91 93.50
Ours (LIFO) 66.59 96.30 65.61 96.10
Normal 67.33 98.40 66.25 98.90
Abnormal 65.53 95.90 64.87 94.90
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where xe, ye, θe, ae, be continually vary along with the
changing of information in image and t is the time step of the
experiment.
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