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Remdesivir has displayed pharmacological activity against SARS-CoV-2. However, no
pharmacometabolomics (PM) or correlation analysis with pharmacokinetics (PK) was
revealed. Rats were intravenously administered remdesivir, and a series of blood
samples were collected before and after treatment. Comprehensive metabolomics
profile and PK were investigated and quantitated simultaneously using our previous
reliable HPLC-MS/MS method. Both longitudinal and transversal metabolic analyses
were conducted, and the correlation between PM and PK parameters was evaluated
using Pearson’s correlation analysis and the PLS model. Multivariate statistical analysis
was employed for discovering candidate biomarkers which predicted drug exposure or
toxicity of remdesivir. The prominent metabolic profile variation was observed between
pre- and posttreatment, and significant changes were found in 65metabolites. A total of 15
metabolites—12 carnitines, one N-acetyl-D-glucosamine, one allantoin, and one
corticosterone—were significantly correlated with the concentration of Nuc (active
metabolite of remdesivir). Adenosine, spermine, guanosine, sn-glycero-3-
phosphocholine, and L-homoserine may be considered potential biomarkers for
predicting drug exposure or toxicity. This study is the first attempt to apply PM and
PK to study remdesivir response/toxicity, and the identified candidate biomarkers might be
used to predict the AUC and Cmax, indicating capability of discriminating good or poor
responders. Currently, this study originally offers considerable evidence to metabolite
reprogramming of remdesivir and sheds light on precision therapy development in fighting
COVID-19.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is a serious threat for the global health environment (Zhu
et al., 2020). As of 24 Nov 2021, a total of 258.16 million people had been infected with SARS-
CoV-2 and 5,166,192 had died. In the face of the current global pandemic posed by SARS-CoV-
2 infection, there is an urgent necessitation not only to prompt a fervent search for effective
therapy but also to improve our knowledge of the metabolomic mechanism. Besides, even if
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this pandemic will be possibly controlled in the next few
months, unexpected outbreaks and development of viral
resistance to therapy due to virus mutations have
exacerbated the already severe epidemic. As of now,
several therapeutic strategies (e.g., small molecular
chemical antiviral drug (Costanzo et al., 2020), traditional
Chinese medicine (Ren et al., 2020), and vaccines (Lurie et al.,
2020)) are being employed to improve the ratio of benefit/risk
of patients with COVID-19.

Remdesivir, a nucleotide analog prodrug, which is metabolized
into an analog of adenosine triphosphate (GS-441544, Nuc), has
broad-spectrum activity against variety of viruses including
Ebola, SARS-CoV-2, Middle East respiratory syndrome
coronavirus (MERS-CoV), and COVID-19 (Lamb, 2020).
Nowadays, remdesivir has been granted emergency use
authorization by the U.S. Food and Drug Administration in
November 2020 for hospitalized COVID-19 patients, and
remdesivir may be considered a possible therapeutic option for
COVID-19.

Metabolomics is one of the most powerful tools for studying
the interaction between genetic background and exogenous and
endogenous factors in human health. The concept of
pharmacometabolomics (PM) was first illustrated in a study
that showed metabolomics information in drug-free urine
samples is predictive of both drug metabolism and toxicity of
paracetamol (Clayton et al., 2006). Actually, PM can not only
reveal the terminal metabolic profile by drug treatment but also
reflect the metabolic status between tissues and fluids, which will
be beneficial for understanding the biological mechanism of the
disease (Kaddurah Daouk et al., 2015; Thomas et al., 2020).
Unfortunately, the comprehensive metabolic mechanism of
remdesivir was not fully figured out, especially with regard to
metabolite reprogramming/perturbation.

Limited studies have been revealed for the metabolite
changes among COVID-19 patient cohorts, such as
cytosine and tryptophan–nicotinamide pathways (Blasco
et al., 2020), lipids (Archambault et al., 2021), amino acids
and fatty acids (Shen et al., 2020), and eicosanoids (Du et al.,
2021a). However, to the best of our knowledge, no
comprehensive metabolic profiling literature studies were
reported pertaining to remdesivir treatment both in vitro
and in vivo. It is therefore reasonable and feasible to study
the association between metabolic profiles and remdesivir
treatment. In view of the shortcomings described before,
the purpose of this study was originally proposed to
longitudinally and transversally investigate the metabolic
fingerprint induced by remdesivir in rats. Furthermore, by
means of several multivariate statistical analyses, an
integration analysis of metabolomics and pharmacokinetics
(PK) was employed in order to predict the metabolic
phenotype and drug exposure. Overall, we reveal the first
in-depth interrogation of trajectory changes that benefit
propitious understanding of how remdesivir interacted with
small molecular metabolites, and several candidate predictive
biomarkers were investigated and validated for drug response
or toxicity. The results of this study will shed light on how
remdesivir disturbed the metabolic profiles and offered

meaningful references for precision therapy in patients of
COVID-19.

MATERIALS AND METHODS

Chemicals
Both standards of metabolites and stable isotope-labeled
internal standards (IS) were obtained from Sigma-Aldrich
(St. Louis, MO, United States), Cayman Chemical (Ann
Arbor, MI, United States), Bidepharm (Shanghai, China),
Steraloids (Newport, RI, United States), Cambridge Isotope
Laboratories (Cambridge, MA, United States), and Cayman
Chemical or Steroids (Supplementary Table S1). Detailed
information was given in our previous study (Hu et al.,
2020a). Organic solutions (e.g., acetonitrile, isopropyl
alcohol, and methanol) of HPLC grade were purchased
from Fisher Scientific (Pittsburgh, PA, United States). The
modifier of the mobile phase—formic acid—was obtained
from Co., Inc. (Fairfield, OH, United States). Ultrapure
Millipore water was prepared by a purification system.

Experimental Animals and Metabolomics
Profiling After Remdesivir Treatment
Animal experiments were carried out according to the Guidelines
for the Care and Use of Laboratory Animals. Rats (n � 6,
6–8 weeks old, 180–220 g) were purchased from Beijing Vital
River Laboratory Animal Technology Co., Ltd. (Beijing, China)
and raised in controlled environment (25 ± 2°C, 40–70%
humidity, and 12-h light on/off cycle). Rats were fed with free
drinking water and standard feed. All rats were placed in a single
rat IVIVC cage. Animals were accommodated for 1 week prior to
the experiment.

For the longitudinal PM of remdesivir, the rats were
intravenously administered remdesivir (5 mg/kg) dissolved
with 12% sulfobutylether-β-cyclodextrin in water. Blood
samples were collected from ophthalmic veins by sterile
capillary into (NaF/K-Ox) tubes at before (0 h) and after
administration (5, 15, and 30 min and 1, 2, 4, 8, 12, 24, and
48 h) and then directly centrifuged to obtain plasma (3,500 rpm,
10 min, 4°C). All plasma samples were retained at -80°C for
further analysis.

For the transversal PM, raw metabolomic data were separated
into two parts: before (pre-dose) and after (post-dose)
administration. The metabolomic profiling and trajectory
effect of remdesivir were investigated and analyzed using
multivariate statistical analysis methods.

HPLC-MS/MS System
High-performance liquid chromatography-tandem mass
spectrometry system (HPLC-MS/MS, Spark Holland; API
5500, SCIEX, Canada) was adopted for targeted
metabolomic analysis. The chromatography columns
(Waters BEH, HSS T3) and elution solvent (gradient
elution) were all evaluated and used according to our
previous study (Hu et al., 2020a). The column temperature
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was set at 20°C with injection volume of 5 μL. Water phase and
organic phase (acetonitrile:isopropyl alcohol � 7:2, v/v)
contained 0.1% formic acid, and gradient elution was
achieved within 27 min.

All analytes were detected via both negative and positive
modes with the help of rapid polarity switching and the
advanced MRM algorithm. The MS electrospray voltage was
4500 and 5500 V for negative or positive modes, respectively.
The optimized MRM parameters are shown in Supplementary
Table S1. Detailed parameters of HPLC-MS/MS are shown in our
previous study (Hu et al., 2020a).

Sample Preparation
The one-step protein precipitation method was adopted for this
metabolomic analysis. Briefly, an aliquot of 50 μL plasma was
spiked with 10 μL IS mixture (eight ISs, 400 ng/ml) and 140 μL
precipitation solution (-20°C methanol). Afterward, the mixture
was vortexed for 2 min and centrifuged at 13,500 rpm for 10 min
at 4°C. The solutions mentioned earlier were injected into the
HPLC-MS/MS system for analysis.

For the purpose of ensuring reliable quantitation of all analytes
and better comparability in routine analysis, quality control (QC)
samples were prepared by pooling equal volumes of unknown
plasma. Briefly, six aliquots of pooled QC samples were
constructed as real samples and the analytical sequence was
interpolated to check the status of sample injection and the
HPLC-MS/MS system.

Pharmacokinetic Analysis
Pharmacokinetic analysis was performed as reported in our
previous study (Du et al., 2021b). Briefly, chromatography
separation (LC-20ADXR, Shimadzu, Japan) was accomplished
on a Waters XBrige C18 column (50 × 2.1 mm, 3.5 μm) using
gradient elution. The temperatures of the autosampler and
column were set at room temperature and 40°C, respectively.
The flow rate was kept at 0.4 ml/min under the gradient elution
mode (Du et al., 2021b).

The mass spectrometry parameters (QTRAP 5500, SCIEX,
Canada) were used, and the protonated molecule [M + H]+ ion
was used for all analytes. The quantitative MRM was set at
m/z 292.2→163.2 for Nuc and 237.1→194.1 for the IS
(carbamazepine). The calibration curve was linear in the range
of 2–1,000 ng/ml (Nuc, the active metabolite of remdesivir). A
simple and high-throughput protein precipitation method was
used for preparing plasma samples (Du et al., 2021b). Method
validation of selectivity, sensitivity, accuracy, precision, recovery,
matrix effect, stability, and incurred sample reanalysis met the
criteria of method validation guidelines. Detailed results were
illustrated in our previous study (Du et al., 2021b).

Multivariate Statistical Analysis and Data
Processing
Raw data files were processed and checked by MultiQuant 3.0.1
(SCIEX). The concentrations of analytes were calculated
according to the calibration curve. Pharmacokinetic
parameters, such as Cmax (maximum concentration) and AUC

(area under the curve) were calculated using Phoenix (Pharsight
8.3, Mountain View, CA) software. Pearson’s correlation was
used to investigate the relation between metabolomics data and
PK parameters using IBM SPSS 26.0 (Armonk, New York,
United States). SIMCA-P software (v14.1, Umetric, Umeå,
Sweden) was used to build mathematic models including
unsupervised principal component analysis (PCA), supervised
orthogonal projection to latent structures-discriminant analysis
(OPLS-DA), and partial least squares (PLS). The compounds with
values of variable importance in the projections (VIPs) > 1 and
statistical significance of p < 0.05 were picked out for further
identification and metabolic pathway analysis. Two hundred
random permutation tests were used to check overfitting and
random effects, which can assess the predictive ability of the
model. Pathway analysis was achieved using online
MetaboAnalyst 5.0 (http://www.metaboanalyst.ca), while the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
was also used for hierarchical cluster analysis (HCA) and the
t-test and mechanism analysis. A p value less than 0.05 was
considered statistically significant.

RESULTS

Overview of Targeted Metabolomics for
Remdesivir
The comprehensive metabolomics method developed in our
laboratory was utilized for present quantitation in plasma
samples (Hu et al., 2020a). As described in Figure 1, a total of
289 metabolites, which contained amino acids, bile acids, and
vitamins, were covered in the present metabolomics method. All
biologically active metabolites can be quantitated during the 27-
min analysis period. The calculation linearity ranged from 0.2 to
5,000 ng/ml, which provides powerful capability for successful
quantitation of low-abundance compounds. Furthermore, other
parameters were all carefully investigated (Supplementary
Table S1).

Longitudinal Metabolic Profiling Analysis
With respect to the longitudinal metabolic fingerprints after
remdesivir treatment, metabolite peak area ratios of all plasma
samples were pooled into the statistical data set. For metabolic
data quality analysis, a distance-to-model (DModX) plot was
used to check the outliers, and all samples were in the limit of 2
(data not shown). Both PCA and OPLS-DA were used to
integrate and co-analyze all data to explore the longitudinal
metabolic trajectory in all rats. Individuals were utilized as the
grouping basis, and dots of the same color represented samples of
one rat at different time points (Du et al., 2021a). From the results
of Figure 2A, plasma samples of one rat were divided into tight
clusters, which indicated that the longitudinal metabolic
fingerprint of the same rat was relatively stable after
remdesivir treatment. The metabolic fingerprint changes
generated by individuals were greater than the metabolic
disturbance induced by remdesivir treatment. This model was
validated by 200-time permutation, and no overfitting was
observed (Figure 2B, R2� (0.0, 0.743), Q2� (0.0, −0.835)).
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HCA was calculated based on the Euclidean correlation with the
Ward clustering algorithm (Figure 2D). In order to analyze the
metabolic trajectory at different treated time points, the metabolic
changes between pre-dose and post-dose samples (5, 15, 30 min,
1, 2, 4, 8, 12, 24, and 48 h) were analyzed and are shown in
Figure 2C. The metabolic trajectory was almost steady from
5 min to 24 h; however, distinguished metabolic profiles were
shown for that at 48 h. Besides, the number of VIP >1.0 was 80,
and the highest VIP was phenylacetylglycine (1.97),
L-kynurenine (1.87), and cholic acid (1.83), respectively
(Supplementary Figure S1).

Transversal Metabolomics of Remdesivir
For the purpose of exploring the metabolic phenotype variation
caused by remdesivir treatment, the metabolomics features at
baseline (pre-dose) were compared with those at the treated
period (post-dose). For the transversal PM of remdesivir,
Figure 3A illustrated that all metabolic data were introduced
for OPLS-DA. Although limited metabolic samples were used in
the present study at baseline time points, the individuals of both
groups were discriminated well in the OPLS-DA model.
Moreover, the random permutation test with 200 iterations
was performed to investigate the validity and predictability of
the OPLS-DA model. Figure 3B shows that no overfitting was
observed for all introduced data (R2� (0.0, 0.354), Q2� (0.0,
-0.424)). The most significantly changed metabolites between
pre- and post-dose were picked up using the independent samples
t-test. A total of 65 metabolites were observed to be significantly
changed with the cutoff of VIP >1, p < 0.05 (Supplementary

Table S2). The results of pathway analysis indicated that the
high-impact pathways were linoleic acid metabolism;
phenylalanine, tyrosine, and tryptophan biosynthesis;
phenylalanine metabolism; alpha-linolenic acid metabolism;
arachidonic acid metabolism; glycine, serine, and threonine
metabolism; and arginine biosynthesis. As shown in
Figure 3C, although the impact of linoleic acid metabolism
was the highest, neither the hits nor the p value met the
acceptable criteria. After pathway analysis, two pathways,
arginine biosynthesis (two hits) and aminoacyl-tRNA
biosynthesis (nine hits), were considered the disturbance
metabolism pathway, with impact of 0.228 and 0.167 and p
value of 0.046 and 1.26 E-06. The arginine biosynthesis
pathway consisted of L-citrulline and L-glutamine; the
aminoacyl-tRNA biosynthesis pathway comprised nine amino
acids (L-phenylalanine, L-glutamine, L-serine, L-valine, L-lysine,
L-isoleucine, L-leucine, L-threonine, and L-tryptophan)
(Supplementary Table S3).

As shown in Figure 3D, the significantly changed metabolites
correlated with each other positively or negatively. Taken
together, inherent metabolic phenotype variations had taken
place as a result of the treatment of remdesivir.

Additionally, the metabolic intensity of 65 significantly
changed metabolites was compared transversally. The
differentially regulated metabolites are presented by fold
change (FC > 1: upregulated metabolites; FC < 0.5:
downregulated metabolites). The upregulated results (three
metabolites) are shown in Figure 4A. Besides, the intensity of
the remaining 62 metabolites was downregulated, and the five

FIGURE 1 | Workflow of targeted metabolomics applied in this study.
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most significantly downregulated metabolites included two fatty
acids, glycohyodeoxycholic acid and glycoursodeoxycholic acid
compared between pre- and post-dose treatment (Figure 4B).
Figure 4C of the volcano map indicates that 41.54% (27/65)
metabolites whose FC < 0.5 were thought to be significantly
disturbed after remdesivir treatment.

Correlation Analysis Between
Metabolomics and Pharmacokinetics
To further explore whether metabolic fingerprint disturbance
accompanies the plasma drug exposure, Pearson’s correlation
analysis was conducted to determine what metabolites are highly
interplayed with this tendency. As shown in Figure 5, a total of 15
metabolites—12 carnitines, one N-acetyl-D-glucosamine, one
allantoin, and one corticosterone—were significantly correlated
with the concentration of Nuc (r > 0.5, p < 0.05).

The mean concentration-time curve and pharmacokinetic
(PK) parameters of Nuc were elucidated in rats after
intravenous administration of remdesivir (5 mg/kg) according
to our previous study (Du et al., 2021b). The individual blood
concentration-time curves of Nuc measured in six rats presented
a high degree of interindividualized variation of PK behavior
(Supplementary Figure S1). During the four parameters

summarized in table, t1/2 variation (4.22-fold difference) was
the most significant due to individual treatment among all
rats. The variation fold change of Cmax, Tmax, and AUC0-t was
1.64-, 2.00-, and 3.50-fold difference between the maximum and
minimum values. It is known that AUC and Cmax can be
considered as indicators of drug efficacy or toxicity to some
extent (Xing et al., 2019). Therefore, AUC and Cmax were chosen
for further PLS model analysis.

A supervised PLS model was constructed for capably
predicting PK parameters and identifying relationship between
two groups of variables (Xing et al., 2019). Thus, the 207
endogenous metabolites were described as one group of
variables (X, the predictive variables), while AUC or Cmax

were represented as a group of variables (Y, the response
variables), respectively. First, the PCA model was constructed
to find out outliers to avoid deviation of prediction. All rats are
distributed according to pre-dose metabolic profiles
(Supplementary Figure S2).

Second, the intensities of 207 metabolites were correlated with
AUC or Cmax of Nuc in the initial PLS model to roughly
investigate the relationship between the X and Y variables
(Figure 6). The two-component PLS model is adopted for
AUC and Cmax prediction, which indicates a visible positive
linear regression (Figure 6A, R2 � 0.9824; Figure 6B, R2 �

FIGURE 2 | Longitudinal metabolomic fingerprints of remdesivir. (A)OPLS-DA score plots from six rats. (B) Random permutation test with 200 iterations. (C) Time-
dependent trajectory of remdesivir-treated metabolites by OPLS-DA score plots. (D) Heatmap of differential metabolites ranked in the top 30.
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0.9797). Figures 6C, D indicate the loading plot of the
aforementioned models and the relationship between
predictive variable (X, triangle) and the response variable (Y,
box). As shown in this loading plot, X variables on the top right or
low left corner represent positive correlation to AUC or Cmax and
negative correlation to pharmacokinetic response variables.
Besides, 88 (AUC) and 83 (Cmax) VIP >1.0 X variables were
identified due to contribution ofX variables to the PLSmodel (red
triangles, Figures 6C, D), which were chosen for following
prediction of AUC and Cmax, respectively.

Prediction of AUC and Cmax Based on
Significant Metabolites
Considering the complex and difficult situation to predict PK
parameters based on 88 and 83 variables, some significant and
representative variables were screened for predictive
biomarkers. Pearson’s correlation analysis was used for the
association between PK parameters and VIP >1.0 variables.
Regarding the prediction model, 16 or 12 VIP >1.0 screened

variables were significantly correlated with AUC or Cmax,
respectively (Table 1). Also, five common metabolites
including adenosine, spermine, guanosine, sn-glycero-3-
phosphocholine, and L-homoserine were found in both
predictive models. As illustrated in Figure 7A, a PLS model
was built based on the previous 16 variables, which helps
explain about 99.5% variation (R2Y) and predict 98.6%
variation (Q2) for the AUC. Simultaneously, as shown in
Figure 7B, it could explain about 97.6% variation (R2Y)
and predict 95.8% variation (Q2) in Cmax based on the 12
variables. Permutation tests were performed with 100
iterations in order to avoid overfitting of this prediction
model (Figures 7C, D). Overall, the results indicated that
the prediction model exerted ability to predict AUC and Cmax

with no risk of overfitting. Variables listed in Table 1 were
considered potential biomarkers for predicting AUC or Cmax.

For the purpose of validating this prediction ability of the
aforementioned screened potential biomarkers, all rats were
divided into high- and low-value groups according to their
AUC and Cmax. Discrimination between high- and low-value

FIGURE 3 | Transversal metabolomics fingerprint of remdesivir before and after treatment. (A) OPLS-DA score plot. (B) Random permutation test with 200
iterations. (C) Overview of pathway enrichment analysis of the altered metabolites between pre- and post-dose. (D) HCA of metabolite–metabolite correlation in
response to remdesivir treatment.
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FIGURE 4 | Metabolic peak area ratio comparison between the pre- and post-dose. (A) Upregulated metabolites compared with the pre-dose group. (B) Most
significant downregulatedmetabolites compared with the pre-dose group. (C) Volcanomap of metabolites with VIP >1, p < 0.05, green dots represent metabolites of FC
< 0.5. (D) Fold change landscape of all significant disturbance metabolites. *p < 0.05 and ***p < 0.001, two-tailed unpaired t-test.

FIGURE 5 | Correlation analysis between significantly changed metabolites and concentration of Nuc. (A) Correlation values. (B) Heat map of disturbed
metabolites.
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groups based on the screened biomarkers was performed using
OPLS-DA models. As described in Figure 8, the selected 16
biomarkers (AUC model) and 12 biomarkers (Cmax model)
completely distinguish the two groups, which indicate that
these biomarkers are capable of discriminating drug exposure/
response.

Quality Control for Metabolomics
For the sake of obtaining reliable and reproducible results, several
approaches and all sources of fluctuations have been identified
and taken to minimize undesirable variation/bias, such as sample
handling and preparation and HPLC-MS/MS system status. As
shown in Supplementary Figure S3, the peak area ratios of
pooled QC plasma samples were clustered under OPLS-DA
which indicated that the fluctuation of pooled QC samples
was small and constant pertaining to each analyte.

DISCUSSION

The main purposes of this research were to explore the targeted
metabolic profiling after treatment by remdesivir in rats for better
understanding the mechanism of remdesivir. To the best of our
knowledge, no investigation is currently available regarding the
metabolic perturbations and the relationship between metabolic
fingerprint and remdesivir treatment. A total of 289 metabolites
were included and analyzed for metabolic profiling using our
previous method (Hu et al., 2020a; Hu et al., 2020b), which

provided quantitation efficiency and high-throughput robustness
completely (Figure 1). After careful chromatography peak
double-checking by different experimenters, the raw data were
imported to software for further statistical or descriptive analyses.
Furthermore, both the longitudinal and transversal metabolomics
of remdesivir was evaluated to reveal the metabolic trajectories,
and reliable quality assurances through the present study
guarantee high-quality data. It is noteworthy that
metabolomics can not only provide a nearly instantaneous
metabolite measurement but also maps specific metabolomes
during normal or abnormal physiological condition, which
renders metabolomics a powerful approach to assess response
to drug, disease states, and especially short- and long-term
metabolic effects mediated by infection and immunology
(Nicholson et al., 2012; Diray-Arce et al., 2020; Du et al., 2020).

Regarding longitudinal metabolic analysis, metabolites in
each rat almost assembled (Figure 2A). The most obviously
disturbed metabolites, as shown in Supplementary Figure
S4, included amino acid pathway (e.g., phenylacetylglycine,
L-kynurenine, and L-cystathionine), carnitines (e.g., DL 5:1,
DL 6:1, DL 11:0, and DL 10:3), cholic acids (e.g., deoxycholic
acid/chenodeoxycholic acid, hyodeoxycholic acid,
dioxolithocholic acid, and alloisolithocholic acid). Of note,
these metabolites play a critical role in the physiological and
pathological functions of SARS-CoV-2 (Asim et al., 2020).
During the transversal metabolomics study, the metabolic
profile was obviously distinguished between the pre-dose
(baseline) and post-dose (drug treatment) group

FIGURE 6 | Initial PLS models of the pre-dose metabolic profile for predicting PK parameters of Nuc. (A) and (B) are score plots for the first latent variable of the
AUC and Cmax prediction model, respectively; each dot represents a rat, plotted as the first latent variables (X block) vs. AUC or Cmax (Y block). A color from blue to red
represents the response variable from low to high. (C) and (D) are loading plots for the AUC and Cmax prediction model, respectively. The blue box represents the
response variable, each triangle represents a metabolite, and the triangles in red represent the metabolites with VIP >1.0.
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demonstrated by OPLS-DA. The permutation plot revealed
the valid original model with all left Q2 values lower than
right points, and the intersection of the regression line of the
Q2-points and the vertical axis was less than zero (Figure 3).
It has been reported that hyperinflammation with increased
release of inflammatory cytokines is one of the critical
characteristics, indicating cytokine storm in patients with
COVID-19 (Mehta et al., 2020). Furthermore, McReynolds
et al (McReynolds et al., 2021) reported an increased level of
leukotoxin diols (metabolites from linoleic acid) in plasma
samples of hospitalized patients suffering from severe
pulmonary involvement. In this study, the linoleic acid
metabolism pathway has the highest impact value,
indicating that remdesivir treatment may disturb the
metabolism of fatty acids to some extent. Amino acids
(e.g., arginine, glutamine, glycine, proline, taurine, and
tryptophan), peptides, and bioactive molecules have
attracted more and more attention due to their abilities to
reduce oxidative stress, inhibit apoptosis, and regulate
immune responses (Chen et al., 2020). After treatment by
remdesivir, most of these amino acids reduced compared with
the baseline status. It has been reported that metabolites of
kynurenate and kynurenine were enriched in COVID-19
patients, and more than 100 lipids (e.g., fatty acids and
glycerophospholipids) were downregulated in COVID-19
patient sera (Shen et al., 2020). However, other
publications indicated that the metabolism of tryptophan

in the kynurenine pathway, which regulates inflammation
and immunity, was increased in COVID-19 patients (Thomas
et al., 2020).

In this metabolic fingerprint, most metabolites were
downregulated owing to species difference (Figure 4) and
disease status (healthy or baseline state and COVID-19
patients), and further studies are urgently necessary for
comprehensively evaluating the metabolic profiles of
remdesivir. Given the discrepancy of health or disease states,
either larger external verification or virus-attacked status may be
encouraging to further explore the metabolic disturbance. To
date, no available investigation is reported regarding the interplay
of metabolomics and pharmacokinetics. Thus, a correlation
analysis was performed using multiple statistical approaches. It
is reported that carnitines play a crucial role in the viral infection
process. Bellamine et al. (Bellamine et al., 2021) revealed that
L-carnitine tartrate supplementation in humans and rodents led
to a significant decrease in angiotensin-converting enzyme 2
(ACE2), transmembrane protease serine 2, and Furin, which
are in charge of viral attachment, viral spike S-protein
cleavage, and priming for viral fusion and entry. Pretesting
carnitine is necessary possibly to limit SARS-CoV-2 infection.
In our study, DL-carnitine was significantly correlated with the
concentration of Nuc (Figure 5), indicating the potential antiviral
effect of Nuc via regulating metabolites of carnitine.

After checking for outliers, a two-stage PLS analysis including
the initial and refined model was constructed between the
metabolites and PK parameters (AUC and Cmax). The
metabolic characteristics were significantly correlated with
drug exposure (AUC and Cmax) to remdesivir, and several
significant disturbance metabolites were found and further
utilized for predicting the exposure of drug (Figure 6).
Subsequently, these significantly changed metabolites were
modeled and screened for potential predictive biomarkers.
Finally, a total of 16 and 12 metabolites were selected and
further validated (Figure 7). When COVID-19 ravaged the
global health system, patients who developed interstitial
pneumonia can evolve the inflammatory cytokine storm. As
previously reported by academics, by means of its receptor,
adenosine is capable to restrain the acute inflammatory
process, enhance the protection capacity of the epithelial
barrier, decrease the damage caused by the overactivation of
the cytokine storms, and inhibit the adenosine transporters to
decrease platelet activation and thrombosis (Falcone et al., 2020;
Geiger et al., 2020; Caracciolo et al., 2021). Molecular docking
analysis of the ACE-2 receptor protein also demonstrated that
spermine phosphate has the maximum binding affinity and
reactivity to ACE-2, indicating that spermine has great
therapeutic potential in the treatment of COVID-19
(Mamidala et al., 2021). AT-511, the free base of AT-527 (an
orally available double prodrug of a guanosine nucleotide analog),
has potent stronger antiviral activity against SARS-CoV-
2 in vitro, and the cytotoxicity was little at concentrations up
to 100 μM in Huh-7 cells. These results suggested that AT-527
may be an effective therapeutic option against COVID-19 (Good
et al., 2021). Moreover, based on these screened metabolites, an
OPLS-DA model was used to further verify the predictive

TABLE 1 | Potential predictive biomarkers for the pharmacokinetics of Nuc.

Model Potential biomarker VIP Pearson
coefficient*

AUC refined
model

Adenosine 1.98 0.978**
Spermine 1.94 0.956**
Guanosine 1.92 0.946**
3′,5′-cyclic AMP 1.86 0.919**
Spermidine 1.83 0.903*
DL 10:3 1.81 0.895*
Reduced glutathione 1.80 0.887*
sn-glycero-3-phosphocholine 1.78 −0.877*
AMP 1.77 0.876*
Guanosine 5′-monophosphate (GMP)
disodium salt hydrate

1.77 0.875*

IMP 1.77 0.874*
L-homoserine 1.76 0.869*
cAMP 1.76 0.869*
Xanthine 1.74 0.857*
Homocysteine 1.69 0.832*
FA 16:0 1.67 −0.823*

Cmax refined
model

sn-glycero-3-Phosphocholine 2.05 −0.986**
Guanosine 1.89 0.908*
DL 18:0 1.88 0.903*
Succinate 1.83 0.882*
FA 12:0 1.82 0.878*
FA 22:1 1.82 −0.876*
L-homoserine 1.81 0.870*
Adenosine 1.74 0.837*
Niacinamide 1.74 0.838*
Spermine 1.72 0.825*
Thymidine 1.72 0.821*
5α-cholanic acid-3,6-dione 1.69 −0.813*

*p < 0.05 and **p < 0.01.
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efficiency (Figure 8). Although limited samples are used in this
study, several metabolite biomarkers were first discovered and
provided to predict drug exposure/toxicity.

To date, no available investigation is reported regarding the
comprehensive metabolic fingerprint after remdesivir treatment as
well as correlation with PK parameters. Because of no definite
therapeutic strategies for COVID-19, this study aims to explore
the metabolomic characteristics of remdesivir and the potential

biomarkers for predicting exposure or toxicity. Indeed, several
limitations should be mentioned. First, the sample size of this
exploratory research was small, and much data were needed to
pool and verify these results. Accordingly, the external validation
cohort should be replenished for better illustrating the
comprehensive metabolomics. Second, due to the availability of
blood samples from COVID-19 patients, we only investigated the
metabolomics profile in rats. Taken together, our study first revealed

FIGURE 7 | Refined models to predict individualized PK parameters based on the screened biomarkers. (A) and (B) are regression plots of the predicted PK
parameters vs. the measured PK parameters (AUC or Cmax). The color from blue to red indicates the corresponding PK values from low to high. (C) and (D) are the
resulting plots of the permutation test to identify the refined prediction models (A) and (B) without the risk of overfitting.

FIGURE 8 |OPLS-DA models to discriminate the subgroups based on the screened biomarkers. Each 4-point star represents a rat. Green stars indicate rats with
high AUC (A) or Cmax (B), while blue stars mean rats with low AUC (A) or Cmax (B).
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the comprehensive metabolite trajectories induced by remdesivir
and predictive drug exposure/toxicity biomarkers, which will
provide a notable scientific contribution to prevention or therapy
in patients with COVID-19.

CONCLUSION

For the first time, we uncovered the comprehensive metabolic
alterations after remdesivir treatment and revealed the potential
predictive biomarkers for drug exposure or toxicity. Both
longitudinal and transversal metabolic analyses were elucidated
in rats after being administrated with remdesivir. Adenosine,
spermine, guanosine, sn-glycero-3-phosphocholine, and
L-homoserine may be considered potential biomarkers for
predicting drug exposure or toxicity. Furthermore, this study
is the first attempt to apply PM and PK to study drug response/
toxicity, and the identified candidate biomarkers might be used to
predict the AUC and Cmax, indicating the capability of
discriminating good or poor responders to remdesivir
treatment. Currently, this study originally offers considerable
evidence to metabolite reprogramming and shed light on
therapy development in fighting COVID-19.
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