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During an epidemic, individuals’ decisions on whether or not to take vaccine

may affect the dynamics of disease spread and, therefore, the effectiveness of

disease control. Empirical studies have shown that such decisions can be sub-

jected to individuals’ awareness about disease and vaccine, such as their

perceived disease severity and vaccine safety. The aim of this paper is to gain

a better understanding of individuals’ vaccination behaviour by modelling

the spread of awareness in a group of socially connected individuals and exam-

ining the associated impacts on their vaccination decision-making. In our

model, we examine whether or not individuals will get vaccinated as well as

when they would. In doing so, we consider three possible decisions from an

individual, i.e. to accept, to reject, and yet to decide, and further associate

them with a set of belief values. Next, we extend the Dempster–Shafer

theory to characterize individuals’ belief value updates and their decision-

making, having incorporated the awareness obtained from their connected

neighbours. Furthermore, we examine two factors that will affect individuals’

vaccination decisions: (i) reporting rates of disease- and vaccine-related

events, and (ii) fading coefficient of awareness spread. By doing so, we can

assess the impacts of awareness spread by evaluating the vaccination dynamics

in terms of the number of vaccinated individuals. The results have demon-

strated that the former influences the ratio of vaccinated individuals, whereas

the latter affects the time when individuals decide to take vaccine.
1. Introduction
In controlling the spread of infectious diseases, the effectiveness of a vaccination

programme depends on the ratio of the vaccinated host population [1–4]. For

example, vaccination can prevent disease transmissions when the coverage of

a host population is above the critical level of the herd immunity threshold

[5,6]. In this context, individuals’ vaccination decisions on whether or not to

take vaccine can play an important role in achieving adequate and sustained

vaccination coverage [7,8].

Previous studies on individuals’ vaccination decision-making have typically

focused on several determinants with respect to individuals’ perceived benefits

and risks of vaccination, including vaccine-induced immunization [9–11], the

possible adverse events following immunization (AEFI) [12,13] as well as social

and financial costs associated with disease infection and vaccination, such as

the direct costs of vaccination, the expenses for the treatment of disease

infection, and the indirect costs in the form of absence from workplaces or schools

[14–16]. In this regard, game-theoretical analysis has been widely used to

describe individuals’ vaccination decisions by examining their personal

optimized pay-offs based on the perceived risks and benefits of vaccination

[17–19]. Moreover, some studies have looked into the social and psychological

aspects of decision-making (e.g. social learning process [20] and imitation behav-

iour [21–24]). While others have considered the issues of incomplete information
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Figure 1. A schematic of the impacts of the spread of awareness on individ-
uals’ vaccination decision-making. We consider a group of individuals whose
vaccination decisions (i.e. whether or not to take vaccine) depend on their per-
ceptions about disease severity and vaccine safety. We use a social network to
characterize the structure of individuals’ interactions. The awareness about
severe disease infections and vaccine-related AEFI can spread from person to
person through their interaction relationships, which will substantially affect
their perceived disease severity and vaccine safety and, thus, change their vac-
cination decisions accordingly. (Online version in colour.)
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by adding either the potential discrepancy between individ-

uals’ perceptions and real situations (e.g. the perceived

disease prevalence and the adverse effects of vaccine [25,26])

or different sources of information (e.g. previous disease preva-

lence or vaccination programmes [27–29]).

These earlier decision-making studies have addressed

the problem of whether or not individuals will get vaccinated

by taking into account their prior knowledge about the

disease, the vaccine and the associated costs. While during

a vaccination programme, the time when individuals will

make their vaccination decisions is still a concern. Further-

more, the above-mentioned prior knowledge may exist only

for the routine vaccination programmes against seasonal

infectious diseases (e.g. measles and chickenpox [30]). As

for a newly developed vaccine against an emerging infectious

disease (e.g. vaccine against the 2009 H1N1 influenza [31]),

there is always a lack of such prior knowledge. Empirical

studies have shown that individuals’ vaccination decisions

can be subjected to their perceptions about disease and

vaccine rather than to the actual situations, which are con-

tinuously affected by the social environment with which

they interact [32]. Specifically, individuals who are aware of

severe disease infections will tend to seek protection from

vaccination. For instance, the impacts of a measles epidemic

were observed to increase the uptake of measles vaccines

[33]. On the other hand, when realizing the potential risks

of vaccine, e.g. vaccine-related AEFI, individuals will

reduce their willingness to vaccinate themselves, such as in

the case of the MMR vaccine (i.e. vaccine against measles,

mumps and rubella) scare in the UK in the 1990s [34,35]. In

this regard, individuals’ awareness about severe disease

infections and vaccine-related AEFI will affect their percep-

tions about disease severity and vaccine safety, and hence,

influence their vaccination decisions. In addition, an individual

changing his/her vaccination decision does not require direct

self-involvement in the reported events, while being informed

through others. That is to say, individuals’ perceptions can

be prompted through the spread of awareness in a host

population [36,37], which can potentially alter individuals’

vaccination decisions and, hence, affect the effectiveness of

vaccination programmes.

In recent years, the rapid emergence of online social media,

such as Facebook [38], Twitter [39] and YouTube [40,41], have

provided new ways for the spread of public-health-related

information [42]. As for vaccination, the online social com-

munities would debate on the efficacy of vaccines [43]; the

vaccine-related AEFI would be reported and shared on

the Internet [44], and opinions either for or against vaccination

would be transmitted from person to person [37]. In this situ-

ation, the spread of awareness about disease and vaccine

could immediately affect individuals’ responses. Therefore,

the dynamics of individuals’ vaccination decisions will be

tightly coupled with that of disease transmissions. The inter-

play between these two dynamical processes could have a

significant consequence on the resulting vaccination coverage

for infectious disease control.

In this study, we are interested in studying individuals’ vac-

cination decisions as affected by the spread of awareness about

disease and vaccine-related events during an influenza-like

epidemic. As illustrated in figure 1, we consider a group of indi-

viduals that can decide whether or not to take vaccine based on

their perceived disease severity and vaccine safety. Specifically,

individuals can interact with each other through their social
relationships (e.g. friendships on the Facebook and follower

relationships on the Twitter). In such a structured host population

(i.e. represented by a social network), the awareness about dis-

ease and vaccine can spread from person to person and will

substantially affect individuals’ perceptions about disease sever-

ity and vaccine safety. On the one hand, the reported cases of

severe disease infections will enhance individuals’ perceived dis-

ease severity and, hence, increase their tendency to vaccination.

On the other hand, the reported events of vaccine-related AEFI

will weaken the public confidence on vaccine safety, which will

lead to the declined acceptance of vaccination.

In this situation, we develop a novel modelling framework

for characterizing individuals’ vaccination decisions, in which

we suppose that an individual will voluntarily decide to accept

or reject vaccine based on his/her beliefs on whether or not

vaccination is acceptable. In order to examine the time when

individuals will make their vaccination decisions, we further

assume that if the individual does not have enough confidence

for or against vaccination, he/she will not make any firm

decision but wait and see the future development. The situa-

tion that an individual makes no firm decision may be

considered as a state of ‘yet to decide’ owing to uncertainty.

In this regard, we introduce three belief variables in the form

of yes, no and no decision to characterize the possible deci-

sion responses from an individual that he/she will accept or



Table 1. Parameters in the belief – decision model.

symbol description

m(Yes) belief value of vaccination

m(No) belief value of non-vaccination

m(Q) belief value of no decision (uncertainty)

mi set of belief values

me
i obtained awareness about disease and vaccine

r fading coefficient of awareness spread

e reporting rate of severe disease infections

k reporting rate of vaccine-related AEFI

S(t) number of susceptible individuals

I(t) number of infectious individuals

R(t) number of recovered/immunized individuals

N total number of host individuals

l(t) probability of disease infection

b disease transmission rate

g infection recovery rate

R0 basic reproduction number

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140013

3
reject vaccine, or has not yet decided, respectively. Owing to

the spread of awareness, the individual will update his/her

beliefs about vaccination by collecting information from his/

her social neighbours, which may either reinforce his/her

own perceptions, or bring about conflicting perceptions.

In order to characterize individuals’ belief value updates

based on the obtained awareness and their subsequent vacci-

nation decision-making in the presence of uncertainty, we

develop a new belief–decision model by extending the

framework of the Dempster–Shafer theory (DST) [45]. DST,

also known as theory of beliefs, was originally proposed as

a generalization of the Bayesian theory of subjective prob-

ability to characterize how individuals update their beliefs

by combining new pieces of evidence from multiple sources

in the presence of uncertainty [46]. In our proposed DST-

based belief–decision model, individuals can update their

beliefs (i.e. with respect to perceived disease severity and vac-

cine safety) by combining the collected new evidence from

social neighbours (i.e. the obtained awareness about disease

and vaccine). Furthermore, we extend the conventional DST

framework by incorporating the effect of awareness spreading,

in which a reported event about disease or vaccine (i.e. a piece

of new evidence) will ripple through individuals’ social

network. In this regard, individuals’ vaccination decision-

making is modelled as a process being affected by the spread

of awareness about disease and vaccine as well as the sub-

sequent updates of individuals’ beliefs (i.e. the belief values

of both yes and no).

We parametrize our proposed model with an influenza-like

disease as well as a social network from a real-world online

community. By carrying out a series of simulations on volun-

tary vaccination and infectious disease transmissions, we

evaluate the impacts of the spread of awareness on individuals’

vaccination decisions as well as its consequence on disease

transmission dynamics with respect to the following two

impact factors: (i) reporting rates of disease- and vaccine-

related events, which denote the probabilities for an infected

or vaccinated individual to be reported as a case of severe dis-

ease infections or vaccine-related AEFI and (ii) fading

coefficient of awareness spread, which describes the effect of

certainty decay when the awareness spreads from one person

to another.
2. Models
We consider a voluntary vaccination programme for prevent-

ing the outbreak of an emerging infectious disease, e.g. 2009

H1N1 influenza, in which individuals can decide whether or

not to take vaccine based on their awareness about disease

severity and vaccine safety. It is assumed that individuals do

not possess any prior knowledge about disease and vaccine,

whereas they can receive information about disease- and vac-

cine-related events (i.e. the reported severe disease infections

and vaccine-related AEFI). In this situation, the reported

event about either disease or vaccine will trigger the spread

of awareness among the host individuals, rippling through

their interaction relationships, which will, in turn, affect

their vaccination decisions.

For such a situation, we construct a new individual-based

belief–decision model to characterize vaccination decision-

making. At the same time, we use an epidemic model to

describe the dynamics of disease transmission as a result of
individuals’ voluntary vaccination. Based on our constructed

model, we aim to investigate the impacts of the spread of

awareness on the changes of individuals’ vaccination deci-

sions with respect to an emerging infectious disease. The

parameters as used in the proposed model are summarized

in table 1.

2.1. The belief – decision model
As described above, we have considered three possible vacci-

nation-related decisions, i.e. to accept, to reject and yet to

decide. For each individual, we first represent his/her willing-

ness to accept or reject vaccine by using a set of belief variables.

In order to characterize the state of ‘yet to decide’, we intro-

duce the notion of decision-making with uncertainty based

on the DST [45]. DST can be viewed as a generalization of

the Bayesian theory of probability. Unlike the Bayesian

theory, DST explicitly allows for an undecided state with

respect to the presently available knowledge. We suppose

that the problem of whether or not to take vaccine is a binary

problem, which is represented as Q ¼ {Yes, No} called the

frame of discernment for the vaccination decisions (i.e. a

universal set). Individuals’ possible vaccination decision

responses can be modelled as the subsets of Q, i.e. belonging

to a power set, 2Q ¼ {f, {Yes}, {No}, Q}. Next, we use a func-

tion m(.) to assign a belief mass (i.e. probability) to each element

of the power set 2Q, which is called the basic probability assign-

ment (BPA). The mass m(A) (A [ 2Q) denotes the proportion of

support for the particular subset A based on the currently avail-

able evidence or knowledge. The BPA has the following two

properties: (i) the mass of empty set f is zero, and (ii) the

masses of the power set add up to one

m : 2Q ! [0, 1]
m(f) ¼ 0;P
A#2Q

m(A) ¼ 1:

9>=
>;

(2:1)
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Accordingly, the belief functions for an individual’s

vaccination decision responses can be expressed as follows

m(f) ¼ 0
m(Yes) [ [0, 1]
m(No) [ [0, 1]

m(Q) ¼ 1�m(Yes)�m(No),

9>>=
>>;

(2:2)

where m(Yes) describes an individual’s belief that he/she should

get vaccinated for preventing disease infection, m(No) represents

the belief that he/she should reject vaccination having con-

sidered the potential risk of vaccine-related AEFI, and m(Q)

denotes the belief that he/she is yet to decide whether or not

to get vaccinated (i.e. owing to the uncertainty about disease

and vaccine). Based on the above formulation, an individual

will decide to take vaccine with the probability of m(Yes),

reject vaccine with the probability of m(No), and have no firm

decision with the probability of m(Q). In addition, we assume

individuals with the decision of vaccination will get vaccinated

directly and, therefore, will either be successfully immunized

or suffer from vaccine-related AEFI. Those with no decision

will revise their decisions in the next time step. We then use

the DST to characterize individuals’ decision-making with

reference to information from multiple sources.
2.2. The spread of awareness
During the spread of an emerging infectious disease and

the implementation of a vaccination programme, individuals’

perceptions about disease severity and vaccine safety will

be affected by the obtained awareness from their socially

connected neighbours. For instance, a case of severe disease

infection can be naturally regarded as the evidence that an indi-

vidual should get vaccinated. On the other hand, the events of

vaccine-related AEFI can be viewed as the evidence that vacci-

nation may be rejected. Here, we use a belief value me to denote

a piece of evidence that is triggered from a newly reported

disease- or vaccine-related event. In order to characterize the

spread of awareness in a socially connected host population,

we consider two rules of information dynamics: (i) informa-

tion transmission that awareness will spread between two

connected individuals, and (ii) awareness fading that the cer-

tainty of a piece of new evidence will be gradually lost as of

each transmission [47].

We suppose that a group of individuals are socially

interconnected through their social network, denoted by

G ¼ kV, Ll, where V ¼ {v1, v2, � � � , vN} is the set of nodes

(i.e. individuals), and L ¼ {kvi, vjlj1 � i, j � N, i = j} is the

set of links (i.e. social interaction relationships). N is the total

number of individuals. During an epidemic, each reported

event will be treated as a piece of triggering evidence with a

belief value of me ¼ {me(Yes), me(No)}, where me
dis ¼ {1:0, 0}

and me
vac ¼ {0, 1:0} for a reported case of severe disease infec-

tion- and vaccine-related AEFI, respectively. Individuals can

detect the emerged new evidence by interacting with their

social neighbours, update their belief values accordingly, and

can further talk about it to others through their social networks.

Additionally, the certainty about a piece of evidence will decay

as it is transmitted from person to person, which is referred to

as awareness fading. Here, we introduce a fading coefficient, r,

to indicate how fast the decay will be when transmitting a piece

of evidence between two individuals. A larger value of r corre-

sponds to a faster decay (i.e. faster certainty fading). Therefore,

the evidence that is transmitted (i.e. the spread of awareness)
from individual j to his/her socially connected neighbour i
can be computed as follows

me
i (Yes) ¼ (1� r) �me

j (Yes)

me
i (No) ¼ (1� r) �me

j (No)

me
i (Q) ¼ me

j (Q)þ r � (me
j (Yes)þme

j (No)):

9>>>=
>>>;

(2:3)

In the course of disease transmissions and vaccination

implementation, newly reported events will constitute new

sources of evidence at different time steps. The spread of

awareness about these events will cause an individual to con-

tinuously update his/her perceptions about disease and

vaccine, and thus make his/her vaccination decision. Based

on the obtained awareness, the individual will update his/

her belief values (i.e. denoted by m0i) by combining the present

belief values (i.e. denoted by mi) with the newly received evi-

dence me
i . This can be expressed in the following form (with

� denoting the combination operation):

m0i ¼ mi �me
i : (2:4)

Specifically, based on the assumption that these multiple

sources are independent, the belief value update with respect

to the extended Dempster rule of combination [48] will be

performed as follows

m0i(A) ¼
P

B>C¼A mi(B) �me
i (C)

1�
P

B>C¼f mi(B) �me
i (C)

, and A, B, C [ 2Q,

(2:5)

where
P

B>C¼f mi(B) �me
i (C) represents the basic belief mass

associated with the conflicts of present beliefs and the

newly received evidence. In the Dempster combination rule,

the denominator, 1�
P

B>C¼f mi(B) �me
i (C), is a normaliza-

tion factor, which attributes the conflict probability mass to

the universal set m(Q). In the extreme case, when an individ-

ual with the belief values of f1.0, 0g incorporates the evidence

with the belief values of f0, 1.0g, his/her updated belief

values will become f0,0g, which means the two conflicting

opinions will lead the value of the individual’s uncertainty

mi(Q) to unity.

By doing so, we have developed a belief–decision model

for characterizing individuals’ vaccination decisions in the

presence of uncertainty by using the DST. Furthermore, we

have extended the classical DST framework by incorporating

the spread of awareness in a structured host population, in

which the certainty about a piece of evidence will decay as

it is transmitted from person to person. For the sake of illus-

tration, figure 2 shows the results of individuals’ belief value

updates with respect to the spread of awareness about two

independently reported events on a synthetic lattice network.
2.3. The epidemic model
We construct an epidemic model to characterize the spread of

an emerging infectious disease in a host population, in which

the events (e.g. severe disease infections and vaccine-

related AEFI) will be reported and, hence, the awareness

will spread among them. In doing so, we adopt a standard

compartmental model, i.e. susceptible–infectious–recovered

(SIR) model, to describe the dynamics of disease infec-

tion, in which individuals are grouped into one of three

infection-associated, homo-mixed compartments: susceptible

(S), infectious (I ) and recovered/immunized (R). Therefore,
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Figure 2. Illustrations of awareness spreading and fading on a synthetic lattice network (i.e. 30 � 30 nodes). Individuals can interact with their socially connected
neighbours. The awareness about the two reported events will spread independently in such a structured host population, which will affect individuals’ belief values.
Here, we use the colour of a cell to denote an individual’s belief value in terms of the probability mass (i.e. mi [(0, 1)). As for the source of a reported event, the
probability mass is set as mi ¼ 1.0. We use the parameter r to denote the fading coefficient of awareness spread. A larger value of r indicates a faster decay of
certainty as the awareness spreads from one person to another. We demonstrate the effects of the awareness fading in terms of individuals’ belief values (i.e. the
colour of each cell) with respect to two considered coefficients: (a) r ¼ 0.1 and (b) r ¼ 0.2.
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the dynamics of disease transmission, as reflected in the

dynamically changing compartments S(t), I(t) and R(t), can

be modelled by using the following equations

dS(t)
dt
¼ �b � 1

N
� I(t) � S(t)

dI(t)
dt
¼ b � 1

N
� I(t) � S(t)� g � I(t)

dR(t)
dt
¼ g � I(t):

9>>>>>>>=
>>>>>>>;

(2:6)

Here, b is the disease transmission rate between the suscep-

tible and infectious populations. g represents the recovery

rate that is the percentage of infectious individuals who

will be recovered per time unit. Based on the definition of

basic reproduction number R0 ¼ b/g, transmission rate

can be calculated as b ¼ R0 � g. Thus, the probability of

being infected for a susceptible individual, denoted by l(t),
can be computed as follows

l(t) ¼ b � 1

N
�
X

Ij, (2:7)

where Ij denotes individual j is infected at time t, and N is the

total number of host individuals. Therefore, 1/N
P

Ij is

the ratio of the infectious population. In this situation, we

suppose that there is a probability e for each newly infected

individual to be reported as a case of severe disease infection.

In addition, for the sake of example, we assume that vac-

cine is available and adequate at the same time as disease

onsite (i.e. the first case of disease infection being reported).

Only the susceptible individuals can decide whether and

when to be vaccinated. Once an individual is vaccinated, it

is assumed that he/she will be completely immunized and

move from the susceptible compartment to the recovered/

immunized compartment. As for a vaccinated individual,

there is a probability k for being announced as a case of

vaccine-related AEFI.
3. Results
3.1. Basic scenario
For our simulations, we calibrate the parameters in the pro-

posed epidemic model with reference to the scenario of the

2009 Hong Kong H1N1 influenza epidemic, in which basic

reproduction number R0 in the epidemic stage was estimated

as R0 ¼ 1.5 [49], and the infectious duration was around

3.75 days (i.e. recovery rate g � 0.267) [50]. During the outbreak

of H1N1 influenza in Hong Kong, there were more than 36 000

laboratory confirmed cases (i.e. as of September 2010), among

which about 290 were identified as severe cases (i.e. the report-

ing rate of severe disease infections e was estimated as 0.805%)

[51]. In Hong Kong, the outbreak of H1N1 infection appea-

red in September 2009 and, in the second wave of infection,

there were far fewer infection cases during the winter of

2009–2010. The human swine influenza (HSI) vaccination pro-

gramme was launched on 1 December 2009. The numbers of

vaccinated individuals ever since are shown in figure 3. As

of 13 March 2010, more than 180 000 doses of HSI vaccines

were administered to persons of various groups [52]. In the

whole HSI vaccination programme, a total of 34 cases of

AEFI were reported. The rate of AEFI was evaluated as 17.8

per 100 000 vaccinated individuals (i.e. the reporting rate of

vaccine-related AEFI k was estimated as 0.0178%) [53].

We further construct a social network to characterize

individuals’ interaction relationships based on the data of a

Facebook-like online community [54], in which the registered

users can communicate with each other online through personal

blogs and forum postings. In this network, there are in total

1899 nodes and 13 838 undirected links among them. As

shown in the partial network snapshot of figure 4, the nodes

denote the registered users, and the links among them represent

their interaction relationships in terms of sending and

receiving at least one message. Based on such a network struc-

ture, we carry out a series of Monte Carlo simulations and

experimentally examine the above-mentioned belief-based

characterization of individuals’ vaccination decision-making.
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Figure 3. The number of daily-vaccinated individuals during the human
swine influenza (HSI) vaccination programme against the 2009 Hong Kong
H1N1 influenza epidemic. This programme was launched on 1 December
2009. As of 13 March 2010, more than 180 000 doses of HSI vaccines
were administered to persons of various groups [52]. The rate of AEFI was
evaluated as 17.8 per 100 000 vaccinated individuals and the reporting
rate of vaccine-related AEFI k was estimated as 0.0178%.

Figure 4. A partial snapshot of individuals’ social network. We use a network
structure to represent individuals’ interaction relationships, based on the data
of a Facebook-like online community [54]. In such a network, the nodes
denote individuals and the links represent their interactions in terms of
sending and receiving messages.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140013

6

In our simulation, we assume that the spreads of awareness and

disease are simultaneous. Moreover, individuals who have

decided either for or against vaccination will no longer change

their decisions. Meanwhile, those with the state of ‘yet to

decide’ will revise their decision-making in the following time

steps (i.e. days). We run the simulations of each considered

scenario for 1000 times to remove the stochastic effects on

individuals’ vaccination decision-making.

The simulation results in figure 5 show the dynamics of dis-

ease transmission and individuals’ voluntary vaccination for the

first 50 days. In this scenario, we examine the patterns of the vac-

cination programme in terms of daily-vaccinated individuals.

We observe that the number of vaccinated individuals increases

steadily in the earlier days of a vaccination programme as indi-

viduals’ uncertainty about vaccination decreases. However, the

reported cases of vaccine-related AEFI significantly increase

individuals’ belief about non-vaccination, which leads to a

sharp decrease in the number of daily-vaccinated individuals

after it has peaked on day 12.

3.2. The interplay of two dynamics
We run the proposed model with the above-mentioned para-

metrizations under various scenarios to reveal the interplay

between the dynamics of disease transmission and individ-

uals’ vaccination. In doing so, we investigate the impacts of

the spread of awareness about disease severity and vaccine

safety in a host population by means of investigating various

settings of the reporting rates of disease- and vaccine-related

events e and k, and the fading coefficient of awareness

spread r.

As shown in figure 6, we first investigate the reporting rates

for negative events on severe disease infections (i.e. e) and vac-

cine-related AEFI (i.e. k) with respect to two levels: 1% and

0.1%. Here, we set e ¼ 0:01 andk ¼ 0.001 for the situation of dis-

ease scare, and similarity, e ¼ 0:001 andk ¼ 0.01 for the scenario

of vaccine scare. Generally speaking, a relative higher reporting

rate of severe disease infections will prompt individuals’

tendency for vaccination (i.e. as shown in figure 6a, dashed
curve), which will in turn reduce disease transmissions (i.e. as

shown in figure 6b, dashed curve). Moreover, vaccination in

the early stage will be more effective than that in the later

stages. We can observe that when e ¼ 0:01, the difference

in thenumberofvaccinated individuals between thesituations of

k ¼ 0.001 and k ¼ 0.01 (i.e. as shown in figure 6a, dashed curve

and solid curve, respectively) is relatively small for the early

stage of disease transmissions (i.e. before day 10). After that,

the vaccination dynamics when e ¼ 0:01 and k ¼ 0.001 will

peak at the level of more than 4% of individuals who will vacci-

nate themselves on day 15, whereas that of e ¼ 0:01 andk ¼ 0.01

will peak at 2% on day 11. Accordingly, we can observe that the

disease dynamics in the situations of e ¼ 0:01, k ¼ 0:001 and

e ¼ 0:01, k ¼ 0:01 (i.e. as shown in figure 6b, dashed curve

and solid curve, respectively) have relatively low incidence

rates at the peaks of disease infection, whereas the lasting

periods of disease transmissions are different.

Besides, we have investigated the effect of aware-

ness fading with respect to different fading coefficients r,

the results of which are shown in figure 7. We note that

awareness fading can affect the dynamics of individuals’

vaccination in terms of the number of vaccinated individuals

and the time of individuals’ vaccine administration. In our

simulation, when the fading coefficient r ¼ 0.1, the number

of daily-vaccinated individuals will peak on day 10 with

the rate around 4% (i.e. as shown in figure 7a, solid curve).

The vaccination rates will be around 2% and peak on day

12 and day 19, if the fading coefficients are set as r ¼ 0.4

and r ¼ 0.7, respectively (i.e. as shown in figure 7a, dashed

curve and point curve). In this situation, we can observe

that the spread of awareness with a weak fading effect (i.e.

a smaller fading coefficient) will prompt individuals’ vacci-

nation and thus prevent disease transmissions effectively

(i.e. as shown in figure 7b, solid curve when r ¼ 0.1).
4. Discussion
It has long been observed that the spread of awareness will

affect individuals’ health-related behaviour. For instance,
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individuals who are aware of disease infections may take

measures to reduce their susceptibility or distance their

social contacts to prevent themselves from disease infections

[47,55]. In the context of vaccination, the spread of awareness

about severe disease infections and vaccine-related AEFI will
affect individuals’ perceptions about disease and vaccine

and, hence, substantially change their vaccination behaviour.

In understanding the public acceptance of a vaccination

programme, empirical studies have identified a series of deter-

minants associated with individuals’ vaccination decisions,



10 20 30 40 500

0.02

0

0.04

0.06

0.08

(a) (b)
0.10

days

po
pu

la
tio

n 
si

ze
 (

10
0%

)

r = 0.1
r = 0.4
r = 0.7

r = 0.1
r = 0.4
r = 0.7

10 20 30 40 50
days

Figure 7. The impacts of fading coefficient (i.e. r) during the spread of awareness in a host population. (a) The dynamics of voluntary vaccination (i.e. the number
of daily-vaccinated individuals). (b) The dynamics of disease transmissions (i.e. the number of infectious individuals on each day).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140013

8

such as the previous experience of vaccination [56], the

perceived risk of disease infection as well as the safety

and efficacy of vaccine [10,57–59], the social influence

from professional instructions or friends’ recommendations

[9,56,58] and the socio-economic-related considerations

[9,15]. Mathematical models have been developed to describe

individuals’ vaccination decision-making during the spread

of an infectious disease [16,60]. As mentioned earlier, the

pay-off-based approaches that use the game-theoretical

analysis have characterized individuals’ rational vaccination

decisions by means of exploring the herd immunity effects

(i.e. vaccinating a proportion of the host population would

decrease the infection risk for the rest of unvaccinated

individuals [5,61]). For instance, Bauch et al. [14,17] character-

ized individuals’ voluntary vaccination as a modified

minority game in favour of optimizing personal pay-offs.

Cojocaru [62] extended the game-theoretical analysis of vac-

cination to a heterogeneous host population group. Perisic

et al. [18,63] further examined individuals’ vaccination

game with respect to their contact network structures.

Besides, social and psychological aspects of human behav-

iour have also been taken into consideration, such as a

social learning process [20] and imitation behaviour [21–24].

As a further step from the above-mentioned studies,

here we have considered a belief-based characterization of

individuals’ vaccination decisions. In our proposed model,

we have correlated individuals’ subjective assessment of

disease severity and vaccine safety with the dynamics of dis-

ease transmission and voluntary vaccination by exploring

the awareness about disease and vaccine. Different from the

existing belief-based studies, e.g. that of Coelho et al. [25],

we have characterized individuals’ belief value updates as a

result of the spread of awareness in a structured host popu-

lation (i.e. the social network from an online community).

In this case, we can represent the situation that individuals

collect health-related information from online social media,

and make the vaccination decisions according to their

obtained awareness from socially connected neighbours

[37,44]. Additionally, instead of the polarized decisions, i.e.

either vaccination or not, we have introduced the third

decision response in terms of ‘yet to decide’ and associated

it with the belief value of uncertainty. By doing so, we have
used and extended the DST to characterize individuals’

belief value updates in the presence of uncertainty.

By parametrizing the proposed model with the epidemio-

logical scenario of the 2009 Hong Kong H1N1 influenza

epidemic, we have carried out a series of simulations on dis-

ease transmissions and voluntary vaccination. Based on that,

we have investigated the impacts of the spread of awareness

on individuals’ vaccination decisions with respect to two con-

sidered impact factors. First, the reporting rates of severe

disease infections e and vaccine-related AEFI k were used

to represent the frequencies of respective topics that will

draw public attention on social media. Our simulation results

have shown that the reporting rates will determine the

number of vaccinated individuals. Second, we considered

the fading coefficient of awareness spread r, a parameter

used to quantify the effect of certainty decay during the infor-

mation flows among individuals. We have observed that

fading coefficient can affect the time at which individuals

will make their decisions as to taking vaccine or not accord-

ingly. Specifically, a higher fading coefficient (i.e. a faster

certainty decay) will significantly delay individuals’ vacci-

nation decision-making, which will, in turn, influence the

coverage of a vaccination programme. Salathe et al. [37]

have earlier studied vaccination sentiments with online

social media (i.e. Twitter) and have found that individuals’

behaviour of sharing the same sentiment was correlated

with the frequency of information flows among them.

Our study on computationally characterizing the impacts of

the spread of awareness has practical implications for public

health authorities to predict the extent of public acceptance

of a vaccination programme in advance by exploring the

decision-making models. In recent years, a growing number

of individuals use the Internet-based communication services

to obtain and share the health-related information [64,65].

This represents the growing power of analysing individuals’

online communication data to track the events in real time

during an epidemic. Salathe et al. [37] collected individuals’

communication messages from Twitter and assessed the

public sentiments towards a novel vaccine. Henrich et al. [44]

used online comments to capture public attitudes about the

H1N1 vaccine. Online social media have become an effective

means for sharing and creating public perceptions about
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disease and vaccine, upon which our proposed vaccination

decision-making models can readily be used to estimate public

acceptance of a vaccination programme [42,66]. Thereafter,

public health authorities will be able to adjust their vaccination

strategies drawing on the model-based decision-making

analysis, so as to improve the effectiveness of adopted strategies.

So far, our study has provided a modelling framework that

incorporates the spread of awareness with the belief-based

characterization of decision-making. It should be pointed out

that the obtained results may depend on the specific assump-

tions that were made in the design of our model. First, we

have assumed no prior knowledge about disease and vaccine.

However, individuals’ historical experience, e.g. vaccina-

tion against seasonal influenza, may affect their vaccination

decisions in the face of an emerging infectious disease,

e.g. the 2009 H1N1 influenza. We have also assumed that vac-

cination dynamics and disease dynamics were instantaneously

developed as well as individuals’ vaccination decision-making

was carried out simultaneously. Individuals’ asynchronized

decision-making and delayed vaccination could affect the

simulation results. In our proposed model, the spread of
awareness only accounts for individuals’ localized interac-

tions (i.e. a Facebook-like online community as used in our

example), whereas the global effect of public media has not

been taken into account in this study. It would be interesting

to extend the current model by incorporating a globalized

spread of awareness; that is to say, each individual will

be aware of a reported event of disease and vaccine with a

certain probability.

Besides the above-mentioned limitations in our decision-

making modelling, we have adopted a simplified SIR-based

epidemic and vaccination model, in which vaccine efficacy

and the possible lag between the vaccine administration

and the attainment of immunity were not taken into account.

Furthermore, infected individuals in the latency state with no

symptoms could make mistakes in their decisions. These

issues are worth further investigations in our future work.
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