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Single-cell transcriptome analyses reveal distinct gene
expression signatures of severe COVID-19 in the presence
of clonal hematopoiesis
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Clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes individuals to various
inflammatory responses, has been reported to be associated with COVID-19 severity. However, the immunological signature and
the exact gene expression program by which the presence of CHIP exerts its clinical impact on COVID-19 remain to be elucidated. In
this study, we generated a single-cell transcriptome landscape of severe COVID-19 according to the presence of CHIP using
peripheral blood mononuclear cells. Patients with CHIP exhibited a potent IFN-γ response in exacerbating inflammation, particularly
in classical monocytes, compared to patients without CHIP. To dissect the regulatory mechanism of CHIP (+)-specific IFN-γ response
gene expression in severe COVID-19, we identified DNMT3A CHIP mutation-dependent differentially methylated regions (DMRs) and
annotated their putative target genes based on long-range chromatin interactions. We revealed that CHIP mutant-driven hypo-
DMRs at poised cis-regulatory elements appear to facilitate the CHIP (+)-specific IFN-γ-mediated inflammatory immune response.
Our results highlight that the presence of CHIP may increase the susceptibility to hyperinflammation through the reorganization of
chromatin architecture, establishing a novel subgroup of severe COVID-19 patients.

Experimental & Molecular Medicine (2022) 54:1756–1765; https://doi.org/10.1038/s12276-022-00866-1

INTRODUCTION
Coronavirus disease-19 (COVID-19), an emerging infectious
disease caused by severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) infection, has become the global
health threat of the century1. Epidemiological data have
revealed that approximately 20% of individuals with COVID-19
have a severe or critical illness course2. Many clinical risk factors
for severe COVID-19, including older age, comorbidities such as
diabetes mellitus or hypertension, and morbid obesity, have
been found3,4.
Clinical deterioration, such as acute respiratory distress

syndrome or intensive care unit admission, most commonly
occurs around the 10th day of illness5,6, when viral loads
decline after the early peak7,8. This temporal discrepancy
suggests that immunological phenomena may play an impor-
tant role in the clinical manifestations of COVID-19. High levels
of circulating proinflammatory cytokines9, aberrant hyperacti-
vation of cytotoxic lymphocytes10 and their infiltration in vital
organs11, and dysregulated monocytes and macrophages12

have each been proposed as mechanisms for the pathological
immune responses in severe COVID-19. However, identifying

additional factors driving the severity of severe COVID-19
remains a challenge.
Recently, several studies have highlighted the clinical impact

of clonal hematopoiesis of indeterminate potential (CHIP) on
COVID-19 severity13–15. CHIP refers to a population of immune
cells with acquired gene mutations that do not fulfill the
diagnostic criteria for hematological malignancy16. As the majority
of genes associated with CHIP, including DNMT3A, TET2, and
ASXL1, are involved in epigenetic regulation, CHIP may have a
wide range of effects on immune function through altered
chromatin activities17. There is growing evidence supporting the
role of CHIP mutations in altered immune function through
effector cells such as monocytes/macrophages and their dysre-
gulated cytokine/chemokine expression18–21, which largely shares
the immunopathogenic signatures of severe COVID-19. In this
regard, a recent examination of over 500 COVID-19 patients
revealed a statistical association between the presence of CHIP
and COVID-19 severity13. However, the CHIP-specific immune
responses and the exact gene expression program on how the
presence of CHIP exerts its clinical impact on the progression of
severe COVID-19 are not clear13–15.
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To address this issue, we aimed to explore the CHIP-dependent
gene expression program in severe COVID-19 by using single-cell
immune transcriptome landscapes of normal controls, mild
COVID-19 patients, and severe COVID-19 patients according to
the presence of CHIP. We also investigated how CHIP contributes
to the immunological responses in severe COVID-19 through
CHIP-dependent dysregulated epigenetic gene regulation
mechanisms.

MATERIALS AND METHODS
For more detailed protocols, see the Supplementary Methods.

Single-cell RNA-seq experiments on CHIP (+) specimens
A total of 10 CHIP (+) specimens were newly collected and confirmed by
custom designed probes (Agilent, Santa Clara, CA) targeting known CHIP
variants to generate single-cell transcriptome profiles. Two CHIP (+) SARS-
CoV-2-uninfected normal specimens were obtained from patients with a
history of plasma cell dyscrasia in remission. CHIP (+) severe (n= 4) and
CHIP (+) mild (n= 4) COVID-19 specimens were collected from laboratory-
confirmed COVID-19 patients between February and June 2020 at Seoul
National University Hospital in the Republic of Korea (IRB Nos. 2003-141-
1110). For the use of patient samples, an expedited review was performed
by the Institutional Review Board (IRB) committee of the Korea Advanced
Institute of Science and Technology, and an IRB review exemption was
obtained (IRB Nos. IRB-21-269). Peripheral blood mononuclear cells
(PBMCs) were isolated from peripheral venous blood via standard Ficoll-
Paque (GE Healthcare, Uppsala, Sweden) density gradient centrifugation,
frozen in freezing media, and stored in liquid nitrogen until use. After
thawing the samples, the cells were washed twice with chilled PBS
containing 0.04% BSA and filtered through a Flowmi Tip Strainer (40 μm,
Bel-Art SP Scienceware, Wayne, NJ, USA). Then, we performed single-cell
RNA-seq (scRNA-seq) experiments using the Chromium Single Cell 3′
Library & Gel Bead Kit v3 (10x Genomics, Pleasanton, CA) following the
manufacturer’s instructions. The constructed libraries were sequenced at a
depth of over 50,000 reads per cell using DNBSEQ-G400 (MGI, Shenzhen,
China), except for CHIP (+) mild COVID-19, which were sequenced with a
depth of over 20,000 reads per cell. The list of samples and sequencing
results are summarized in Supplementary Table 1.

Single-cell RNA-seq data processing
The fastq files from outputs of DNBSEQ-G400 were demultiplexed into each
sample using splitBarcode (https://github.com/MGI-tech-bioinformatics/
splitBarcode, v0.1.6). The raw data from the previous study were downloaded
from the Gene Expression Omnibus (GEO) database under accession number
GSE149689. Among the public datasets, we confirmed the existence of
mutations in the mild and severe COVID-19 patients, finding one patient in
the severe group who had CHIP mutations (Supplementary Tables 2, 3). The
list of all single-cell RNA-seq samples is provided in Supplementary Tables 1
and 3. We aligned the demultiplexed reads to the human reference genome
(GRCh38; 10x cellranger reference GRCh38 v3.0.0) using the cellranger count
(v3.0.2)22. All aligned data were integrated by cellranger aggr (v3.0.2) using
default parameters except for CHIP (+) mild COVID-19 patients and
uninfected donors, which were separately aggregated with the same method.
We used Seurat R package v3.1.523 to perform the following analysis. After
generating the feature-barcode matrix through cellranger, we excluded cells
that expressed <200 genes or genes that were not expressed in any cells. For
the scRNA-seq data of CHIP (+) mild COVID-19 and CHIP (+) uninfected
donors, cells were classified into each individual type according to their
genotype with the Souporcell package24, removing heterogeneous doublets
between individuals. Moreover, we eliminated low-quality cells and doublets
from our data according to the following criteria: cells with mitochondrial
gene expression as >15% of their total gene expression and cells with <1000
and >15,000 unique molecular identifier (UMI) counts. For each cell, the raw
gene expression counts were normalized by the total UMI count and log-
transformed. To find features to merge the data from different experiments,
we used the vst method in Seurat R package v3.2.0 and identified 2000 highly
variable genes from each sample. Through canonical correlation analysis, the
data were aligned using anchors based on the top 10 canonical correlation
vectors. Then, we scaled the aligned data and conducted principal
component analysis (PCA). Using the top 15 principal components (PCs),
clustering was performed with a resolution parameter value of 0.8, and the
cells were visualized by UMAP projection.

Cell type annotation through marker gene identification in
each cluster
To identify marker genes, upregulated genes in each cluster relative to the
other clusters were selected based on the results of the Wilcoxon rank-sum
test in Seurat’s implementation with >0.25 log fold change compared to
the other clusters and a Bonferroni-adjusted P < 0.05. By manual
inspection, among the 24 different clusters, 16 were assigned to 9 known
immune cell types, red blood cells, and platelets. The clusters characterized
by similar marker genes were manually combined into one cell type.

Projection of scRNA-seq data to reference data
The single-cell transcriptome data from CHIP (+) uninfected donors and
CHIP (+) mild COVID-19 patients were projected as a query to the rest of
the data through the Seurat R package. To project the query onto the
reference data, anchors between two datasets were calculated through the
FindTransferAnchors function using the top 50 principal components from
the reference data. The cell type of each cell in the query data was
predicted based on those anchors through the TransferData function
within 50 dimensions for the anchor weighting procedure. The query data
were then projected to the reference data with MapQuery (reference.r-
eduction as ‘pca’, reduction.model as ‘umap’), generating the whole UMAP
plot in Fig. 1b.

Identification of DEGs using MAST
We used the model-based analysis of single-cell transcriptomics (MAST,
v1.16.0) algorithm25 in Seurat’s implementation to identify differentially
expressed genes (DEGs) between the two groups. The significant DEGs
were defined based on Bonferroni-adjusted P < 0.05 and a log2 fold
change >0.25. Mitochondrial genes and ribosomal genes were excluded
from the DEG analysis. One sample from an asymptomatic mild COVID-19
patient was excluded during the calculation of differentially expressed
genes, similar to a previous study26.

Enrichment analysis using enrichr
All gene ontology libraries analyzed in this study were collected from the
enrichR database, implemented by the R package ‘enrichR’ (v3.0)27. By
entering the gene sets and name of the gene ontology library into the
‘enrichr’ function in the package, enriched terms in the library and
enrichment scores of gene sets were returned. Scatter plots or bar plots
were drawn with returned values. For enrichment scores, a combined score
was used. The combined score was computed by taking the log of the p
value from Fisher’s exact test and multiplying it by the z score of the
deviation from the expected rank. The list of libraries used for the figures
are as follows: MSigDB Hallmark 2020 (Fig. 2b), LINCS L1000 Ligand
Perturbations up (Figs. 1d, e, 2c, 4c, and Supplementary Figs. 4, 8c, d), and
Ligand Perturbations from GEO up (Fig. 1f).

Trajectory analysis
Trajectory analysis was applied to two double-sampled severe COVID-19
patients using Monocle2 (v2.18.0) (Fig. 2a–c)28. The exact processing steps
can be found in the Supplementary Methods. Using the MSigDB Hallmark
2020 gene ontology library, clusters showing high combined scores for an
inflammatory response term were annotated as high inflammation
clusters, and the rest were annotated as low inflammation clusters. The
pseudotime trajectory was labeled as inflammation signature, and the
direction where the expression of marker genes of high inflammation
clusters increased was denoted as high whereas the other direction was
denoted as low (Fig. 2b).

Subclustering analysis
The subclustering analysis was performed using classical monocytes from
all CHIP (+) individuals by the Seurat R package. The expression levels of
the top 1000 highly variable genes, selected based on vst, were scaled by
ScaleData in Seurat, while individual variances were regressed out using
the vars.to.regress option. Following computing the 10 principal compo-
nents by RunPCA, the cells were clustered and visualized using
FindNeighbors, FindClusters (0.2 resolution), and RunUMAP.

Signature score calculation
To compute the score of multiple gene expressions in each cell, we
utilized a software called Single-Cell Signature Scorer29. Briefly, the
normalized expression matrix was used to calculate the signature score.
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The score of the given gene set in each cell was computed as a sum of
UMI counts for all genes from the gene set in a cell divided by the total
UMI counts in the cell.

Monocyte sample preparation and in situ Hi-C experiment
For the use of human samples, Institutional Review Board (IRB) approval
was obtained from KAIST (KH2017-63). Whole blood was obtained from
one male and one healthy female volunteer of Korean ethnicity. Both
donors were required to fast overnight to reduce dietary effects. Peripheral
blood mononuclear cells (PBMCs) were obtained from whole blood by
density gradient centrifugation (Ficoll-Paque), and then, two rounds of
monocyte isolation (Miltenyi Biotec’s MACS system, #130-091-153) were

performed to purify classical monocytes. In situ Hi-C was performed using
a previously published protocol30. Libraries were sequenced on a HiSeq
4000 (Illumina, San Diego, USA).

Analysis of histone ChIP-seq results in classical monocytes
To annotate the regulatory roles of differentially methylated regions
(DMRs), ChIP-seq data for each histone modification were collected from
the ENCODE portal (https://www.encodeproject.org/)31. Three distinct
types of data, the fold change over the control bigwig file, signal p value
bigwig file and narrow peak bed file, were downloaded (Figs. 4, 5 and
Supplementary Fig. 8). Each profile and heatmap were drawn by the plot
profile and plotHeatmap functions in Deeptools (v3.5.1), respectively.
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Narrow peak bed files were downloaded for the annotation of chromatin
states (Fig. 5e and Supplementary Fig. 8e).
To observe the enrichment patterns of active signals in DMRs when

inflammation occurs, two different replicates of ChIP-seq data for
H3K27ac peaks of IFN-γ-LPS-treated human macrophages were down-
loaded from the GEO database (GSM1057019, replicate 1; GSM1057023,
replicate 2)32. Genomic coordinates of downloaded data were con-
verted from hg19 to hg38 using CrossMap (v0.5.2)33 with the
hg19tohg38 chain file provided in the UCSC genome browser. The
number of intersections between hypo-DMRs and H3K27ac peaks was
used to perform Fisher’s exact test.

Annotation of chromatin states for hypo-DMRs
We first classified hypo-DMRs into promoter-proximal and distal hypo-
DMRs. Hypo-DMRs overlapping at least one base with 1.5 kb upstream and
downstream of the transcription start site of protein-coding genes
annotated by GENCODE (v.28) were considered promoter-proximal hypo-
DMRs. The remaining ones were annotated as promoter-distal hypo-DMRs.
Hypo-DMRs were also annotated with four different chromatin states
defined by the combination of intersected histone modification peaks: for
promoter-proximal hypo-DMRs, Active—H3K4me3 (+) and H3K27me3 (-);
Bivalent—H3K4me3 (+) and H3K27me3 (+); Inactive—H3K4me3 (-) and
H3K27me3 (+); and Others—H3K4me3 (-) and H3K27me3 (-); for promoter-
distal hypo-DMRs, Active—H3K27ac (+) and H3K27me3 (-); Poised—
H3K4me1 (+), H3K27ac (-) and H3K27me3 (-); Inactive—H3K27ac (-) and

H3K27me3 (+); and others—H3K4me1 (-), H3K27ac (-) and H3K27me3 (-).
(+) means intersection occurs between hypo-DMR and merged peak data
and (-) means intersection does not occur.

Statistical analyses
Student’s t test or Mann‒Whitney’s U test was used to compare continuous
variables, while the chi-squared test or Fisher’s exact test was used to
compare categorical variables. The Kolmogorov‒Smirnov test was used to
compare two groups without the assumption of normality. Each statistical
test was applied according to data size and distribution. The sample size
was chosen by the availability of CHIP (+) samples for scRNA-seq
experiments. We produced ten CHIP (+) scRNA-seq datasets and found
two additional CHIP (+) samples from a previous study.

RESULTS
Single-cell gene expression profiling of CHIP (+) severe
COVID-19 demonstrates distinct immunological signatures
To understand the immunological signature of CHIP (+) severe
COVID-19, we examined the single-cell immunological signatures
of severe COVID-19 according to the presence of CHIP (Fig. 1a). We
integrated a total of 79,011 high-quality single-cell transcriptome
profiles of peripheral blood mononuclear cells (PBMCs) generated
by the 10x Genomics single-cell RNA-seq (scRNA-seq) platform,
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comprising healthy control (n= 4), CHIP (+) uninfected control
(n= 2), severe influenza (n= 5), CHIP (-) mild COVID-19 (n= 5),
CHIP (-) severe COVID-19 (n= 3), CHIP (+) mild COVID-19 (n= 4),
and CHIP (+) severe COVID-19 (n= 6) specimens (Supplementary
Tables 1, 3, 4, see Methods). The reproducibility and quality were
ensured (Supplementary Fig. 1)26. Based on uniform manifold
approximation and projection (UMAP) of transcriptome profiles, 9
major immune cell types were assigned with previously annotated
marker genes (Fig. 1b and Supplementary Fig. 2, see Methods)26.
In terms of normalized transcriptome profiles against healthy

controls at the cell type resolution, as expected, all immune cell
types originating from COVID-19 were clustered together when
compared to influenza (Fig. 1c). Interestingly, patients with COVID-
19 were subdivided according to the presence of CHIP (Fig. 1c). To
identify the factors driving CHIP-dependent separation of COVID-
19 severity, we identified the differentially expressed genes (DEGs)
of CHIP (+) and CHIP (-) severe COVID-19 compared to CHIP (-)
mild COVID-19 (see Methods). We annotated these genes into
commonly (n= 278), CHIP (+)-specific (n= 807), and CHIP
(-)-specific (n= 270) upregulated genes (Supplementary Table 5).
Based on cytokine-responsive gene sets (see Methods)34, we
found that the commonly upregulated genes were enriched by
strong IL-1β and TNF-α responses (Fig. 1d). The commonly and
CHIP (-)-specific upregulated genes were also significantly
enriched by the genes associated with a type I IFN-mediated
TNF/IL-1β-driven hyperinflammation immune signature, as we
proposed in our previous study (Supplementary Fig. 3a, b)26.
However, such enrichment was not observed in CHIP (+)-specific
upregulated genes (Supplementary Fig. 3c), suggesting the
presence of additional factors establishing CHIP (+)-specific
immune responses in severe COVID-19.
To delineate CHIP (+)-specific immunological signatures, we

conducted a direct comparison between CHIP (+) and CHIP (-)
severe COVID-19 at individual cell-type resolution (Supplementary
Table 6, see Methods). The enrichment analysis of DEGs based on
cytokine-responsive gene sets revealed that classical monocytes
exhibited CHIP (+)-specific strong immune responses compared
to CHIP (-) (Supplementary Fig. 4a). In contrast, other cell types did
not show a similar trend (Supplementary Fig. 4b-i). CHIP (+)
upregulated genes in classical monocytes demonstrated more

enriched inflammatory cytokine responses such as IL-1β (Mann‒
Whitney’s U test, P= 3.24e-2, IL-1β) (Fig. 1e) and an elevation of
other COVID-19 representative interleukins such as IL-6, IL-10, and
IL-15 (Fig. 1f) compared to CHIP (-) upregulated genes35. Notably,
CHIP (+) upregulated genes were uniquely associated with type II
interferon (IFN) responses, which was not shown in CHIP (-)
upregulated genes (Mann‒Whitney’s U test, P= 1.08e-3, IFN-γ)
(Fig. 1e), potentially suggesting that a strong IFN-γ response in
classical monocytes is a representative immunological signature in
CHIP (+) severe COVID-19.

Pseudotime analysis reveals IFN-γ-mediated
hyperinflammation in CHIP (+) severe COVID-19
Since a high level of IFN-γ has been reported as an indicator of
severe COVID-19 and is known to exacerbate inflammatory
signatures5,36,37, we hypothesized that the strong IFN-γ response
in CHIP (+) severe COVID-19 patients could be attributed to the
hyperinflammation that occurs in severe COVID-19. To determine
whether a strong IFN-γ response is associated with the progres-
sion of COVID-19 severity in CHIP (+), we conducted a pseudotime
analysis in classical monocytes using specimens collected twice
from one patient, excluding innate individual biases (Fig. 2a, see
Methods). After ordering the cells along with the trajectory
analysis, we allocated the annotation of high and low inflamma-
tion clusters based on inflammatory signatures termed in MsigDB
Hallmark 2020 (Fig. 2b, Supplementary Table 7). We found that
IFN-γ response genes were significantly enriched in the high
inflammation group of CHIP (+), even more potent than those in
the CHIP (-) group (Fig. 2c), again confirming that a strong IFN-γ
response is a hallmark of CHIP (+) COVID-19 severity.
We further validated the immunological signature in CHIP (+)

with previously reported IFN-γ-induced inflammation in COVID-19.
Recent studies based on in vivo mouse experiments and scRNA-
seq analyses of COVID-19-affected lungs have highlighted the role
of the IFN-γ-induced inflammatory macrophage phenotype and
the synergistic effect of IFN-γ and TNF-α in severe COVID-1938,39.
Consistently, in our analysis, upregulated genes in the CHIP (+)
high inflammatory cluster were significantly enriched by proin-
flammatory M1 macrophage-specific genes (Fig. 2d and Supple-
mentary Fig. 5)40,41 and were associated with the synergistic
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inflammation signature through cotreatment with TNF-α and IFN-γ
(Fig. 2e)39. Thus, the previously discovered IFN-γ-mediated
disease-exacerbating mechanism explains how the IFN-γ response
in classical monocytes uniquely contributes to hyperinflammation
in CHIP (+) severe COVID-19 patients.

Validation of the IFN-γ-mediated hyperinflammation
signature in CHIP (+) severe COVID-19
To determine whether a potent IFN-γ response is an indicator of
COVID-19 severity in patients with CHIP, we examined the
expression patterns of CHIP (+) upregulated genes in classical
monocytes (Fig. 1e) across CHIP (+) uninfected donors, mild, and
severe COVID-19 patients. We found that these genes were
gradually upregulated according to COVID-19 severity in CHIP (+)
individuals (Fig. 3a). Notably, such a trend was not observed in
CHIP (-) individuals, confirming that the potent IFN-γ response is a
unique immune signature of COVID-19 severity in CHIP (+)
individuals (Supplementary Fig. 6a).
Next, we sought to identify unique subcellular populations

according to COVID-19 severity in CHIP (+) individuals. We
performed a subclustering analysis using classical monocytes from
all CHIP (+) individuals and revealed a unique cell population in

severe COVID-19 patients with CHIP (Fig. 3b). Of the 5 clusters,
Cluster 3 and Cluster 5 were enriched in CHIP (+) severe COVID-19
patients (Supplementary Fig. 6b). Interestingly, the genes asso-
ciated with proinflammatory M1 macrophages were highly
expressed in both Cluster 3 and Cluster 5, representing systemic
inflammation in severe COVID-19 patients (Fig. 3c). Additionally,
Cluster 5 showed a synergistic inflammatory signature through
cotreatment with TNF-α and IFN-γ, implying an association with
COVID-19 severity. Collectively, the combined immune response
of IFN-γ and TNF-α was a hallmark of COVID-19 severity in CHIP (+)
individuals.

DNMT3A CHIP mutation-dependent hypo-DMRs are linked to
CHIP (+) specific response genes
We sought to identify the underlying gene regulation mechanisms
of IFN-γ-mediated exacerbation of inflammation in CHIP (+)
severe COVID-19. Given that CHIP is driven by mutations in
multiple epigenetic regulators, such as DNMT3A, TET2, and ASXL1,
we hypothesized that altered chromatin activity might play a
critical role in facilitating IFN-γ response gene expression in severe
COVID-19. To test our hypothesis, we first identified CHIP-specific
2348 differentially methylated regions (DMRs) by using acute
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myeloid leukemia patients carrying DNMT3A CHIP mutations
(Supplementary Table 8, see Methods)42. In support of our
hypothesis, these DMRs highly overlapped with putative cis-
regulatory elements (Fisher’s exact test, P < 0.001 for proximal to
the promoters; P < 0.001 for distal regulatory elements) (Fig. 4a,
see Methods).
As many cis-regulatory elements are known to target genes

over large genomic distances43, we precisely annotated target
genes of the DMRs by performing in situ Hi-C experiments on
CD14++/CD16− classical monocytes of two healthy donors (see
Methods)44. Using this information, as illustrated for the RBPJ and
CXCL2 genes (Fig. 4b and Supplementary Fig. 7a), we revealed
that, in total, approximately 33% of CHIP (+) upregulated genes in
classical monocytes of severe COVID-19 patients were associated
with hypo-DMRs either in proximal (within 15 kb) or long-range
chromatin interactions (over 15 kb but less than 2 Mb) denoted as
‘hypo-DMR linked genes’ (Supplementary Fig. 7b). Notably, hypo-
DMR linked genes largely overlapped with IFN-γ response genes
(Mann‒Whitney’s U test, P= 1.08e-3, IFN-γ), which was not shown
in the other remaining genes (Fig. 4c). Further histone H3 27th
lysine acetylation (H3K27ac) peaks of IFN-γ-LPS-stimulated human
classical monocytes32 were enriched in the linked hypo-DMRs

(Fisher’s exact test, P= 4.92e-7 for replicate 1; P= 1.43e-11 for
replicate 2) (Supplementary Fig. 8a, b) but not in other immune
cell types (Supplementary Fig. 8c, d). Taken together, our results
indicate that CHIP-dependent altered chromatin activities of cis-
regulatory elements may facilitate IFN-γ-mediated hyperinflam-
mation response gene expression of classical monocytes in CHIP
(+) severe COVID-19 patients.

Activation of poised cis-regulatory elements primes CHIP (+)
specific IFN-γ response genes
To elucidate how ‘linked hypo-DMRs’ facilitate IFN-γ response
gene expression in COVID-19 patients with CHIP, we examined the
regulatory potential of hypo-DMRs based on four representative
histone modification marks of primary human classical monocytes:
histone H3 4th lysine monomethylation (H3K4me1) and trimethy-
lation (H3K4me3) and 27th lysine acetylation (H3K27ac) and
trimethylation (H3K27me3)45,46. When comparing DMRs to ran-
domly selected genomic regions, hypo-DMRs were mostly marked
by H3K27me3 in primary human classical monocytes, while hyper-
DMRs were enriched in H3K27ac as an indicator of active cis-
regulatory elements (Fig. 5a, b). However, interestingly, a subset of
hypo-DMRs linked to CHIP (+) severe COVID-19 upregulated
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genes (Supplementary Fig. 7b) was also significantly co-occupied
by H3K4me1 and H3K4me3 peaks compared to the unlinked
hypo-DMRs (Fisher’s exact test, P < 0.001, H3K4me1; P < 0.001,
H3K4me3) (Fig. 5c, d). Such a coexhibition of inactive and active
chromatin signatures may indicate that the regulatory elements of
CHIP (+) upregulated genes shifted from poised or bivalent status
to an active chromatin state through the process of CHIP-
dependent DNA hypomethylation. To test this possibility, we
annotated the chromatin states of linked hypo-DMRs according to
the combination of histone modification marks (Fig. 5e and
Supplementary Fig. 8e, see Methods). We found that only poised
status (H3K4me1 peak without both H3K27me3 and H3K27ac
peak, putative poised enhancers) was significantly enriched by
linked hypo-DMRs compared to unlinked hypo-DMRs (Fisher’s
exact test, P= 4.76e-06), supporting that the altered chromatin
activity of poised cis-regulatory elements is associated with IFN-γ
response gene expression (Fig. 5e). Furthermore, H3K27ac peaks
induced by IFN-γ-LPS stimulation were also enriched in the poised
status compared to the remaining chromatin states (Fisher’s exact
test, P= 3.63e-2), again confirming the role of poised cis-
regulatory elements in the activation of IFN-γ response genes
(Fig. 5f). Thus, CHIP mutants appear to reprogram epigenetic
states, including DNA hypomethylation at poised enhancers,
which primes IFN-γ-associated immune response genes, thereby
driving hyperinflammation and leading to a critical course of
COVID-19 (Fig. 6).

DISCUSSION
By profiling the gene expression of severe COVID-19 in the
presence or absence of CHIP through a single-cell technique, we
revealed a distinct IFN-γ-mediated immune signature in CHIP (+)
severe COVID-19, which was partly explained by CHIP-dependent
chromatin reorganization. Our results strongly indicate that CHIP
may play a critical role in the progression of severe COVID-19
through its own immunological pathways.
Individuals with COVID-19 have been reported to have

heterogeneous presentations ranging from asymptomatic to
critical illness2. In line with this, many studies divided COVID-19
patients into subgroups defined by immunological characteristics,
such as patterns of sepsis47, subpopulations of lymphocytes48, IFN
responses in the lung49, or loss-of-function variants50. Single-cell
techniques have been vigorously applied in COVID-19 to dissect
the underlying causes of the diverse immune responses37,51,52 and
to elaborate on the relationship between immune subtypes and
clinical characteristics53,54. Despite these important studies, none
of the single-cell studies has characterized the immunological
effects of CHIP in COVID-19. In this regard, the current study

uniquely demonstrated how CHIP-associated somatic mutations in
immune cells could be used to establish a novel subgroup of
COVID-19 patients.
Single-cell immune transcriptome analysis revealed that IFN-γ-

related hyperinflammation is a hallmark of CHIP (+) severe COVID-
19. In particular, there was an enrichment of the inflammatory
signature in classical monocytes, which is compatible with recent
knowledge regarding the effect of CHIP on myeloid-skewed
hematopoietic stem cell differentiation55. From a cytokine
perspective, IFN-γ and its synergism with TNF-α were thought to
play a critical role in the pathogenesis of severe COVID-19 in CHIP
(+) patients. This finding aligns with a previous report stating the
role of IFN-γ and/or TNF-α in exacerbating chronic inflammatory
disease by CHIP55. Our study also implies that both type I IFN and
type II IFN responses play an important role in disease
exacerbation in certain patients with severe COVID-19. An
additional interesting immunological finding reasonably explained
by CHIP biology is the upregulation of genes related to
inflammatory macrophages in CHIP (+) severe COVID-19. CHIP is
well known to drive hyperinflammation in chronic diseases, which
is mainly attributable to the altered function of monocytes and
macrophages55.
In this study, we provided a potential gene regulation

mechanism under CHIP-dependent altered chromatin activities,
but the characterization of chromatin status was limited to AML
patients carrying DNMT3A CHIP mutations. Nevertheless, we found
that hypo-DMRs were enriched by active or poised cREs in IFN-γ-
LPS-stimulated or primary human classical monocytes, respec-
tively, supporting the notion that CHIP-specific chromatin altera-
tions may involve IFN-γ-induced hyperinflammation in CHIP (+)
severe COVID-19. Additional examinations between CHIP-driven
chromatin reorganization and disease susceptibility under various
infections are needed in future studies.
In terms of therapeutic strategies, due to the significant

implication of type I and type II IFN responses in severe COVID-
19, anti-inflammatory strategies targeting not only inflammatory
cytokines but also pathological IFN responses need to be
investigated. Notably, in CHIP (+) severe COVID-19, we noticed
that a spleen tyrosine kinase (Syk) inhibitor, which is known to
reduce the expression of interferon-stimulated genes56, might be
a molecule that is effective in suppressing the pathogenic immune
responses induced by CHIP. An in vitro study on the Syk inhibitor
fostamatinib suggested its therapeutic effect against COVID-1957,
and we have shown the results of a randomized placebo-
controlled trial with the drug (NCT04579393).
In conclusion, we successfully elucidated a unique CHIP-driven

immunological mechanism in severe COVID-19. Revealing the
underlying epigenetic mechanism for the altered immune
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function that aligns with well-known CHIP biology suggests the
robustness of our findings. It appears that classical monocytes in
patients with CHIP (+) COVID-19 undergo distinct immune
responses; thus, studies focusing on immunomodulation strate-
gies based on the presence of CHIP are needed. Considering the
shared pathogenic host immune response across infections, we
postulate that our findings might provide a better understanding
of the previously unexplained exacerbation of clinical conditions
by various viruses in patients with CHIP.
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