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Abstract: Colorectal cancer is the third most prevalent malignancy in Western countries and a major
cause of death despite recent improvements in screening programs and early detection methods. In
the last decade, a growing effort has been put into better understanding how the immune system in-
teracts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1,
anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients
is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-
instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to
immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/− ipilimumab recently
obtained the Food and Drug Administration approval. This review aims to highlight the body of
knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms
of resistance and future strategies to extend its use.

Keywords: immunotherapy; colorectal cancer; dMMR; MSI-H; nivolumab; ipilimumab; pembrolizumab;
resistance

1. Introduction

Colorectal cancer (CRC) is the third most prevalent malignancy in Western countries
and still a major cause of cancer-related death worldwide [1]. Even if high-income nations
show a greater incidence in CRC, less developed countries are encountering significant
increases in CRC cases [2]. Extensive studies have observed differences in risk factors,
incidence and cancer-related deaths between ethnic groups, with African Americans, in
particular, showing a higher frequency of CRC cases as well as death rates [3–5]. Although
sustained efforts have been made in improving screening and early detection approaches,
about 25% of the CRC patients are diagnosed with metastatic disease and, therefore, have a
very poor prognosis [1]. With drug combination optimization, mortality has been reduced;
however, the five-year overall survival (OS) remains only 20% [6].

In early-stage CRC, surgery represents the elective treatment [7]. The five-year survival
rate following surgical resection is 99% in stage I, 68–83% in stage II, and 45–65% in stage
III [8,9]. Therefore, adjuvant chemotherapy is administered in stage III and high-risk stage II
(T4 stage, less than 12 lymph nodes examined, positive resection margins, lymphovascular
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emboli, perineural invasion, obstruction, and perforation) CRC patients to prolong overall
survival. The standard of care in the adjuvant setting is the combination of fluoropyrimidine
and oxaliplatin (FOLFOX or CAPOX), which was shown to significantly improve disease-
free survival (DFS), compared to fluoropyrimidine alone [10]. Moreover, the addition of
oxaliplatin resulted in improved OS and reduced risk of death with 17%, 16%, and 12% in
the studies conducted by XELODA, MOSAIC, and NSABP C-07, respectively [11–13].

In the metastatic setting (mCRC), the median OS is approximately 30 months. In
selected patients, surgical resection of metastases is advisable either upfront or following
downsizing systemic treatment [14,15]. If surgical resection does not represent a realis-
tic goal, systemic therapy with chemotherapy and targeted agents has been shown to
substantially increase overall survival [16]. Standard chemotherapies are represented by
fluoropyrimidines, oxaliplatin, irinotecan, and trifluridine/tripiracil [17]. The efficacy of
chemotherapy agents is further improved by the addition of targeted agents, such as the
anti-EGFR mAbs (cetuximab and panitumumab) in RAS-wt tumor or anti-VEGF agent beva-
cizumab, regardless of RAS status [6,18,19]. Ramucirumab (anti-VEGFR-2) and aflibercept
(a synthetic receptor for VEGF-A, VEGF-B, and PIGF) have demonstrated efficacy in the
second-line setting, in combination with chemotherapy [20,21]. Regorafenib, a multikinase
inhibitor, has also demonstrated efficacy in further lines such as monotherapy [22].

Throughout the last decade, the immune system was deeply studied to understand
how it interacts with cancer cells. Immune checkpoint inhibitors (ICIs) manipulate the
immune system to reactivate the antitumor immune response by blocking the immune
checkpoint proteins (PD-1 and CTLA-4) or their ligands (PD-L1). Consequently, ICIs, such
as anti-PD-L1 monoclonal antibodies (mAbs-Atezolizumab, Avelumab, and Durvalumab),
anti-PD-1 mAbs (Nivolumab and Pembrolizumab), and anti-CTLA-4 mAbs (Ipilimumab)
led to marked therapeutic efficacy in melanoma, as well as lung, head and neck, and
urothelial cancers [23–25].

Furthermore, to correlate the phenotype of cancer cells with the clinical behavior
and guide treatment, CRC has been classified into four consensus molecular subtypes
(CMS): CMS1 (14%)—MSI Immune, with strong immune activation, hypermutated, MS
unstable; CMS2 (37%)—canonical, epithelial, chromosomally unstable, with marked WNT
and MYC signaling activation; CMS3 (13%)—metabolic, epithelial with metabolic dys-
regulation; and CMS4 (23%)—mesenchymal, prominent transforming growth factor-beta
activation, stromal invasion, and angiogenesis, with a remaining unclassified group (13%)
with mixed features [26]. Recent studies have confirmed an increased response rate to ICIs
in patients whose tumors are highly microsatellite unstable (MSI-H) and are DNA mis-
match repair-deficient (dMMR) [27,28]. This subset of patients with this unique phenotype
represents about 15% of all sporadic CRC and only 5% of mCRC [29]. To date, based on the
result of phase III KEYNOTE-177 and phase II Checkmate-142 trial, the NCCN guideline
recommends the use of pembrolizumab and nivolumab ± ipilimumbab in the first-line
and non-first-line settings in MSI-H/dMMR mCRC patients. Moreover, the checkpoint
inhibitors regimens are also recommended in the neoadjuvant setting for resectable mCRC
with MSH-I/dMMR status [30,31].

This article aims to review the existing data for applying immunotherapy in CRC,
more precisely in a subset of patients with MSI-H tumors. We addressed the importance
of biomarkers in selecting CRC patients for immunotherapy. The review also discusses
the challenges due to resistance mechanisms and potential future strategies to extend
immunotherapy uses.
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2. Predictive/Prognostic Biomarkers for Selecting CRC for Immunotherapy
2.1. Microsatellite Status

Microsatellites are repeated non-coding DNA sequences, ranging in length from 1 to
10 base pairs. During DNA replication, microsatellites are frequent sites for mutations [32].
The role in detecting and correcting these errors is assigned to the mismatch-repair system
(MMR) [33]. The presence of microsatellite instability (MSI-H) due to deficiency in the
MMR (dMMR) is found in about 15% of all CRCs and 4% of mCRC cases [34]. MSI-H status
is the hallmark of Lynch syndrome; however, 70–85% of patients with MSI-H/dMMR
tumors have somatic mutations, most frequently inactivating the MLH1 gene [35]. The
MSI status can be detected either by polymerized chain reaction (PCR), next-generation
sequencing (NGS), or by the absence of immunohistochemical staining of the MMR proteins
(MSH2, MLH1, MSH6, and PMS2) [36].

This phenotype is characterized by a widespread accumulation of mutations, which
generate frame-shifted proteins (neoantigens) with great immunogenic potential. MSI-
H/dMMR tumors frequently involve the proximal colon, are poorly differentiated, and
have mucinous histology [37]. Population-based studies have investigated the susceptibility
of MSI-H/dMMR mutations in certain ethnic groups presenting with CRC. Studies show
the MSI-H/dMMR phenotype has a significantly higher prevalence in the African American
(AA) population (up to 45%) [38–40], while the Caucasian and Asian populations show
a lower incidence of MSI-H rates, no higher than 20% [41,42]. A study conducted on
an Indian cohort observed similar frequencies of MSI-H/dMMR CRC in their studied
population when compared to the West, despite having an inferior incidence of CRC
cases [43]. MSI-H/dMMR tumors are highly infiltrated with immune cells, including CD4+
TILs (tumor-infiltrating lymphocytes), CD8+ TILs, Th1 (T helper 1), and macrophages [37].
Moreover, these tumors have an up-regulated expression of immune checkpoints (PD-1,
PD-L1, CTLA4) [44]. Therefore, based on these observations, it was suggested that MSI-
H/dMMR CRCs might have a good response to ICIs. Following the results of several stage
II trials, ICIs are considered a breakthrough strategy in the treatment of MSI-H/dMMR
mCRC [45,46]. However, not all MSI-H/dMMR mCRC patients respond to ICIs, suggesting
that a deeper knowledge of immune-related mechanisms is needed [47]. In stage II CRC,
MSI-H/dMMR is associated with a lower recurrence rate than MSI-L/pMMR tumors, with
an HR estimated for OS correlated with MSI of 0.65 (95% CI: 0.59–0.71) [48].

2.2. Tumor Mutational Burden

The success linked to ICIs was associated with the hypermutated phenotype due to
many DNA replication errors, alongside the consequent inflamed TME [49]. Hence, an
emerging biomarker to predict the tumor’s response to immunotherapy is the calculation
of tumor mutational burden (TMB), which quantifies the nonsynonymous mutations per
coding area in a tumor genome [50]. The relationship between immunotherapy response
and TMB could be explained by the fact that a higher number of mutations generates higher
mutation-associated neoantigens, with increased lymphocyte infiltration in the TME [51].
The Food and Drug Administration (FDA) approved treatment with Pembrolizumab in
patients with any refractory and unresectable or metastatic solid tumors that harbor a high
TMB (TMB-H), defined as ≥10 mutations per megabase (Mut/Mb) [52]. The decision was
based on the analysis of 10 cohorts of patients with metastatic solid tumors enrolled in the
KEYNOTE-158 trial, which investigated the treatment with pembrolizumab until disease
progression or unacceptable toxicities occurred. Among all patients (n = 790), 13% (n = 102)
were defined as TMB-H. The results showed a 29% RR in TMB-H patients, compared
to 6% in those with TMB <10 mut/Mb [53]. The relationship between TMB and other
clinicopathologic variables that are already known to influence immunotherapy response
remains to be elucidated.
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2.3. Immunoscore

Increasing evidence has shown that cancer evolution is strongly dependent on the
TME consisting of various cell entities, including blood vessels, endothelial cells, fibroblasts,
and cells of the immune system. It was demonstrated that adaptive immune cell infiltration
is a better prognostic marker than grading, staging, and metastatic status [54,55]. The im-
munoscore is a digital pathology and immunohistochemistry-based assay which translates
the immune contexture into a feasible prognostic biomarker for stage I-III CRC [56]. The
immunoscore summarizes the density of the lymphocyte population, CD3+ and CD8+ T
cells in the tumor core, and invasive margins, which provides a scoring system from low
immune cell density (immunoscore 0) to high density (immunoscore 4). At the center of
this mechanism, the more a tumor is defined as immunogenic, the more it is able to attract
a T-cell mediated immune response, which is associated with a higher neoantigen load,
often found in MSI-H/dMMR tumors [57]. Consequently, a high immunoscore correlates
with a longer patient’s survival [58], while patients with low immunoscore and minimal
tumor invasion are more likely to undergo disease relapse [59,60]. In terms of prognostic
ability, the immunoscore tends to outperform the classical gold-standard TNM system in
predicting DFS and OS for stage I, II, III CRC [61,62]. A high immunocore was associated
with the highest DFS and OS in stage II colon cancer. The five-year recurrence rate was
8% in high, 14% in intermediate, and 23% in low immunoscore. A multivariable analysis
had similar results (p < 0.0001 for high Immunoscore vs. low) [63]. Regarding stage III
colon cancer, according to the NCCTG NO157 trial, a high immunoscore was correlated
with a longer three-year DFS compared to a low immunoscore (p < 0.05) [64]. In the phase
III IDEA trial, high and intermediate immunoscore significantly predict a DFS benefit of
prolonged adjuvant chemotherapy with FOLFOX regimen in stage III colon cancer patients.
(HR = 0.53; 95% CI 0.37–0.75; p = 0.0004) [65]. Apart from representing a good prognostic
marker, the immune contexture could also predict the response to ICIs [66]. The CD8+ T
cells’ density was directly correlated with the clinical response to anti-PD1 agents. More-
over, CD8+ T cells were also suggested to be a good predictor of the response to anti CTLA4
molecules in melanoma patients [67]. The validation of the consensus immunoscore [58]
and its introduction in the fifth edition of the World Health Organization classification of di-
gestive tumors among the “Essential and Desirable Diagnostic Criteria” for CRC [68] makes
it a step closer to the proposed notion of TNM-I classification (“I” from “immune”) [69].

2.4. POLD1/POLE

DNA polymerase delta (POLD1) and DNA polymerase epsilon (POLE) are two key
enzymes responsible for the accurate replication of the genome in the cell cycle. Mutations
that occur in the POLE and POLD1 genes generate a deficit in DNA repair [44]. Therefore,
they lead to an ultra-mutated phenotype, with up to 10 times more mutations than in
MSI-H CRC. Germline mutations in the exonuclease domain of POLD1 and POLE affect the
proofreading abilities of these polymerases, predispose to multiple colorectal carcinomas
and adenomas, and generate polymerase proofreading-associated polyposis (PPAP) [70].
PPAP represents 0.1–0.4% of familial cancer cases [71]. Moreover, other extracolonic
tumors were described, including brain, endometrial, ovarian, breast, skin tumors [72].
Most of these mutations represent, however, somatic events [73]. This type of tumor has
similar characteristics with the dMMR CRC, including up-regulation of immune checkpoint
molecule, high level of TILs, and increased cytotoxic T cells markers [74]. Clinically, POLE-
mutated CRC patients usually have a good prognosis. The tumors are characterized by
an early stage at presentation, right-sided location, male sex, and younger age [75]. Given
the similarities with the MSI-H/dMMR CRCs, the therapeutic potential of ICIs in POLE-
mutated CRCs is clinically relevant. To date, very few scientific works are available about
the efficacy of ICIs in mCRC harboring POLE or POLD1 mutations [76,77]. Further data
are needed to assess if mutations in POLE and POLD1 might predict benefits from ICIs.
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2.5. PD-1/PD-L1 Expression

The PD-1 molecules are expressed by activated NK cells, B-cells, and T-cells, and
they can bind to their ligands, PD-L1, expressed on cancerous cells [78]. One of the most
extensively studied biomarkers is probably the tumor expression of PD-L1 determined
by immunohistochemistry [79]. Even if in esophageal, gastric, and NSCLC the PD-L1
expression could be a valuable predictor of response to anti-PD-1 therapy [79,80], it was
not formally demonstrated to be associated with survival or response to immunotherapy
in CRC [81,82]. Several issues are preventing the expression of PD-L1 from being a reliable
biomarker. Firstly, PD-L1 expression represents a dynamic process that adapts according to
the tumor stage and microenvironment, and it can also be influenced by treatment. The
tumor expression is not uniform; therefore, the sampling location and time could affect
the results of PD-L1 staining [83]. Nonetheless, lacking a standard evaluation for PD-L1
expression limits its clinical significance [84].

3. Immunotherapy in CRC

One of the strategies that have been revolutionizing cancer treatment in the last few
decades revolves around targeting the immune system. Immunotherapy aims at overcom-
ing the limitations of chemotherapy and radiotherapy while targeting the host’s own im-
mune system. Once administered, immunotherapy alerts the innate and adaptive immune
responses about the presence of cancerous cells and guides the immune response toward
eradicating them, leaving healthy cells unaffected [85]. These drugs can be administered as
passive immunotherapy (immunostimulatory cytokines, immunomodulatory mAbs, den-
dritic cell-based immunotherapies, anti-cancer vaccines, inhibitors of immunosuppressive
metabolism, pattern recognition receptors, and immunogenic cell-death inducers) or as
active immunotherapy (adoptive cell transfer, oncolytic viruses, or tumor-targeting mAbs),
with some of these strategies finding their utility in CRC treatment [86].

3.1. Immunomodulatory mAbs

Immune checkpoints represent a set of regulatory pathways of the immune system
whose primary role is to ensure modulation and control of the immune response while
maintaining self-tolerance [87]. Two such pathways are PD-1/PD-L1/2 and CTLA-4/CD80-
CD86 and they represent encouraging targets for immunotherapies. These molecules are
present on tumor cells, T cells, and antigen-presenting cells (APC). Once the co-inhibitory
receptor (PD-1, CTLA4) interacts with its ligand (PD-L1/2 and CD80-CD86, respectively),
the T-cell function is inhibited, leading to a suppressed immune response [88,89]. Cancerous
cells exploit this mechanism by hyperactivating immune checkpoints and overexpressing
ligands; therefore, evading the immune response. ICIs attempt to dampen the PD-1/PD-
L1/1 and CTLA-4/CD80-CD86 interaction, restore immunosurveillance and aid the host’s
immune system in fighting cancer [90].

ICIs targeting PD-1 and CTLA4 have demonstrated significant activity in solid tumors,
such as melanomas, non-small-cell lung cancer (NSCLC), and renal cell carcinoma [91]. The
initial studies showed limited clinical activity of ICIs in non-selected CRC patients. A phase
I trial (NCT00730639) investigating the role of nivolumab (anti-PD-1) in advanced solid
tumors, including 19 CRC patients, reported a complete response that lasted over three
years in just one of the CRC patients with an MSI-H/dMMR phenotype [92,93]. Based on
these results and understanding of tumor microenvironment in MSI-H/dMMR tumors, the
interest in immunotherapy in CRC was further expanded. The mechanism behind the ICIs
is depicted in Figure 1.
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Figure 1. Mechanism of immunotherapy checkpoint inhibitors. When PD-1 located on the surface of
effectors T cells interacts with PD-L1 on the surface of tumor cells, downstream signaling pathways
are activated, inhibiting apoptosis, and promoting the conversion of effector T-cells to Tregs. CTLA-4
on the surface of T-cells can bind preferentially to the receptors (B7-1; B7-2) on the surface of APC to
limit T-cell activity and proliferation in a similar way.

Pembrolizumab is a PD-1 blocking humanized, IgG4 monoclonal antibody which
prevents the interaction between PD-1 and its ligands, PD-L1, and PD-L2 [94]. The phase
II trial, KEYNOTE-028, investigated the clinical activity of pembrolizumab (10 mg/kg)
in MSI-H tumors. Of the 41 patients included, 32 cases had mCRC with or without MSI-
H/dMMR phenotype. Among the MSI-H/dMMR mCRC patients, the objective response
rate (ORR) was 40%, and a disease-control rate >12 weeks was observed in 90% of cases.
The possibility of achieving a response to therapy was significantly associated with the
number of somatic mutations (p = 0.02) [27]. Considering these outcomes, in May 2017,
the FDA approved pembrolizumab to treat MSI-H/dMMR advanced CRC patients that
progressed on conventional chemotherapy [95].

Furthermore, the randomized, open-label phase III study KEYNOTE-177 demon-
strated a significant improvement in median progression-free survival (PFS) and ORR
after administration of pembrolizumab in MSI-H/dMMR mCRC when compared to 5-
fluorouracil-based chemotherapy alone or in combination with bevacizumab or cetuximab,
with acceptable toxicity. Median PFS was significantly longer in the pembrolizumab arm
(16.5 months), compared to the chemotherapy arm (8.2 months). Confirmed ORR reached
43.8% with pembrolizumab vs. 33.1% with chemotherapy. Based on these data, pem-
brolizumab was recommended as the first-line treatment for patients with mCRC and
MSI-H/dMMR [96].

Nivolumab, a human IgG4 mAbs, is another PD-1 inhibitor approved for mCRC with
MSI-H/dMMR [97]. CheckMate-142, a phase II open-label trial, investigated the efficacy
of nivolumab (3 mg/kg, every 2 weeks) in 74 previously treated MSI-H/dMMR mCRC
patients. The 12-month PFS was reported to be 50% (95% CI: 38–61), and the 12-month
OS was 73% (95% CI: 62–82) [98]. Based on these outcomes, in 2017, the FDA approved
nivolumab to treat MSI-H/dMMR mCRC with progressive disease after chemotherapy [99].
The trial further evaluated the combination of nivolumab + low-dose ipilimumab (anti-
CTLA4 mAb). At a median follow-up of 13.4 months, the results showed an improved
clinical benefit with an ORR of 55%. Regardless of the PD-L1 tissue expression, 71% of the
patients remain progression-free at 12 months. Moreover, the 12-month median OS was 85%
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(95% CI: 77.0–90.2) [100]. In 2018, these results led to the FDA approval of nivolumab + low-
dose ipilimumab for previously treated MSI-H/dMMR mCRC patients [101].

In addition, the trial further evaluated the role of the combination therapy as first-
line treatment for MSI-H/dMMR mCRC. After a median follow-up of 29.0 months, the
study showed a significant ORR (69%) and CR (13%), but with OS and median PFS not
yet reached [102]. Based on these results, to date, nivolumab is approved as the first-line
therapy option for MSI-H/dMMR mCRC, either as monotherapy or in combination with
ipilimumab [103].

Avelumab is an anti-PD-L1 inhibitor evaluated in mCRC with MSI-H/dMMR status.
A recently conducted phase II study evaluated monotherapy with avelumab in patients
with MSI-H/dMMR or POLE-mutated metastatic or unresectable CRC and presented
encouraging results with manageable toxicities. The primary endpoint of the study was
ORR, which was evaluated at 24.2% overall and 28.6% in patients with MSI-H/dMMR. In
terms of secondary endpoints, PFS rates were 3.9 and 8.1 months in the MSI-H/dMMR
patients, and the median OS was 13.2 months. The results presented by this trial showed
that avelumab efficacy in the mCRC setting is comparable with that of FDA-approved
pembrolizumab and nivolumab [104]. Several combination therapies between avelumab
and other therapeutical agents are being investigated at the moment [105].

Another ICI regimen is the one combining an anti-PD-L1 agent (durvalumab) with the
anti-CTLA-4 drug tremelimumab in mCRC. A randomized phase II study demonstrated
prolonged OS with durvalumab+tremelimumab vs. best supportive care (BSC). More-
over, the study analyzed the possibility of using plasma TMB for selecting patients for
immunotherapy. Patients with elevated TMB would most likely benefit from durvalumab
and tremelimumab combination. After a median follow-up of 15.2 months, the median OS
of the combination ICI therapy was 6.6 months, while the median OS for the BSC arm was
4.1 months [106].

Atezolizumab, an anti-PD-L1 mAb, is currently being investigated in the adjuvant
CRC setting. The phase III ATOMIC trial compares the combination of atezolizumab and
FOLFOLX vs. FOLFOX alone in MSI-H stage III CRC patients. The study has DFS as the
primary endpoint and will establish if ICIs might be added to the oxaliplatin-based regime
in this setting [107].

3.2. Neoadjuvant Setting

Immune checkpoint blockade has also been discussed as a neoadjuvant strategy,
although studies have reported only a few cases. One case report had shown significant
benefits when pembrolizumab was administered in the neoadjuvant setting in a Lynch
syndrome patient, who after that qualified for surgical resection [108]. A retrospective study
on two patients with locally advanced CRC has shown that nivolumab in the neoadjuvant
setting can induce complete responses, either as a single treatment option or followed
by surgery [109]. Moreover, nivolumab has proved to induce a significant pathological
response as neoadjuvant treatment for early stage CRC, when administered in combination
with ipilimumab, as demonstrated by a different clinical trial (NCT03026140) conducted in
Europe [110]. Even if, to date, no clinical trials are supporting this approach, the NCCN
guideline recommends the administration of pembrolizumab or nivolumab ± ipilimumab
as an option for neoadjuvant setting in resectable MSI-H/dMMR mCRC [111].
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3.3. Adoptive Cell Transfer

Neoantigens represent an emerging target for immunotherapeutic approaches at-
tempting to overcome the toxicities and narrowed response rates of non-antigen-specific
treatments [112]. Neoantigens are altered peptides derived from non-synonymous somatic
mutations otherwise absent in normal tissues. These tumor-specific antigens are presented
by major histocompatibility complex I (MHC) proteins and then recognized by T-cells
and triggering an anti-tumor T-cell immune response [113]. Next-generation sequencing
technologies are utilized with the purpose of identifying neoantigens suited to activate
tumor-specific T-cell recognition [114].

Adoptive cell transfer (ACT) describes the neoantigen-targeting strategy that requires
immune cells derived from patients (autologous transfer), donors (allergenic transfer),
or cells differentiated from stem cells. These cells are activated and expanded in vitro
through gene modification processes in order to make them better suited to target cancerous
cells and eradicate them, thereby improving the immune functions once infused into the
patient as therapy [115]. ACT technologies include the manipulation of the host’s tumor-
infiltrating lymphocytes (TILs) and the host’s T-cells that have been genetically altered to
express a T-cell receptor or a chimeric antigen receptor (CAR) [116]. Research into ACT
therapy has objectified clinical responses in the settings of cholangiocarcinoma [117], breast
cancer [118], metastatic melanoma [119,120], and CRC [121]. During a phase II clinical trial
(NCT01174121) assessing the efficacy of adoptive transfer of autologous TILs in certain
solid tumors (digestive tract, urothelial, breast, ovarian, and endometrial cancers), one
patient with mCRC showed objective regression. Following one infusion with TILs reactive
to KRAS G12D mutation identified in the tumor, the patient presented with regression of
all seven lung metastases. Nine months after therapy, one of the seven lesions showed
progression, and it was subjected to resection. After the removal of the lung lesion, the
patient remained clinically disease-free for four months [121].

CAR-T cell therapy has also been explored in the setting of CRC. CAR-T cells can be
manipulated to target a series of tumor-associated antigens (TAAs) highly expressed by
CRC tumors, most notably carcinoembryonic antigen CEA [122]. A phase I clinical trial
(NCT02349724) indicated that CEA CAR-T cell therapy has some efficacy in mCRC patients
with CEA positive tumors, with an acceptable toxicity profile. The authors reported stable
disease in 70% of the patients who received infusions with CAR-T cells, while two patients
showed tumor regression. In addition, the study observed a sustained decline in the levels
of serum CEA [123]. Furthermore, other phase I clinical trials have addressed the efficacy
of CAR-T cells targeting CEA as a regional treatment for liver metastases (NCT01373047,
NCT02416466) from CRC. The study conducted at Boston University concluded that per-
cutaneous hepatic artery infusions of anti-CEA CAR-T cells showed promising signs of
clinical response in patients who underwent multiple lines of systemic therapy, with a
safe toxicity profile [124]. The use of anti-CEA CAR-T cell therapy as local treatment of
peritoneal carcinomatosis from mCRC has also been studied in pre-clinical trials [125] and
several other studies are underway analyzing the further clinical impact of ACT in CRC
(NCT03935893, NCT03970382, NCT04426669).

3.4. Cancer Vaccines

In mCRC, several types of tumor vaccines were studied, including peptide vaccines,
autologous vaccines, dendritic cell transplants, and oncolytic viral vector vaccines, but
with limited efficacy [126]. The rationale behind viral antigen vaccines is based on the
pathogenicity of the virus, which can generate a robust immune response [127]. Therefore,
oncolytic virotherapy demonstrated antitumor efficacy when administered alone, or along-
side conventional chemotherapy [128]. Further research has identified potential targets for
peptide vaccine-based immunotherapy in TAAs over-expressed on the surface of tumor
cells. In the case of CRC, the targeted molecules were CEA, melanoma-associated antigen,
and MUC1 [129]. A phase II trial assessed the survival benefit of autologous dendritic
cells modified with a pox vector encoding MUC1 and CEA (PANVAC) in mCRC who
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were disease-free after metastasectomy and perioperative chemotherapy. The survival was
longer in the group of patients who received active immunotherapy [130]. Although cancer
vaccine TAAs have demonstrated their capacity to strengthen the immune system and pre-
sented low toxicities, the evidence showing a reliable survival benefit is limited [131–133].

As aforementioned, deficiencies in the MMR proteins generate genomic instability at
the sites of microsatellite coding sequences. This phenomenon results in frameshift antigens
considered to be highly immunogenic and a good target for vaccines [130]. Therapeutic
vaccines targeting tumor-specific neoantigens intend to enhance the existing effector T-cells,
expend new antitumor T-cells clones, and contribute to tumor destruction [134]. These
vaccines are formulated as RNA or DNA coding for neoantigens, virus-based systems,
synthetic peptides, or dendritic cells loaded with neoantigens [135]. After the encouraging
results from mouse models, the first-in-human trials investigating neoantigen vaccines
demonstrated their safety and efficacy in glioblastoma and melanoma patients [136,137].
To date, neoantigen-based vaccines with or without ICIs have been investigated in various
solid tumors, including CRC (NCT04087252, NCT03289962, NCT03639716, NCT0355271).
Furthermore, we summarize the current immunotherapeutic options in CRC in Figure 2.
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3.5. Highlights on Randomized Clinical Trials

Immunotherapy has shown great efficacy in MSI-H/dMMR CRC [102,138]. However,
it is still a challenge to identify the optimal line of therapy and possible novel combinations.
The ongoing and completed clinical trials investigating anti-PD1, anti-PD-L1, and anti-
CTLA4 are listed in Tables 1 and 2, respectively.



Life 2022, 12, 229 10 of 29

Table 1. Ongoing clinical trials for MSI-H/dMMR CRC.

Study Name Status Phase Study Population Treatment Endpoint Purpose

NCT02982694 Recruiting II

Advanced
chemotherapy

resistant MSI-like
CRC

Atezolizumab +
bevacizumab ORR

To determine the anti-tumor
effect of atezolizumab in

combination with
bevacizumab in

chemotherapy-resistant
MSI-H/dMMR CRC

NCT02997228 Recruiting III MSI-H/dMMR
mCRC

Atezolizumab vs.
atezolizumab +
bevacizumab +

FOLFOX

PFS

To compare mFOL-
FOX6/bevacizumab/atezolizumab
with atezolizumab alone as

the first-line treatment in
MSI-H/dMMR mCRC

NCT04014530 Recruiting I-II

dMMR and pMMR
mCRC and dMMR

endometrial
carcinoma

Pembrolizumab +
Ataluren

AE and
maximum

tolerable dose
of Ataluren
AE of the

combination
ORR

Efficacy of pembrolizumab in
combination with Alaturen
in pMMR/dMMR mCRC

and dMMR metastatic
endometrial carcinoma

NCT03638297 Recruiting II MSI-H/dMMR CRC
Pembrolizumab +

COX inhibitor
(aspirin)

RR

Safety and efficacy of
pembrolizumab in

combination with COX
inhibitor in MSI-H/dMMR

or high TMB CRC

NCT04001101 Recruiting II
MSI-

H/dMMRmetastatic
solid tumors

Pembrolizumab +
RT (metastatic

site) vs.
pembrolizumab

ORR

To determine if the ORR is
improved by the addition of

radiotherapy to
pembrolizumab in

MSI-H/dMMR metastatic
solid tumors, compared to

pembrolizumab alone

NCT04730544 Recruiting II MSI-H/dMMR
mCRC

Nivolumab +
ipilimumab AE PFS

To determine the safety and
efficacy of two combination
regiments of nivolumab +

opilimumab in
MSI-H/dMMR mCRC

NCT04008030 Recruiting III MSI-H/dMMR
mCRC

Nivolumab vs.
nivolumab +
ipilimumab

Nivolumab +
ipilimumab vs.
chemotherapy

PFS

To compare the clinical
benefit of nivolumab alone,
nivolumab + ipilimumab or

investigator’s choice
chemotherapy in

MSI-H/dMMR mCRC

NCT03104439 Recruiting II
MSI-H/dMMR CRC,

MMS CRC,
pancreatic cancer

Nivolumab +
ipilimumab + RT DCR

To evaluate the combination
of nivolumab, ipilimumab,
and radiation therapy in

MSS/MSI-H/dMMR CRC
and pancreatic cancer

NCT02060188 Active, not
recruiting II

Recurrent or
metastatic MSI-H

and non-MSI-H CRC

Nivolumab
Nivolumab +
ipilimumab

Nivolumab +
ipiliumab +
cobimetinib

Nivolumab +
BMS-986016
Nivolumab +

daratumumab

ORR

To evaluate nivolumab alone
or in combination with other

anti-cancer molecules in
recurrent or metastatic

MSI-H or non-MSI-H CRC

NCT03186326 Recruiting II MSI-H/dMMR
mCRC Avelumab PFS

Tolerance and effectiveness
of Avelumab, compared to
the second line standard

chemotherapy for
MSI-H/dMMR mCRC

NCT03475953 Recruiting I-II

Advanced or
metastatic solid

tumors, including
MSI-H/dMMR CRC

Avelumab +
regorafenib

RP2D for
regorafenib

ORR
PFS

To evaluate efficacy and
safety of regorafenib in

combination with avelumab
in advanced/metastatic

solid tumors
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Table 1. Cont.

Study Name Status Phase Study Population Treatment Endpoint Purpose

NCT03435107 Active, not
recruiting II

MSI-H/dMMR or
POLE mutated

mCRC
Durvalumab ORR

To investigate durvalumab in
previously treated

MSI-H/dMMR or POLE
mutated mCRC

NCT02983578 Active, not
recruiting II

Advanced pancreatic
cancer

NSCLC
dMMR CRC

Danvatirsen
+durvalumab AEs, SAEs

To evaluate danvatirsen and
durvalumab in patients with
advanced pancreatic cancer,
NSCLC, and dMMR CRC

refractory to
standard therapy

Table 2. Completed clinical trials for MSI-H/dMMR CRC.

Study Name Phase Study
Population Treatment Primary Endpoint Results Purpose

NCT02460198 II

Previously
treated LA

unresectable or
mCRC

MSI-H/dMMR

Cohort A:
pembrolizumab

after ≥2 prior
lines of therapy

Cohort B:
pembrolizumab

after ≥1 prior line
of therapy

ORR OR = 33%/33%

To determine the
efficacy of

pembrolizumab
monotherapy in

previously treated LA
unresectable or mCRC

MSI-H/dMMR patients

NCT01876511 II

MSI tumors
(Cohort A: MSI +
CRC; Cohort B:

MSI − CRC;
Cohort C: MSI +

non-CRC)

Pembrolizumab

irPFS (A,B), irORR
(A,B), irPFS (C),

ORR (A,C),
PFS (A,C)

IrORR
A = 40%,

irPFS A = 78%; irORR
B = 0%, irPFS B = 11%,
Median PFS A = not
reached; Median OS

A = not reached;
Median PFS

B = 2.2 months;
Median OS

B = 5 months;
irORR C = 71%,

irPFS = 67%

To determine the
anti-tumoral activity of

pembrolizumab in
MSI/MSS cohorts

NCT02178722 I/II
Selected cancers

(including MSI-H
CRC)

Pembrolizumab +
epacadosat I: TEAE; II: ORR

Acceptable safety
profile

ORR CRC = N/A

To assess the safety,
tolerability, and efficacy
of combination therapy

pembrolizumab +
epacadosat in patients
with certain cancers.

NCT02335918 I
II

Advanced
refractory solid

tumors
(including CRC)

Varlilumab +
nivolumab

I: TEAE
II: ORR

Acceptable safety
profile

PR = 5% CRC
SD = 17% CRC

To determine the
clinical benefit, safety,

and tolerability of
combination therapy

between varlilumumab
+ nivolumab in certain

advanced refractory
solid tumors.

NCT02227667 II Advanced MSI-H
CRC Durvalumab ORR 22%

To determine the effects
of durvalumab therapy

in advanced MSI-H
CRC patients.

NCT02777710 I
Metastatic/

advanced CRC
and PaC

Durvalumab +
pexidartinib

1.DLT
2.ORR

Acceptable safety
profile

ORR (2 m) = 21%

To evaluate the safety
and activity of

durvalumab combined
with pexidartinib in

patients with
metastatic/advanced

pancreatic or CRC
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4. Resistance to Immunotherapy

Even if the administration of ICIs in MSI-H/dMMR CRC patients is relatively recent,
resistance to treatment was already reported. The clinical studies investigating ipilimumab-
nivolumab and pembrolizumab showed objective responses of 54.6% [45] and 40% [27],
respectively. The results suggest that a group of MSI-H/dMMR CRC patients harbor
mechanisms of resistance that impair immune antitumor activity [139]. One of the mecha-
nisms by which cancer cells avoid immune surveillance is altering the expression of the
human leukocyte antigen (HLA) complex, leading to inadequate antigen processing and
presentation [140]. A study including 179 MSI-H/dMMR CRC patients from the Nurse
Health Study, Tumor Cancer Genome Atlas, and the Health Professionals Follow-up Study
cohorts investigated the potential immune evasion mechanism [141]. The study described
alterations in the immune-response-related genes correlated to B-cells development, T-cells
response, and NK cell function. Most of the MSI-H tumors harbored at least one mutation
that could impair antigen presentation. Although in, the majority of cases, these initial
mutations were not sufficient to confer resistance to ICIs, they suggest that immune editing
is preceding the treatment and tumors are on a resistance continuum. β-2 microglobulin
(B2M) is known to be an important part of the HLA-class I complex. Mutations in the
B2M gene result in the complete loss of HLA class I molecules on the cell surface [142].
Therefore, B2M deficiency was considered a negative prognostic factor in various tumor
types and linked to immune escape [143,144]. B2M somatic mutations were found in about
30% of the dMMR CRCs and less than 2% in pMMR tumors [145]. These mutations occur
very often in the coding microsatellites as a result of microsatellite instability and were
correlated with resistance to anti-PD-1 molecules [146,147]. It is currently unclear if new
clones with defect antigen-presenting machinery evolve due to MSI and genomic instability
during the immune checkpoint treatment or the selection of preexisting clones with B2M
alterations leads to resistance [148].

Tumor-specific antigen expression plays a significant role when talking about the
persistence of antitumor immune response. MSI-H/dMMR tumors generate about 50
times more neoantigens than MSS tumors due to frameshift mutations resulting from
MMR deficiency [149]. This aspect brings up an important issue regarding the quality of
mutations. Point mutations, causing limited amino acid changes in the protein structure,
are less likely to generate a solid immune response, compared to mutations affecting
the antigenic structure of proteins [150]. For instance, KRAS point mutations are an
important step in developing many solid tumors; however, they show poor immunogenic
activity [151]. It is essential to mention that the loss of MMR-gene expression might
not always represent MSI status. Consequently, patients could present with an MSI-
L disease similar to the MMS phenotype, and therefore with inadequate response to
immunotherapy [152].

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population repre-
sented by immature myeloid cells with immune regulatory functions in various diseases,
such as chronic inflammation, autoimmune diseases, and viral infections [153]. Accu-
mulating evidence suggested that, in cancer-bearing hosts, MDSCs actively contribute to
resistance to immunotherapy [154,155]. MDSCs inhibit the activation and cytotoxicity of T
cells and were also shown to favor Treg differentiation and expansion [156]. Additionally,
they were shown to be involved in an array of non-immunologic processes, including pro-
motion, angiogenesis, and metastasis [157]. In breast cancer models, the accumulation of
circulating MDSCs was associated with unresponsiveness to anti-CTLA4/anti-PD-1 [158].
In melanoma patients, low circulating MDSCs levels are common among clinical responders
to ipilimumab [159]. In CRC, MSI-L/pMMR tumors were reported to be highly infiltrated
with MDSCs and Treg, compared to MSI-H/dMMR, which might explain the poor out-
come of ICIs [160]. To better select the population who could most benefit from immune
checkpoint inhibitors, further studies are needed to determine if negative regulatory cells
should be included in biomarker systems, such as immunoscore [58].
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In patients who developed resistance to PD-1 blockade, the whole-exome sequencing
of the tumors showed mutations in Janus kinases 1 and 2 (JAK1 and JAK2) [161]. Truncating
mutations in JAK 1/2 were correlated to a lack of IFN-γ responsiveness in cancer cells and,
consequently, with secondary resistance to ICIs [162,163]. Additionally, in JAK mutated MSI
CRCs, melanoma, endometrial cancer, the expression of the PD-L1 gene was significantly
down-regulated [164,165]. In melanoma cells, it was shown that the IFN-γ signaling
pathway regulates the expression of PD-L1 through JAK1/2. Therefore, cancer cells might
evade IFN-γ-immune response throughout JAK1/2 mutations, leading to impaired IFN-
y signaling and preventing PD-L1 expression [166]. Signal transducer and activator of
transcription proteins (STATs 1/2), members of this pathway, which function downstream of
JAK signaling, are potent mediators of IFN-γ. Mutations in STAT proteins resulting in loss
of function could generate impaired IFN-γ signaling and, therefore, immune escape [167].

It was recently discovered that the Wnt/β-catenin pathway coordinates the tumor
microenvironment and immune cell infiltration [168]. A preclinical study using murine
melanoma models demonstrated that increased expression of the Wnt/β-catenin pathway
could decrease IFN-γ levels and T-cell function as a consequence [169]. Another study on
melanoma cells also showed that hyperactivation of the Wnt/β-catenin pathway reduces
T-cell infiltration in the TME, leading to reduced efficacy of ICIs [170]. Regarding MSI-
H/dMMR CRC patients, the WNT signaling pathway should be further analyzed in the
context of ICIs responsiveness.

5. The Future of Immunotherapy in CRC
5.1. A New Generation of Immune Checkpoint Inhibitors

The interest over other immune checkpoints increased significantly in the last years,
and new potential targets were identified, such as LAG-3, TIM-3, TIGIT, or VISTA [171].
These receptors were shown to be highly expressed on TILs, compared to circulating T-cells
found in CRC patients [172]. In several tumors, such as ovarian, melanoma, NSCLC, and
gastrointestinal cancers, PD-1 was usually co-expressed with LAG-3, TIM-3, TIGIT, and
VISTA on TILs In ovarian cancer, the number of PD-1+LAG-3+CD8+T-cells expressing
TNF-α and IFN-γ were significantly decreased, compared to their equivalents without
the co-inhibitory receptors [173–176]. Similarly, in CRC, it was shown that the amount of
tumor-infiltrating CD8+ lymphocytes producing IFN-γ was reduced when expressing both
TIM-3 and PD-1 [177]. Considering these observations, it might be assumed that using
a single anti-PD-1 agent is not always enough to restore T-cells’ functionality. Based on
this rationale, many clinical studies investigating new generation checkpoint inhibitors
were implemented. V-domain Ig Suppressor of T cell Activation (VISTA) is an immune
inhibitory receptor involved in maintaining peripheral tolerance, and it also inhibits the
effector function of T cells [178]. Le Mercier et al. demonstrated that VISTA blockade
altered the suppressive hallmark of the TME and enhanced specific T-cell response in tumor
cells [179]. To date, there is an ongoing phase I clinical study with a fully human mAb anti-
VISTA tested in advanced solid tumors (NCT04475523). Preliminary results showed that
the administration of the anti-LAG-3 antibody, R3767, led to stable disease in 11 out of 27
patients with advanced solid tumors [180]. Anti-TIM-3 antibodies MBG42 and LY3321367
were well tolerated in monotherapy or when combined with other ICIs [181,182].

Another approach to improve immunotherapy outcomes is to combine ICIs with
co-stimulatory checkpoint molecules, such as anti-ICOS, CD28, TNFRSF7, TNFRSF9, and
glucocorticoid-induced TNFR-related protein. OX40 antigen (CD134) is a part of the tumor
necrosis factor receptors family, and alongside its ligand, OX40L stimulates the activation
and proliferation of CD4+ and CD8+ [183]. Various clinical trials are investigating the
activity and safety of OX40 agonists in monotherapy or combined with ICIs [184,185].
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In order to extend the curative potential of cancer immunotherapies, novel delivery
systems are needed. Ongoing research investigates various delivery platforms such as im-
plants, nanoparticles, biomaterials, and scaffolds [186]. Among their many benefits, we can
mention the following: protecting and keeping the cargo inactive until it accumulates in the
targeted cells, allowing localized and controlled drug delivery to minimize toxicities [187].
For example, to reduce the side effects following systemic administration, ICIs were linked
to a peptide derived from PLGF2 (placental growth factor 2) with a good affinity for numer-
ous matrix proteins. In melanoma and breast cancer models, these conjugates remained
more localized near the tumor site after peritumoral administration [188]. Moreover, new
delivery platforms, such as nanoparticles, could attenuate drug exposure of particular tis-
sues caused by therapeutic combinations (chemotherapy and immunotherapy) that would
otherwise be toxic for the patient [187,189]. Besides the many benefits already mentioned,
new delivery technologies could address the limitations set by resistance mechanisms. For
instance, delivery systems could be expanded to modulate immunogenicity in tumors with
cold microenvironments and enhance the response to ICIs [190]. As immunotherapy is
evolving very fast, all the advances made in drug delivery will significantly contribute to
personalized medicine.

5.2. Synergy of Immunotherapy with Other Therapies for MSI-L/pMMR

In most mCRC cases (about 95%) defined as pMMR, ICIs failed to provide clinical
benefits due to the immune deserted TME [191]. Clinical trials have focused on several
combination strategies between ICIs and chemotherapy, radiotherapy, or targeted molecules
for this group of patients (Table 3).

5.2.1. Immunotherapy with Radiotherapy

Although the MSI-H/dMMR tumors in the ICIs have achieved a significant and
durable response, the results in pMMR tumors are disappointing [192]. However, it was
hypothesized that radiotherapy (RT) combined with immunotherapy might be able to
overcome primary resistance to ICIs in MSS CRC [193]. There is growing evidence that by
damaging DNA and inducing tumor death using RT to a single site, it would be possible to
enlarge the neoantigen repertoire and to up-regulate pro-inflammatory cytokines, thereby
enhancing the immunotherapy effect. This phenomenon is described by the abscopal ef-
fect [194]. To date, the combination of immunotherapy and RT is being investigated in two
clinical fields. The first one is the oligometastatic setting when locoregional RT is adminis-
tered with curative intent, and immunotherapy can prevent distant and local relapse and
enhance the response within the irradiation field. The second field involves the metastatic
setting when RT to a metastatic site is expected to synergize with immunotherapy [195].
Duffy et al. investigated the combination of an anti-PD-1 agent (AMP224) with stereotactic
body radiation directed against liver metastasis in mCRC patients. The treatment was
feasible and safe; however, the preliminary results showed no objective response [196].
In a phase II study including 40 refractory pMMR mCRC patients, the administration
of nivolumab + ipilimumab in combination with RT (to a single metastatic site) showed
promising results in terms of efficiency and feasibility [24,197]. A different study con-
ducted by Zhou et al. followed the response to ICI in combination with chemoradiotherapy
(CRIT) of five advanced and metastatic CRC patients harboring MSI-H/dMMR. The ORR
was 100%, with three patients achieving CR and two patients with PR, with acceptable
toxicity. This retrospective study hints that CRIT could enhance the efficacy of anti-PD-1
immunotherapy and overcome potential resistance mechanisms [198].
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Table 3. Completed clinical trials investigating immunotherapy in MMS/pMMR CRC.

Study
Name Phase Study

Population Treatment Primary
Endpoint Results Purpose

NCT02981524 II
Advanced

pMMR
CRC

Pembrolizumab+
cyclophos-
phamide+

Colon cancer
vaccine

ORR No OR with
DCR = 18%

To assess the efficacy (as
measured by RECIST

criteria) of therapy with
CY/GVAX in

combination with
pembrolizumab in

patients with advanced
pMMR CRC

NCT03274804 I
Refractory

MSS/
pMMR mCRC

Pembrolizumab +
Maraviroc

Feasibility rate
of the combined

therapy
FR = 94.7%

To determine the
feasibility rate of

combination therapy
between pembrolizumab

and maraviroc in
previously treated
subjects who have

refractory MSS/pMMR
mCRC

NCT02860546 II MSS CRC
Nivolumab +

tipiracil
hydrochloride

irORR No tumor
response

To evaluate the efficacy
of nivolumab + tipiracil

hydrochloride in patients
with MSS

refractory mCRC

NCT03258398 II MSS CRC

Avelumab +
tomivosertib

vs.
tomivosertib

Part 1:
DLT during

the first
treatment cycle

Part 2: ORR

Part 1:
Acceptable safety

profile for
combination

therapy
Part 2: N/A

To evaluate the safety,
tolerability, and

anti-tumor activity of
tomivosertib with or
without avelumab in

MSS CRC patients

NCT02811497 II

Advanced solid
tumors

(including MSS
CRC)

Azacitidine +
durvalumab ORR

No OR with
DCR = 7.1

and median
PFS = 1.9 m and

OS = 5 m

To assess the antitumor
activity of azacitidine in

combination with
druvalumab in advanced

solid tumors

NCT03005002 I MSS mCRC
(Liver)

Durvalumab +
tremelimumab
following ra-

dioembolization
(RE) with

SIR-spheres

Safety and
hepatic

response rate

Safety of RE
followed by D + T

Lack of clinical
response

To determine the safety
and the hepatic response

rate of durval-
umab+tremelimuma
following RE in MSS

CRC that has spread to
the liver

NCT02876224 Ib Non MSI-H
mCRC

Cobimetinib +
Bevacizumab +
atezolizumab

TEAE
Acceptable safety

profile and
manageable AEs

To assess the safety,
tolerability, and

pharmacokinetics of oral
cobimetinib with IV
atezolizumab and
bevacizumab in

previously treated
mCRC with non-MSI-H

NCT02260440 II
Chemo-

refractory
MSS mCRC

Pembrolizumab +
azacitidine ORR OR = 3%

To evaluate the
anti-tumor activity,

safety, and tolerability of
pembrolizumab in
combination with

azacitidine in subjects
with chemo-refractory

MSS mCRC
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Table 3. Cont.

Study
Name Phase Study

Population Treatment Primary
Endpoint Results Purpose

NCT03168139 I/II MSS mCRC
mPaC

Olaptesed pegol
vs.

olaptesed pegol +
pembrolizumab

Pharmaco-
dynamics
Safety and
tolerability

Induction of
immune response

and
acceptable safety

profile

To explore safety,
tolerability, and efficacy

of olaptesed
monotherapy or in
combination with
pembrolizumab in

patients with MSS mCRC
and pancreatic cancer

NCT02788279 III mCRC

Atezolizumab (A)
vs.

atezolizumab
(A)+

cobimetinib (C)
vs.

regorafenib (R)

OS

OS (A) = 7.10 m
OS (A + C)
= 8.87 m

OS (R) = 8.51 m

To compare regorafenib
to cobimetinib +

atezolizumab and
atezolizumab

monotherapy in the
setting of mCRC

5.2.2. Immunotherapy with Chemotherapy

Similarly, the addition of chemotherapy to pMMR tumors could modify the immune
contexture by generating immunogenic cell death, releasing neoantigens, and therefore acti-
vating an immune response against cancer cells [199]. Starting from this biological rationale,
some preclinical studies have shown the role of chemotherapy in sensitizing malignant cells
to ICIs in lung cancer models, supporting such studies in other malignancies [200]. A phase
II study evaluated the efficacy of the FOLFOX regimen in combination with pembrolizumab
in untreated mCRC, including 22 pMMR cases, 3 dMMR, and 5 patients with no available
data. The results showed an ORR of 53% and a DCR of 100% at eight weeks [201].

Moreover, temozolomide (TMZ) is an oral alkylating agent that can generate a high
number of somatic mutations in cancer cells, and therefore induce an MSI-phenotype in
pMMR mCRC. TMZ methylates DNA strands, inhibits replication, and induces apopto-
sis [202]. The efficacy of TMZ is reduced by the O6-methylguanine methyltransferase
enzyme (MGMT), which is coded by the MGMT gene. Therefore, silencing the MGMT gene
could enhance the sensitivity of tumor cells to TMZ [203]. The MAYA trial (NCT03832621)
evaluates the efficacy of nivolumab, ipilimumab, and TMZ in pMMR and MGMT-silenced
mCRC patients, who did not progress following two cycles of TMZ [204]. The ARETHUSA
trial (NCT003519412) is a phase II non-randomized study in which dMMR mCRC patients
are treated with pembrolizumab until disease progression; moreover, the mCRC patients
with dMMR, RAS-mutated, and MGMT IHC-negative/promoter hypermethylation posi-
tive are treated with TMZ until disease progression. By the time of progression, a tumor
biopsy is performed to determine TMB. If it is >20 mutations/Mb, the patients receive
pembrolizumab. The study’s primary endpoint is ORR in pMMR mCRC patients who
received pembrolizumab [205].

5.2.3. Immunotherapy with Chemotherapy and Targeted Agents

There are accumulating pieces of evidence that anti-vascular endothelial growth factor
(VEGF) monoclonal antibody and bevacizumab could have immunomodulatory properties.
It is known that VEGF can trigger T regulatory cell proliferation, increase MDSCs infiltration
in the TME, and it can also favor CTLs exhaustion by the upregulation of the suppressive
immune checkpoint molecule [206]. Therefore, it is a compelling rationale for the association
of anti-VEGF with ICIs [207,208]. From this perspective, a clinical study evaluated the
activity of the combination between bevacizumab and anti-PD-L1 atezolizumab (cohort A),
or the same combination associated with modified FOLFOX6 chemotherapy (cohort B) in
mCRC patients. In cohort A, one patient achieved partial response (ORR 1/14), and nine
patients had stable disease. In cohort B, the ORR was 52% (12/23), and a median PFS was
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14.1 months. The phase Ib REGONUVO trial assessed the efficacy and safety of regorafenib
(80–160 mg/day) and nivolumab (3 mg/kg) in metastatic gastric cancer and mCRC. The
study included 25 mCRC, from whom 24 (96%) cases had MSS/pMMR phenotype. The
results showed an ORR of 36% in the mCRC cohort. The median PFS was 7.9 months, and
the median OS was not reached [209]. These preliminary results suggesting a potential
synergistic activity must be confirmed in more extensive randomized trials [210].

Moreover, early phase trials are ongoing using ICIs and antiangiogenic molecules in
mCRC: NCT03396926 (pembrolizumab + capecitabine + bevacizumab), NCT03081494 (anti-
PD-1 inhibitor (PDR001) + regorafenib), and NCT02848443 (nivolumab + TAS-2+oxaliplatin
+ bevacizumab).

5.2.4. Immunotherapy with MEK Inhibition

MEK is an essential signaling molecule in the MARK pathway. Preclinical and clinical
trials suggested that the inhibition of MEK in association with ICIs could up-regulate MHC
class I and increase CD8+ infiltration in the tumor microenvironment, thereby generat-
ing a more effective antitumor activity [211,212]. Promising results came from an early
phase I clinical trial in chemo-refractory mCRC patients evaluating the combination of
the MEK inhibitor Cobimetinib with Atezolizumab, with an ORR of 17% (4/21). How-
ever, a confirmatory phase III clinical study investigating the use of atezolizumab with
or without cobimetinib failed to replicate the clinical benefit over regorafenib (a multi-
tyrosine kinase inhibitor) in patients with chemo-refractory MSI-L/pMMR mCRC (Table 3).
The CheckMate 9N9 phase 1/2 trial is currently evaluating the efficacy and safety of
nivolumab ± ipilimumab in combination with tremelimumab (MEK inhibitor) in recurrent
mCRC patients (NCT03377361).

5.2.5. Immunotherapy with Colony-Stimulating Factor 1 Receptor

MDSCs represent a heterogeneous population of relatively immature myeloid cells
demonstrated to display a powerful immunosuppressive activity in numerous solid tumors,
including CRC [213–215]. Colony-stimulating Factor 1 Receptor (CSF1R) is present on the
monocyte surface, and its activation by the colony-stimulating factor (CSF) could promote
the differentiation in MDSCc. It was hypothesized that inhibiting CSF1R will lead to
suppression of MDSCc, and therefore delayed tumor growth [213]. A phase I clinical study
including patients with pancreatic and CRC found the association between durvalumab
(anti-PD-L1) and pexidartinib (CSF1 R inhibitor) to have an acceptable toxicity profile with
no unexpected events. Further clinical data are expected in this regard [216].

5.2.6. Immunotherapy with Carcinoembryonic Antigen T-Cell Bispecific

Carcinoembryonic antigen (CEA), part of the immunoglobulin supergene family, is
overexpressed in most mCRC. CEA CD3 T-cell bispecific (TCB) represents a TCB anti-
body that can bind simultaneously at CD3 of T-cells and CEA on tumor cells. Tabernero
et al. evaluated the efficacy of CEA TCB alone or combined with atezolizumab in chemo-
refractory mCRC. In the monotherapy cohort (31 patients), two (6%) patients had a partial
response, and the disease control rate was 45%. In the second cohort (11 patients), seven
(64%) patients had stable disease, and two (18%) cases had a partial response. However,
CEA TCB treatment had a complex safety profile which might be an issue for its future
development [217].

6. Conclusions

Despite notable improvements in the diagnosis and treatment of CRC patients, the
metastatic disease still has a poor prognosis with a median OS of 30 months. In recent
years, we have witnessed the remarkable impact generated by immunotherapy in selected
tumors. To date, most digestive tumors benefit very little from these therapeutic strategies.
MSI-H/dMMR mCRC patients demonstrated an objective and sustained response to im-
munotherapy. However, given the heterogeneity of tumors and environmental conditions,
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even in this selected subset of patients, intrinsic and acquired resistance was described.
Furthermore, predictive, and prognostic biomarkers and genetic alterations that could
impair the efficacy of ICIs are still suboptimal. The current evidence regarding the response
to ICIs suggests that predictive models would be more helpful than single biomarkers.
Moreover, to enhance the efficacy of immunotherapy, we need an improved phenotypic
description of the immune cells and a comprehensive understanding of the TME.

Future technological progress is expected to deepen our knowledge of the immune
system by focusing on the entire genome, detecting new immune cells with clinical rele-
vance, and developing new approaches to target cancer cells precisely. Further insight into
innate and acquired resistance will lead to optimal combinatorial strategies to counteract
immune escape.
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Glossary

AA African American
AE adverse events
B. Fragilis Bacillus Fragilis
B2M β2 microglobulin
BRAF v-raf murine sarcoma viral oncogene homolog B1
CAR chimeric antigen receptor
CEA carcinoembryonic antigen
CIMP CpG island methylator phenotype
CR complete response
CRC colorectal cancer
AE adverse events
B. Fragilis Bacillus Fragilis
B2M β2 microglobulin
BRAF v-raf murine sarcoma viral oncogene homolog B1
CAR chimeric antigen receptor
CEA carcinoembryonic antigen
CIMP CpG island methylator phenotype
CR complete response
CRC colorectal cancer
CSF colony-stimulating factor
CSF1R colony-stimulating factor 1 receptor
CTLA4 cytotoxic T lymphocyte-associated antigen 4
DCR disease control rate
DFS disease-free survival
dMMR mismatch repair
F. nucleatum Fusobacterium Nucleatum
HDACi histone deacetylase inhibitors
HER2 human epidermal growth factor 2



Life 2022, 12, 229 19 of 29

HLA human leukocyte antigen
HMAs methyltransferase inhibitors
ICI immune checkpoint inhibitors
ICOS inducible T-cell costimulator
IFN-γ interferon-γ
IgG4 immunoglobulin G4
JAK Janus kinase
JAK1 and JAK2 Janus kinases 1 and 2
KRAS Kirsten rat sarcoma 2 viral oncogene homolog

Abbreviations

mAbs monoclonal antibodies
MAGE melanoma associated antigen
mCRC metastatic colorectal cancer
MDSCc myeloid-derivated suppressor cells

MEK
acronym for MAPK/ERK Kinase-extracellular signal-regulated
kinase/extracellular signal-regulated kinase

MHC I major histocompatibility complex I
MLH1 human mutL homolog 1
MLH6 human mutL homolog 6
MMR mismatch repair
MSH2 MutS Homolog 2
MSI microsatellite instability
MSI-H microsatellite instability-high
MSI-L microsatellite instability-low
MSS microsatellite stable
NCRs negative checkpoint regulators
NCRs negative checkpoint regulators
NGS next generation sequencing
NK natural killer
NRAS neuroblastoma RAS viral oncogene homolog
NTRK Neurotrophic tyrosine receptor kinase
ORR overall response rate
OS overall survival
PD-1 programmed cell death-1
PD-L programmed cell death-ligand 1
PFS progression free survival
PI3K-AKT-
mTOR

Phosphoinositide 3-kinases-Protein kinase B-mechanistic target of rapamycin

PLGF2 placental growth factor 2
POLD1 DNA polymerase delta
POLE DNA polymerase epsilon
RAS rat sarcoma 2 viral oncogene homolog
RP2D recommended phase 2 dose
RR response rate
STATs signal transducer and activator of transcription proteins
TAA tumor associated antigens
TCGA Tumor Cancer Genome Atlas
TCR T-cell receptor
TIL tumor infiltrating lymphocytes
TMB tumor mutational burden
TMB-H tumor mutational burden-high
TME tumor microenvironment
TNFRSF tumor necrosis factor receptor superfamily
TNFα tumor necrosis factor-α
TNM tumor node metastasis
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TSAs tumor specific antigens
VEGF vascular endothelial growth factor
VISTA V domain Ig suppressor of T cell activation
WHO world health organization
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