
Article

Adaptable P body physical states differentially

regulate bicoid mRNA storage during early
Drosophila development
Graphical abstract
Highlights
d P bodies adopt an arrested physical state in the mature

oocyte

d Multivalent interactions and structurally distinct proteins

regulate P body properties

d The arrested state and integrity of P bodies support the

storage of bicoid mRNA

d Egg activation modulates P body properties and leads to

release of bicoid mRNA
Sankaranarayanan et al., 2021, Developmental Cell 56, 2886–290
October 25, 2021 ª 2021 The Authors. Published by Elsevier Inc
https://doi.org/10.1016/j.devcel.2021.09.021
Authors

M. Sankaranarayanan,

Ryan J. Emenecker, Elise L. Wilby, ...,

Simon Alberti, Alex S. Holehouse,

Timothy T. Weil

Correspondence
msnsankar18@gmail.com (M.S.),
tw419@cam.ac.uk (T.T.W.)

In brief

Sankaranarayanan et al. show that P

bodies, conserved ribonucleoprotein

condensates found in Drosophila

oocytes, are regulated by specific

structural features and weak multivalent

interactions. In vivo, P bodies adopt an

arrested physical state that is critical for

the storage of the bicoid patterning

mRNA until egg activation.
1
.

ll

mailto:msnsankar18@gmail.�com
mailto:tw419@cam.ac.�uk
https://doi.org/10.1016/j.devcel.2021.09.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.devcel.2021.09.021&domain=pdf


OPEN ACCESS

ll
Article

Adaptable P body physical states differentially
regulate bicoid mRNA storage
during early Drosophila development
M. Sankaranarayanan,1,* Ryan J. Emenecker,2,3 Elise L. Wilby,1 Marcus Jahnel,4 Irmela R.E.A. Trussina,4 Matt Wayland,1

Simon Alberti,4 Alex S. Holehouse,2,3 and Timothy T. Weil1,5,*
1Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
2Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO

63110, USA
3Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
4Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universit€at Dresden, Tatzberg 47/49, 01307 Dresden,

Germany
5Lead contact
*Correspondence: msnsankar18@gmail.com (M.S.), tw419@cam.ac.uk (T.T.W.)

https://doi.org/10.1016/j.devcel.2021.09.021
SUMMARY
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable
progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we
investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in
mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P
body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct pro-
teins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using
live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the
storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release
of bcd for translation in the early embryo. Together, this work provides an example of how physical states
of condensates regulate cellular function in development.
INTRODUCTION

Many biochemical reactions in the cytoplasm of eukaryotic cells

require regulation in space and time. The organization of specific

reactions in the dense cytoplasmic environment is achieved

through membrane-bound and membrane-less organelles.

Classic membrane-bound organelles, such as the nucleus and

endoplasmic reticulum, are stable micro-environments that are

enclosed by membranes. However, membrane-less organelles,

such as stress granules, P bodies, and nuclear bodies, which are

typically composed of nucleic acids and proteins, have been

shown to provide an additional level of cellular organization (Bu-

chan and Parker, 2009; Banani et al., 2017; Shin andBrangwynne,

2017; Boeynaems et al., 2018). More generally, the designation

biomolecular condensates is used to describe cellular assemblies

characterized by the non-stoichiometric concentration of bio-

macromolecules, of which membrane-less organelles are one

such example (Brangwynne et al., 2009; Li et al., 2012; Hubsten-

berger et al., 2013; Wang et al., 2014; Nott et al., 2015; Zhang

et al., 2015; Feric et al., 2016; Hyman et al., 2014; Brangwynne

et al., 2015; Banani et al., 2017; Lyon et al., 2021).

Ribonucleoprotein (RNP) complexes are an abundant and

conserved class of biomolecular condensates. Found both in
2886 Developmental Cell 56, 2886–2901, October 25, 2021 ª 2021 T
This is an open access article under the CC BY license (http://creative
the cytoplasm and the nucleus, RNP condensates exhibit a

wide range of physical states, ranging from dynamic liquids to

stable solids (Kroschwald et al., 2015, 2018; Weber, 2017;

Weber and Brangwynne, 2012; Woodruff et al., 2017). Some ex-

amples of diverse physical states observed in vivo include liquid-

like P granules in Caenorhabditis elegans (C. elegans) embryos

(Brangwynne et al., 2009; Wang et al., 2014), viscous nucleoli

in Xenopus laevis oocytes (Brangwynne et al., 2011; Feric

et al., 2016; Mitrea et al., 2016), and solid-like Balbiani bodies

vertebrate oocytes (Boke et al., 2016). Despite considerable

progress, the relationship between the physical states of biomol-

ecular condensates and their in vivo function remains poorly

understood.

RNP condensates are often linked with localized RNA transla-

tional regulation, which enables cells to spatiotemporally regu-

late protein synthesis (Medioni et al., 2012). Specialized cells,

including neurons and oocytes, frequently depend on this

mode of post-transcriptional regulation to control gene expres-

sion (Jung et al., 2014; Kloc and Etkin, 2005). More specifically,

transcriptionally inactive oocytes, such as those in Drosophila

melanogaster, rely on prolonged storage and translational con-

trol of maternally deposited transcripts for body axes patterning

during development (Lasko, 2012; Tadros and Lipshitz, 2009).
he Authors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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One mechanism for regulating RNA metabolism involves P

bodies, an evolutionarily conserved class of cytoplasmic biomol-

ecular condensates (Sheth and Parker, 2003; Andrei et al., 2005;

Kedersha et al., 2005; Eulalio et al., 2007; Parker and Sheth,

2007; Buchan, 2014; Hubstenberger et al., 2017; Luo et al.,

2018). Previous studies on P bodies have highlighted their roles

in RNA storage and translational repression, since P bodies are

devoid of ribosomes (Hubstenberger et al., 2017; Weil et al.,

2012). A conserved component of P bodies is the ATP-depen-

dent DEAD-box RNA helicase: DDX6 in humans, Dhh1 in yeast,

CGH-1 inC. elegans, andMaternal expression at 31B (Me31B) in

Drosophila. Me31B is required for early Drosophila development

and is estimated to be present at concentrations of �7.5 mM in

the egg (Götze et al., 2017). During oogenesis, Me31B is known

to associate with and differentially regulate several axis-

patterning maternal mRNAs (Nakamura et al., 2001; Weil et al.,

2012; Kaneuchi et al., 2015; Tadros and Lipshitz, 2009; York-An-

dersen et al., 2015). Failure to regulate these and many other

mRNAs can lead to severe developmental defects (Lasko,

2012). However, the mechanisms that underlie how transcripts

are maintained and translationally controlled by P bodies are

not well understood.

To examine the in vivo basis of mRNA regulation, we employ a

multidisciplinary approach to investigate the physical properties

and in vivo functions of P bodies in mature Drosophila oocytes.

Real-time live imaging reveals that P body condensates adopt

a highly viscous and arrested physical state in mature oocytes,

and their integrity depends on electrostatic and hydrophobic

interactions, along with RNA and the actin cytoskeleton. Using

in silico, in vitro, and in vivo assays, we demonstrate that intrin-

sically disordered regions (IDRs) in Me31B and the disordered

P body protein Trailer hitch (Tral) independently regulate the as-

sembly and physical properties of Me31B condensates. Using

live imaging and single-molecule fluorescent in situ hybridization

(smFISH), we demonstrate that the arrested state and integrity of

P bodies is critical for the storage of bcd mRNA, which is later

released for translation at egg activation. Finally, we show that

P bodies in the early embryo are smaller and highly dynamic

than in the oocyte, and do not co-localize with translationally

active bcd mRNAs. Together, our results highlight an in vivo

role for adaptable P body physical states in mRNA regulation

during development.

RESULTS

Me31B forms viscous P body condensates, which adopt
an arrested physical state in mature oocytes
Several maternal mRNAs are thought to be stored and regulated

by P bodies throughout Drosophila oogenesis (Lin et al., 2008;

Nakamura et al., 2001; Weil et al., 2012). However, amechanistic

understanding of how P bodies accomplish this function remains

unclear. To examine the physical state of P bodies, we isolated

living-stage 14-egg chambers (hereafter referred to as mature

oocytes) from female Drosophila (Figure 1A). Live imaging of

Me31B::GFP revealed that P bodies are typically micron-sized

condensates with varying morphologies (Figures 1B and 1C).

We also found that most P bodies have internal subdomains sug-

gestive of a heterogeneous organization (Figure 1D). Quantifica-

tion of P body aspect ratios over time showed that P bodies have
predominantly irregular morphologies (Figure 1E) compared with

liquid-like condensates, such as P granules and stress granules

(Brangwynne et al., 2009; Patel et al., 2015). Time-lapse imaging

also demonstrated that P bodies undergo continuous rearrange-

ments, mostly progressing from amorphous to spherical mor-

phologies, as exemplified by their aspect ratio analysis over

the observed timescales (Figure 2A). Additionally, P bodies

undergo fusion and fission events, which are hallmarks of a dy-

namic state (Figures 2B, 2B0, and S1). However, the longer time-

scale of these events suggests that P bodies in mature

Drosophila oocytes are less dynamic compared with liquid-like

condensates.

The cytoplasm of mature oocytes is packed with yolk granules

and complex cytoskeletal structures. To determine if the slow

P body dynamics are an intrinsic property or dependent on the

oocyte cytoplasmic environment, we developed an ex vivo

assay, whereby we extruded the cytoplasm into halocarbon oil

(Figure 2C). Importantly, this approach does not promote

P body dissolution, rather, extruded P bodies initially exhibit

irregular morphologies but become spherical over the observed

timescale (Figure 2C0). We also show that the extruded P bodies

undergo fusion and fission events (Figures 2D and 2D0), but these
are faster than in vivo, likely due to the absence of cytoplasmic

crowding and cytoskeletal structures. Taken together, our data

suggest that P bodies are slowly rearranging condensates, and

that this physical property is inherent to P bodies in mature

Drosophila oocytes.

Next, we performed fluorescence recovery after photobleach-

ing (FRAP) on whole P bodies (whole FRAP) to examine the

mobility of Me31B between the cytoplasm and the P body.

This analysis revealed that Me31B localized to P bodies ex-

hibited limited or no recovery (Figures 2E and 2F). To assess if

this is a general property of P bodies, we performed whole

FRAP of P bodies in earlier stages of oogenesis. The recovery

patterns and the proportion of immobile Me31B were similar to

those observed in mature oocytes (Figures S2A and S2B). Due

to the limited exchange of Me31B between P bodies and the

cytoplasm, we refer to this as the arrested state of P bodies.

To further explore Me31B dynamics, we tested if Me31B can

rearrange within P bodies by assessing themobility of Me31B af-

ter photobleaching within a region inside the P body (internal

FRAP) (Figures 2E and 2F). Measurements revealed consider-

able recovery of fluorescence compared with whole FRAP (Fig-

ure S2C). Despite a high mobile fraction, the rate of recovery

indicates that the dynamics of Me31B within P bodies is slow

(Figure S2D). We further derived an apparent viscosity in the

range of �700 Pa.s for P bodies from their internal recovery

kinetics. Although this estimate should be treated qualitatively,

the value is at least two orders of magnitude larger than those re-

ported for liquid-like condensates (Alshareedah et al., 2021;

Brangwynne et al., 2009). Overall, these data show that P bodies

in mature oocytes adopt a viscous and arrested physical state.

Multivalent interactions, RNA, and the actin
cytoskeleton regulate P body physical properties
Previous work has shown that activation of themature oocyte re-

sults in an influx of monovalent and divalent ions, release of

stored mRNAs, and reorganization of the actin cytoskeleton

(York-Andersen et al., 2015, 2020; Kaneuchi et al., 2015).
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Figure 1. Me31B forms heterogeneous P body condensates in the mature oocyte

(A) Schematic of a Drosophila female ovary and ovariole. Each female contains two ovaries, each comprising 16–18 ovarioles. Each ovariole can be thought of as

an assembly line for the production of mature oocytes. The oocyte is supported by a collection of nurse cells until the late stages of oogenesis. Created with

BioRender.com.

(B–E) Mature oocyte (� 0.5 mm in length) expressing Me31B::GFP.

(B) Cartoon depicting P body distribution in the mature oocyte and confocal image of a whole mature oocyte showing P bodies throughout the cytoplasm. The

concentration of P bodies at the cortex is, in part, due to this being a cross section image.

(C) Increased magnification of P bodies in the mid-lateral area of the oocyte reveals they exhibit diverse morphologies and sizes. Maximum projection 10 mm.

(D) Representative image of P bodies exhibiting multiple subdomains (white arrowheads) indicative of heterogeneous internal organization.

(E) Aspect ratio analysis of individual P bodies (>1 mm) showing an uneven range of P body morphology (n = 20). Scale bar, 5 mm (C), 2 mm (D).
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Therefore, we wondered if these factors could regulate the

physical properties of P bodies in the mature oocyte prior to

egg activation. Various interactions have been shown to

contribute to RNP condensation, including hydrophobic and

electrostatic interactions (Brangwynne et al., 2015; Dzuricky

et al., 2020; Kato et al., 2012; Murthy et al., 2019; Nott et al.,

2015; Pak et al., 2016; Riback et al., 2017). The interactions

that are thought to drive P body assembly can be interpreted

through the lens of a pseudo two-component phase diagram

(Figure 3A). In particular, by changing the solution conditions to

weaken the interactions that contribute to P body assembly, the-

ory and simulations predict an increase in internal mobility and

more spherical shaped condensates, as shown previously for

protein-RNA condensates (Boeynaems et al., 2019).

To test if hydrophobic interactions are required for in vivo

P body integrity, we treated mature oocytes with the aliphatic

alcohol 1,6-hexanediol (1,6-HD), a compound identified origi-

nally in the context of attenuating hydrophobic interactions

(Ribbeck and Görlich, 2002; Patel et al., 2007). The addition of

1,6-HD resulted in the transformation of P bodies toward a
2888 Developmental Cell 56, 2886–2901, October 25, 2021
more spherical shape, an increase in fusion events, and, ulti-

mately, the dissolution of condensates over time (Figures 3B,

3C, S3A, and S3B). These results support a model in which

1,6-HD weakens the multivalent interactions that contribute to

P body physical state and integrity. To further test if 1,6-HD leads

to a transition from an arrested to a more dynamic state, we per-

formed whole FRAP on 1,6-HD-treated P bodies. Consistent

with our model, P bodies exhibited rapid and sustained recovery

(Figures 3D, S3C, and S3D). Although 1,6-HD-treated P bodies

only exhibited appreciable recovery up to �60%, this is likely

due to their dissolution occurring simultaneously. Although 1,6-

HD has been shown to affect mechanical properties in cultured

cells, we did not observe any noticeable phenotypes in the

mature oocytes over the observed timescales (Wheeler et al.,

2016). Taken together, our results suggest that hydrophobic in-

teractions contribute to regulating the arrested state of P bodies,

which, in turn, maintains their integrity.

Next, we examined if electrostatic interactions contribute to

P body physical properties by testing the impact of monovalent

(NaCl) or divalent salts (MgCl2). At low concentrations of

http://BioRender.com
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Figure 2. P bodies adopt a less dynamic and arrested physical state

(A–E) Mature oocyte expressing Me31B::GFP.

(A) Time series of a P body displaying elastic behavior, starting in an extended state (t = 0 min) and subsequently relaxing toward a spherical morphology

(t = 30 min). Plot of individual P body (n = 10) A.R over time showing relaxation from extended (A.R�3) to spherical morphology (A.R�1).

(B) Time series of two in vivo P bodies undergoing coalescence (white arrowheads) (n = 20).

(B0 ) Time series of a single in vivo P body undergoing fission to form two distinct condensates (white arrowheads) (n = 20).

(C) Cartoon depicting cytoplasmic extrusion of P bodies into halocarbon oil (ex vivo) induced by puncturing the outer membrane of the mature oocyte. Created with

BioRender.com.

(C0) Ex vivo P bodies displaying stretched elastic morphologies shortly after extrusion (t = 0 min). Over time, extruded P bodies relax into homogeneous spherical

condensates (t = 30 min, n = 25).

(D) Time series of ex vivo P bodies undergoing coalescence (white arrowheads) (n = 20).

(D0) Time series of ex vivo extruded P bodies undergoing fission (white arrowheads) (n = 5).

(E) Time series of whole FRAP of P body shows minimal recovery, whereas internal FRAP of P body shows increased recovery of Me31B fluorescence.

(F) P body recovery profiles after whole FRAP (n = 20) and internal FRAP (n = 24) (mean, standard deviation).

Scale bar, 2.5 mm (A–D0 ), 10 mm (C0), 1.5 mm (E).

See also Figures S1 and S2.
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(A) Schematized phase diagram in which protein concentration extends along the x axis, whereas molecular interaction strength extends across the y axis. Inset

shows snapshots from coarse-grained simulations performed at distinct positions along the y axis.

(B, C, and E–F0) Mature oocyte expressing Me31B::GFP.

(B) The addition of 5% 1,6-HD causes P bodies to transform from amorphous to spherical morphology within 10 min and results in the loss of internal hetero-

geneity. Maximum projection 5 mm.

(C) Time series shows two P bodies undergoing coalescence following the addition of 1,6-HD (n = 30). Maximum projection 5 mm.

(D) Whole FRAP recovery profile of 1,6-HD-treated P bodies showing rapid fluorescence recovery (n = 12) (mean, standard deviation).

(E) The addition of varying concentrations of NaCl results in diverse physical states of extruded P bodies ranging from sticky (150 mM) to liquid-like (400mM) and

diffuse state (800 mM). Single plane image.

(E0) Treatment with MgCl2 results in the dissociation of extruded P bodies at concentrations significantly lower than NaCl. Single plane image.

(F) Treatment with 500 ng/ml RNase A) or (F0) 10 mg/ml cytochalasin- D (depolymerizes actin) causes P body dissociation, resulting in smaller condensates.

Maximum projection 10 mm.

n = 5 experimental repeats for (E–F’).

Scale bar, 5 mm (B, C, and E–F0).
See also Figure S3.
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NaCl, P bodies assemble into clusters, whereas at high concen-

trations they dissociate (Figure 3E). However, at intermediate

concentration ranges (300–600 mM), P bodies adopt spherical

morphologies, consistent with a more dynamic state. These

results are supportive of a model in which electrostatic interac-

tions, like hydrophobic interactions, play a role in dictating phys-

ical properties and can be tuned up or down by decreasing or

increasing the monovalent salt concentrations, respectively.
2890 Developmental Cell 56, 2886–2901, October 25, 2021
Interestingly, the addition of 20 mM MgCl2 had no apparent

effect on P body integrity; yet, a small increase in concentra-

tions as low as 50 mM MgCl2 resulted in their complete

dissociation (Figure 3E0). This relative sensitivity to divalent

cations implies an effect beyond simply ionic strength.

Collectively, these data suggest that changes in salt concen-

tration can alter P body integrity, consistent with the

morphology and state of P bodies that we observe following
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(A) Overview of disordered, conservation, and domain architecture for Me31B. Conservation calculated across 566 orthologous sequences. N-terminal domain

(NTD) and C-terminal domain (CTD), sequences are highlighted, with an atomistic model of the full-length protein shown in panel E.

(B) PurifiedGFP-Me31B (pMe31B) at 7.5 mM is diffuse on its own but forms phase separated spherical condensates in the presence of 1%PEG (n = 10). Maximum

projection 5 mm.

(C) Time series of pMe31B condensates subjected to FRAP experiments. Whole P body photobleaching shows moderate fluorescence recovery, whereas

internal FRAP shows no recovery (n = 10).

(D) Violin plots quantify density of IDR length (A/E), hydrophobicity (B/F), net charge per residue, (C/G) and fraction of charged residues (D/H) for the N-terminal

IDRs (A–D) or C-terminal IDRs (E-H). Blue or red bars define the associated value for the Me31B IDR in the N- or C-terminal IDR, respectively.

(E) Summary of all-atom simulations. Normalized inter-residue distance is shown with cooler colors reflecting attractive interactions and warmer colors reflecting

repulsive interactions.

(legend continued on next page)

ll
OPEN ACCESSArticle

Developmental Cell 56, 2886–2901, October 25, 2021 2891



ll
OPEN ACCESS Article
ex vivo egg activation or in the early embryo (York-Andersen

et al., 2015).

Given the importance of electrostatic interactions, we asked if

P body integrity was regulated exclusively by protein-protein in-

teractions, or if protein-RNA interactions also contributed.

Previous biochemical studies have shown that P body proteins

differentially interact with Me31B in an RNA-dependent or -inde-

pendent manner (Nakamura et al., 2004). To test the effect of

RNA on P body integrity, we treated mature oocytes with RNase

A, which leads to P body dissociation into smaller-sized conden-

sates (Figure 3F). The incomplete dissolution implies that in vivo

P body integrity is largely dependent on protein-protein interac-

tions, but this does not exclude a contribution from protein-RNA

interactions.

Finally, to examine the role of actin in regulating P body integ-

rity, mature oocytes were treated with cytochalasin D, a

commonly used actin depolymerizing agent. This treatment re-

sulted in the dissociation of P bodies in 30 min, consistent with

our data from ex vivo egg activation (Figure 3F0). Since the actin

cytoskeleton is commonly involved in RNP anchoring, we tested

if the dissociated P body particles exhibited altered spatial dy-

namics (Medioni et al., 2012; Weil et al., 2008). Particle displace-

ment analysis showed that cytochalasin-D-treated P bodies were

significantlymoremobile than untreated ones (Figure S3E). Taken

together, these results indicate that multiple factors regulate

P body integrity, properties, and dynamics in the mature oocyte.

IDRs regulate the physical state of Me31B condensates
in vitro

Having identified multiple external factors in the regulation of

P body integrity, we next asked if sequence features within the

Me31B protein may be regulating P body physical state.

Me31B contains an ATP-binding and folded helicase domain,

flanked by short N- and C-terminal IDRs (Figure 4A). Although

the function of the helicase domain is well studied, much less

is known about the function of the disordered regions. Since

Me31B is an essential in vivo protein, we adopted an in vitro

approach to examine the role of these disordered regions.

We first tested if the purified recombinant Me31B (GFP-

Me31B) can undergo condensation in vitro. Although Me31B is

diffuse at physiological protein concentrations (7.5 mM), upon

addition of a crowding agent, which mimics the oocyte cyto-

plasmic environment (1% PEG), Me31B formed spherical con-

densates (Figure 4B). We repeated this experiment using an

alternative crowder (1% Ficoll) and confirmed that Me31B

condensation does not depend on the specific chemical proper-

ties of the crowding agent (Figure S4A). Time-lapse imaging re-

vealed that Me31B forms micron-sized spherical condensates,

suggestive of a liquid-like state (Figure S4B). To examine

Me31B mobility, we performed both whole FRAP and internal

FRAP on freshly formed condensates. To our surprise, these

condensates showed little or no recovery after photobleaching,

indicating that Me31B condensates are present in an arrested

physical state similar to in vivo P bodies (Figure 4C).
(F) Fusion of pMe31B condensates (magenta) at different time points post conde

sates (dashed line) do not fuse and rapidly aggregate with each other (n = 20).

Scale bar, 5 mm (B), 1 mm (C).

See also Figure S4.
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Next, we wondered what role IDRs might have in Me31B

condensation. Previous work has shown that IDRs in DEAD-

box helicases can contribute to RNP condensate formation

and physical state, a property determined by sequence compo-

sition and length (Elbaum-Garfinkle et al., 2015; Hondele et al.,

2019; Nott et al., 2015). We assessed conservation across a

set of DDX6 orthologs (including Me31B), revealing that folded

domains are highly conserved, whereas IDR length and

sequence varied substantially (Figure 4D). Taken broadly, our re-

sults imply that Me31B and its orthologsmay showdifferences in

condensate formation tuned by their IDRs.

To better understand how the IDRs might contribute to func-

tion, we performed all-atom simulations of full-length Me31B,

which revealed that both IDRs adopt a heterogeneous ensemble

of states (Figure 4E). Interestingly, both N- and C-terminal IDRs

interacted transiently and relatively non-specifically with the sur-

face of the folded domains. These contacts were mediated

through electrostatic and hydrophobic interactions (Figures

S4C and S4D). Rather than acting as drivers of self-assembly,

our simulations suggest the possibility that IDRs play a modula-

tory role.

To test for the modulatory influence of IDRs, we purified re-

combinant Me31B with the complete N- and C-terminal IDRs

deleted (Me31BDN-DC). We then used dual-trap optical twee-

zers to quantitatively measure the rate of condensate fusion

events, thus providing a readout of their physical properties (Jah-

nel et al., 2011). We show that full-length Me31B condensates

initially exhibit rapid fusion events; however, these decrease

over time (Figure S4E). In contrast, Me31BDN-DC condensates

rapidly self-assembled into aggregate-like structures (Figures

4F and S4F). These results demonstrate that the IDRs tune the

physical properties of Me31B condensates by attenuating the

strong interactions established among the interacting folded

domains.

Tral is key to regulating organization of P bodies in the
mature oocyte
In addition to Me31B, several other proteins localize to or are

found to be enriched within P bodies (Lin et al., 2008). Given

the importance of disordered regions within Me31B, we

hypothesized that the many IDRs found in P body proteins could

potentially act as lubricants to regulate P body assembly and or-

ganization through interactions with structured proteins. To test

this, we first performed disorder prediction across the set of

known P body proteins to estimate the proportion of structured

versus disordered regions (Figure 5A). Approximately 50% of

all residues found within P body proteins are predicted to be

disordered, highlighting the structural heterogeneity of compo-

nents within P bodies. Among the proteins enriched with intrinsic

disorder is Tral, a member of the LSM protein family (RAP55 in

vertebrates, CAR-1 in C. elegans), which is known to interact

directly with Me31B, function in Drosophila axis patterning,

and is predicted to be largely disordered with the exception of

an N-terminal LSM domain (Figure 5B) (Bouveret et al., 2000;
nsation, quantified by dual-TRAP optical tweezers. pMe31B DN-DC conden-



Figure 5. Absence of Tral alters P body morphology in the mature oocyte

(A) Comparison of fraction disorder in knownDrosophila P body proteins (left) compared with whole Drosophila proteome (right). The average fraction disorder of

the 17 proteins (Table S1) associated with the P body is over 99.9% more disordered than any possible random sized-matched set of proteins taken from the

D. melanogaster proteome.

(B) Schematic of Tral domain architecture containing a structured LSM domain followed by a long stretches of highly disordered regions.

(C and D) Mature oocyte expressing GFP::Tral.

(C) Tral localizes to P body condensates with diverse morphologies and sizes, distributed throughout the oocyte cytoplasm (n = 20). Maximum projection 7 mm.

(D) Time series of FRAP experiments on GFP::Tral condensates before and after treatment with 1,6-HD (n = 13).

(E) Mature oocytes expressing Me31B::GFP (wild-type control) displaying close to spherical P body condensates. In the absence of Tral (Tral mutant), Me31B

forms aberrant rod and donut-shaped P body condensates. Panel on right is a 3-D projectionmerge of a single donut (�2.5 mm) and rod (�1 mm) showing that they

are distinct shapes (n = 20 mature oocytes). Maximum projection 5 mm.

Scale bar, 5 mm (C), 1.5 mm (D), 3 mm (E).
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Götze et al., 2017; Hara et al., 2018; McCambridge et al., 2020;

Monzo et al., 2006; Tritschler et al., 2007, 2008, 2009; Wang

et al., 2017).

Therefore, we tested the role of Tral in P body regulation in vivo.

Mature oocytes expressing GFP::Tral showed that Tral associ-

ates with P body condensates, albeit smaller in size than

Me31B condensates (Figure 5C). Next, we asked whether TraI

shows similar properties to that of Me31B, which would suggest

that these two proteins are associated with the same physical

state. Indeed, despite being structurally distinct from Me31B,

whole FRAP and 1,6-HD experiments on Tral were consistent

with our results for Me31B (Figure 5D). This supports a model

in which Me31B and TraI are strongly coupled within P bodies,

likely through direct interaction.

SinceMe31B is essential forDrosophila oogenesis, we tested if

Tral is required to regulate Me31B-labeled P bodies in the mature

oocyte. Remarkably, in Tral mutants, P bodies have dramatically

differentmorphologies and form rod and planar donut-shapedas-

semblies (Figure 5E), implying a gain of anisotropy in the underly-

ing molecular arrangement of the condensate. The formation of

apparently ordered (or partially ordered) assemblies is reminis-

cent of liquid-crystalline formation, as observed in the synaptone-

mal complex or in specific mutants of the plant protein FLOE1

(Dorone et al., 2021; Rog et al., 2017). These results suggest

that, despite being structurally distinct, Tral and Me31B

contribute to the organization of P bodies through synergistic

interactions.
The arrested state of P bodies regulates bcd mRNA
storage
Our data show that P bodies in the mature Drosophila oocyte are

present in a viscous and arrested physical state. Since P bodies

in the mature oocyte contain maternal mRNAs that are stored

and translationally regulated over long periods, we hypothesized

that the arrested physical state of P bodies could facilitate this

function.

To test the hypothesis, we first developed a simple coarse-

grained model in which protein and RNA will co-assemble to

form condensates in silico (Figures 6A and S4G). In our model,

protein and RNA molecules possess attractive protein-protein

and protein-RNA interactions that form multicomponent con-

densates. Condensate stability depends on both the strength

of protein-protein and protein-RNA interactions, such that over

the concentration range examined, both species are necessary

for condensation. In simulations where the protein-protein inter-

action strength is systematically weakened, we observe a loss of

condensate integrity and a concomitant release of RNA into the

dilute phase. These simulations predict that condensate integrity

can be viewed as a proxy for RNA storage.

We first tested this prediction in live oocytes by asking if the

addition of 1,6-HD could trigger the release of bcd mRNA, a

well-established example of long-term storage, which is known

to localize to P bodies in the mature oocyte (Figure 6B). Upon

1,6-HD treatment of mature oocytes, P bodies became more

spherical, consistent with a loss of P body integrity and a
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Figure 6. Altering P body physical state leads to premature loss of bcd mRNA

(A) Coarse-grained simulations performed with 50 RNA molecules 800 protein molecules in which condensate assembly is driven by both protein-protein and

protein-RNA interactions. See also Figure S4G.

(B) Mature oocyte expressing Me31B::GFP, labeled with GFP-Booster and smFISH for bcd mRNA. P bodies and bcd mRNA co-localize at the anterior region.

Inset shows a zoomed in version of bcd mRNA and P bodies (n = 10 mature oocytes). Maximum projection 5 mm.

(C–E) Mature oocytes expressing Me31B::GFP, hsp83-MCP-RFP, and bcd-(ms2)6.

(C) The addition of 1,6-HD causes P bodies and bcdmRNA to initially adopt a spherical shape (t = 10 min), suggestive of a more dynamic physical state (n = 30).

Maximum projection, 5 mm.

(D) The addition of PBS does not affect the co-localization of bcdmRNA with P bodies. Although fluorescence of bcd at t = 25 min decreases, this is likely due to

photobleaching, the cytoplasmic distribution of bcd mRNA remains similar to t = 0 min (blue) (n = 35). Maximum projection 5 mm.

(E) Extended exposure to 1,6-HD results in the dispersion of bcdmRNAs, whereas P bodies remain condensed (t = 25 min) (n = 55). Maximum projection 5 mm.

(legend continued on next page)
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transition into a more dynamic state (Figure 6C). Furthermore, in

line with our predictions, whereas P bodies remained relatively

condensed, MS2-labeled bcd mRNA association with P bodies

reduced dramatically post-1,6-HD treatment in comparison

with phosphate buffered saline (PBS)-treated oocytes (Figures

6D, 6E, S5A, and S5B). Although we did observe a small reduc-

tion in bcd fluorescence in PBS-only-treated oocytes, this effect

is likely due to the composition of monovalent salts present in

PBS, in addition to the photobleaching effect (Figure S5A).

Since the live imaging of bcd mRNA with the MS2 system

yields a lower signal to noise ratio than fixed samples labeled

with dyes, we sought to confirm these results using smFISH

coupled with immunofluorescence. In the untreated mature

oocytes, bcd was concentrated in P bodies and we did not

detect any free bcd mRNA that was not associated with

Me31B. Alternatively, in the 1,6-HD-treated mature oocytes,

more than 50% of the bcd mRNA particles were not associated

with Me31B (Figure 6F). Together, these results suggest that the

transition induced by 1,6-HD leads to the release of bcd mRNA,

eventually resulting in P body dissolution.

Egg activation modulates P body properties and results
in the release of bcd mRNA in the early embryo
To explore the relationship between RNA release and P body

integrity in a physiological context, we examined P bodies and

bcd mRNA at egg activation and in the early embryo. The

process of egg activation is a conserved step in animal develop-

ment, and previous work in Drosophila has shown that egg acti-

vation alone results in the widespread translation of maternal

mRNAs, including bcd (Eichhorn et al., 2016).

To test if egg activation affects P body integrity and bcdmRNA

association, we utilized a well-established buffer (activation

buffer [AB]) to activate mature oocytes ex vivo. Importantly, the

addition of AB mimics downstream cellular and molecular

changes observed in vivo (Krauchunas and Wolfner, 2013;

York-Andersen et al., 2015, 2020). Upon treatment with AB,

both P bodies and bcd mRNAs underwent a rapid dispersion,

consistent with a loss of P body integrity and the simultaneous

release of bcd mRNA (Figure 7A). We also confirmed the loss

of association between P bodies and bcd using smFISH analysis

of ex vivo activated oocytes, which showed a dispersed distribu-

tion of bcd mRNA particles at the anterior, whereas Me31B was

diffused (Figure 7B). This finding is consistent with data arguing

that the translation of bcdmRNA only occurs when the mRNA is

no longer inside P bodies (Eichhorn et al., 2016;Weil et al., 2012).

Together, these results suggest that P bodies facilitate the stor-

age of mRNAs, such as bcd, which are later released for trans-

lation, following P body dispersion at egg activation.

Following egg activation and fertilization, P body-associated

proteins have been observed in early embryos; however, details

of their physical properties are not known (Lin et al., 2008; Patel

et al., 2016). Live imaging in the early embryo reveals P bodies

that are smaller, with increased spatial mobility, andmore spher-
(F) Mature oocyte expressing Me31B::GFP, labeled with GFP-Booster and smFIS

bcdmRNA particles are co-localized with P bodies. Following treatment with 1,6

with P bodies (52%) (n = 10 mature oocytes). Maximum projection 5 mm.

Scale bar, 10 mm (A), 5 mm (B and F), 1.5 mm (C–E).

See also Figure S5.
ical in shape than those in mature oocytes (Figures 7C and S5C–

S5E). To test if embryonic P bodies exhibit an arrested state, we

performed whole FRAP. In contrast to P bodies in the mature

oocyte, P bodies in the early embryo exhibited rapid recovery

of fluorescence and a high proportion of mobile Me31B (Fig-

ure 7D). These results collectively show that the P bodies from

the early embryo are fundamentally different from those in the

mature oocyte, despite being referred with the same name.

Finally, we tested if the modified P bodies in the early embryo

reassociate with bcd mRNA, which is continuously translated in

early embryogenesis. Using smFISH, we found that bcd mRNA

particles are not associated with the re-formed P bodies, consis-

tent with expectations for translationally active mRNAs (Fig-

ure 7E). In addition, we visualized hunchback (hb) mRNA, a

zygotic gene required for embryo pattern formation and a down-

stream target of Bcd protein (Crauk and Dostatni, 2005). Inter-

estingly, hb mRNA is also not associated with P bodies in the

early embryo (Figure S5F). Taken together, the modified proper-

ties of P bodies in the early embryo suggest a change in P body

function during the oocyte-to-embryo transition.

DISCUSSION

Over the last decade, biomolecular condensates have emerged

as a key principle in cellular organization. Although changes in

condensate physical properties have been examined extensively

in vitro, the in vivo relevance of physical states has been explored

to a lesser extent. Here, we demonstrate that a combination of

intrinsic (multivalent interactions, presence of IDRs) and extrinsic

(RNA, actin, and disordered proteins) factors can regulate the

integrity and the arrested physical state of P bodies, both of

which contribute to the storage of bcdmRNA in mature oocytes

(Figure 7F). We also show that P bodies exhibit modified proper-

ties in the early embryo. We support a model whereby multiva-

lent interactions, modular protein regions, and cellular factors

trigger changes in the physical states of RNP condensates to

facilitate differential mRNA outcomes during development.

Although dynamic, liquid-like states have been observed for

many biomolecular condensates, there is a growing repertoire

of functionally important and dynamically arrested condensates

(Boke et al., 2016; Brangwynne et al., 2011; Hubstenberger et al.,

2013; Woodruff et al., 2017). Balbiani bodies, for instance, adopt

a solid-like physical state, which is thought to facilitate pro-

longed storage of macromolecules in dormant vertebrate

oocytes (Boke et al., 2016). P bodies in Drosophila oocytes

exhibit a physical state that allows internal mobility but prevents

the exchange of proteins between the P body and the cytoplasm.

Analogous states have been observed in the germline P bodies

of arrestedC. elegans oocytes (Hubstenberger et al., 2013), sug-

gesting that the viscous properties of RNP condensates could be

an evolutionarily conserved mechanism to temporally regulate

mRNAs essential for normal development. Importantly, such

physical states of RNP condensates may be preserved across
H for bcdmRNA, before and after treatment with 1,6-HD. At t = 0 min, 98% of

-HD (t = 25 min), bcdmRNA particles disperse and are not always co-localized
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(A–C and E) Mature oocytes expressing Me31B::GFP.

(A) The addition of activation buffer results in simultaneous dispersion of P bodies and bcd mRNA from condensed (t = 0 min) to diffused state (t = 2 min) (n = 0

mature oocytes). Maximum projection 5 mm.

(B) smFISHof activated oocytes stained forMe31B using aGFP-Booster and bcd shows diffuse P bodies and dispersed distribution of bcdmRNAs. Inset shows a

zoomed in version of bcd mRNA and P body distribution (n = 10 activated oocytes). Maximum projection 5 mm.

(C) P bodies in the mature oocyte are larger than those in the early embryo (n = 50 early embryos). Max projection 3 mm.

(D) P body recovery profiles after whole FRAP of P bodies in the mature oocyte and early embryo. Mobile fraction for P bodies in the early embryo is 57%

compared with 15% in the mature oocyte (n = 20 mature oocytes, n = 8 early embryos) (mean, standard deviation).

(E) smFISH of early embryos stained for Me31B using a GFP-Booster and bcd shows no co-localization of P bodies and bcd mRNAs. Inset shows a zoomed in

version of bcd mRNA and P body distribution (n = 10 early embryos). Maximum projection 5 mm.

(F) P bodies (cyan) distributed throughout the mature Drosophila oocyte adopt an arrested physical state. The assembly, organization, and physical properties of

P bodies are regulated by multivalent interactions between structured proteins (green) and intrinsically disordered proteins (IDP, yellow), as well as RNAs

(legend continued on next page)
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other specialized cell types, such as neurons. For example,

mRNAs stored and translationally repressed in neuronal RNP

condensates are temporarily translated in an activity-induced

manner at specific synapses, thereby influencing short-term or

long-term memory (Puthanveettil, 2013; Rajasethupathy et al.,

2009). Although it is not clear how this translation is regulated,

models suggest that RNP granules switch between liquid-like

and solid-like states to facilitate differential translation control

(Bakthavachalu et al., 2018; Majumdar et al., 2012; Sudhakaran

and Ramaswami, 2017).

Prior to this work, it was unclear how mRNAs could be sub-

jected to efficient storage and differential release at distinct

stages of oogenesis without obviously disrupting the integrity

of P bodies (Sankaranarayanan and Weil, 2020). Previous work

using cryo-immunoelectron microscopy on ultrathin frozen

sections showed that maternal mRNAs are dynamically parti-

tioned according to their translational status in mid-stage oocyte

P bodies. Specifically, mRNAs that are being translated are

enriched on the edge of P bodies with the cytoplasmic polyade-

nylation element-binding (CPEB) protein, oo18 RNA-binding

protein (Orb), and ribosomes (Davidson et al., 2016; Weil et al.,

2012). Alternatively, stored mRNAs that reside inside of mid-

stage oocyte P bodies are repressed until later stages of devel-

opment. Our data demonstrate that P body properties can be

modified by attenuating multivalent hydrophobic or electrostatic

interactions. Therefore, stored mRNAs could be subjected to

controlled release through modulating the integrity of P bodies

in response to developmental and molecular cues.

One striking observation is the influence of disordered regions

in regulating the physical state of P body condensates. Conven-

tional wisdom posits that IDRs contribute weakmultivalent inter-

actions that are essential for condensation. However, our results

offer an alternative model—rather than driving assembly, IDRs

may also function to modulate the physical state of condensates

by counteracting the interactions driven by adhesive contact

sites on folded domains. This model echoes prior work on the

yeast prion protein Sup35, where the loss of N-terminal disor-

dered regions leads to robust aggregation of the folded C-termi-

nal domain, whereas the full-length protein rapidly assembles

into dynamic condensates (Franzmann et al., 2018). The role of

IDRs in the formation or regulation of RNP condensates is

context dependent; the DEAD-box helicase eIF4A lacks any

appreciable IDRs but serves to regulate stress granule formation

in cells (Tauber et al., 2020). However, in structured proteins,

which possess unusually short, disordered regions, as in

Me31B, we speculate that the disordered regions may have

emerged to modulate the physical states of RNP condensates.

Another key determinant that regulates biomolecular conden-

sate formation and physical properties is multivalency. Conden-

sates such as P bodies contain hundreds of diverse RNP

components, which likely serve as a major source of multivalent

interactions. Although structured and disordered RNA-binding

proteins have been investigated previously, how they influence

the overall property of condensates in vivo is unclear. Using
(magenta). The loss of these interactions alters the physical state of P bodies. At e

embryogenesis, P bodies re-condense but are more dynamic and do not co-loc

Scale bar, 2 mm (A and C), 5 mm (B, D and E).

See also Figure S4.
Me31B and Tral, our results indicate that structurally distinct

proteins synergistically interact to regulate P bodies during

Drosophila oogenesis. These data also agree with observations

reported for Tral and Me31B orthologs in arrested C. elegans

oocytes (Hubstenberger et al., 2013), suggesting that the under-

lying physical interactions between RNP components may be

evolutionarily conserved. Overall, our in vivo and in vitro data

indicate that IDRs act as lubricants to regulate the overall phys-

ical state and organization of P bodies through interactions with

structured proteins.

The oocyte-to-embryo transition is accompanied by large-

scale changes in the cytoplasm, including the translation of

stored mRNAs and widespread post-translational modifications

(PTMs) (Eichhorn et al., 2016; Hara et al., 2018). In fact, Me31B is

known to be phosphorylated and ubiquitinated in the early em-

bryo (Hara et al., 2018; Zavortink et al., 2020). Such modifica-

tions have been shown to alter the physical properties of RNP

condensates in vitro (Hofweber and Dormann, 2019; Owen and

Shewmaker, 2019; Schisa and Elaswad, 2021). Our data from

the early embryo suggest that PTMs may be influencing the

modification of P body physical state and function post-egg

activation.

One open question relates to the molecular differences be-

tween P bodies in the oocyte and early embryo. In vitro studies

have shown that RNA can modulate the properties of conden-

sates, including their size and dynamics (Garcia-Jove Navarro

et al., 2019; Roden and Gladfelter, 2021). Our in vivo data

showing smaller-sized oocyte P bodies after RNase A treatment

and the absence of actively translating mRNAs in embryonic

P bodies led us to speculate that a decrease in the abundance,

or absence, of RNAs is likely contributing to changes in P body

size and dynamics.

Finally, biochemical and molecular evidence suggest that

P body proteins, including Me31B and Tral, change primary

function from translational repression to degradation in the early

embryo (Wang et al., 2017). We suspect the changes that

accompany the dissolution of P bodies at egg activation, and

their re-condensation in the embryo, reflect developmentally

required transitions in mRNA regulation (Hubstenberger et al.,

2013; Kato and Nakamura, 2012; Wang et al., 2017). In line

with this model, we propose a general framework whereby

developmental cues coordinate molecular interactions and

large-scale cytoplasmic modifications to regulate mRNAs via

adaptable RNP physical states.

Limitations of the study
Our work shows that the arrested physical state of P bodies fa-

cilitates the storage of bcdmRNA in the mature oocyte. Whether

such a state also facilitates mRNA storage during earlier stages

of oogenesis, or in other cells, remains to be determined. Addi-

tionally, more mRNAs need to be tested to expand the relevance

of the arrested state. Another limitation is the use of 1,6-HD to

study P body physical state and bcd regulation. Although 1,6-

HD has been commonly used to attenuate hydrophobic
gg activation, P bodies disperse and release stored RNA for translation. In early

alize with RNAs. Created with BioRender.com.
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interactions, it is not a naturally occurring cellular factor. There-

fore, identifying cellular components that interfere with P body

properties and studying the consequences of premature release

of stored mRNAs is worthy of further investigation. Finally, we

note that although 1,6-HD treatment results in the release of

bcd from P bodies, we did not detect bcd translation (data not

shown). This is likely due either to the requirement of a transla-

tional activator (or loss of a translational repressor) to initiate

translation at egg activation or to the ability of 1,6-HD to impair

kinase and phosphatase activities, which are thought to regulate

translation of mRNAs (D€uster et al., 2021). Whether or not the

release of mRNA from P bodies alone is sufficient for translation

continues to be an important area of investigation in the future.
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(PBS) solution without MgCl2

Sigma-Aldrich Cat# D8537

Potassium chloride Merck Cat#104935

DTT Fermentas Life

Sciences

Cat#R0862

Benzonase Produced in-house N/A

Tris Carl Roth Cat# 5429

Amylose resin NEB Cat# E8021S

EDTA Roche Cat# 105063

Pipes Applichem Cat# A1079

monoGFP Produced in-house N/A

Activation Buffer (AB) York-Andersen et al., 2015 N/A

Schinder’s Drosophila medium Gibco Cat# 21720024

‘Wash Buffer A’ for Stellaris RNA FISH LG Biosearch Technologies Cat# SMF-WA1-60
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Protease inhibitor cocktail Roche Cat# CO-RO

Amylose Resin New England Biolabs Cat# E8021S

PreScission Protease GST 3C GE Life Sciences Cat# GE27-0843-01

Polyethene Glycol – 2000 Merck Cat#817018

Recombinant GFP-Me31B protein This paper N/A

Recombinant GFP-Me31BDN-DC protein This paper N/A

Critical commercial assays

Size exclusion chromatography using a HiLoad

16/600 Superdex 200 pg

GE Life Sciences Cat# GE28-9893-35

Amicon Ultra-0.5 Centrifugal Filter Unit Millipore Cat# UFC5030

Deposited data

Raw set of disordered regions from the

Drosophila proteome

This paper https://github.com/holehouse-lab/

supportingdata/tree/master/2021/

sankaranarayanan_me31b_2021
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Experimental models: Organisms/strains

D. melanogaster: y[1] w[*]; P{w[+mC]=

PTT-GB}me31B[CB05282]

(Me31B::GFP)

Bloomington Drosophila Stock

Centre (Buszczak et al., 2007)

BDSC: 51530

FlyBase: FBst0051530

D. melanogaster: y,w, bcd-(ms2)6 (18), bcd-

(ms2)6 (4); hsp83-MCP-RFP(4a)

Weil et al., 2006 N/A

D. melanogaster: GFP::Tral Drosophila Genomics Resource

Centre (Morin et al., 2001)

DGRC: 110584

Flytrap:G00089;DGRC:110584;

RRID:DGGR_110584

D. melanogaster: y[1]; P{y[+mDint2] w[BR.E.BR]=

SUPor-P} tral[KG08052] ry[506] / TM3, Sb[1] Ser[1]

(tral1)

Bloomington Drosophila Stock

Centre (Wilhelm et al., 2005)

BDSC: 14933FlyBase:

FBgn0041775

D. melanogaster: w[1118]; Df(3L)ED4483,

P{w[+mW.Scer\FRT.hs3]=3’.RS5+3.3’}

ED4483/ TM6C, cu[1] Sb[1]

Bloomington Drosophila Stock

Centre (Wilhelm et al., 2005)

BDSC: 8070FlyBase:

FBab0035731

Oligonucleotides

Custom Stellaris FISH Probes for the 3’UTR of bcd RNA Stellaris See Table S2 (supplemental information).

Molecular Instruments Custom HCR Probe for hb RNA Molecular Instruments DNA Custom kit

Drosophila melanogasterlot

number: 2690/B795GenBank:

NM_169234.2, Alexa647, v3.0 kits

Recombinant DNA

Recombinant GFP-Me31B plasmid This paper N/A

Recombinant GFP-Me31BDN-DC plasmid This paper N/A

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

ImageJ Plugin Trackmate Tinevez et al., 2017 https://imagej.net/plugins/trackmate/

Rstudio/ R software RStudio Team 2021 http://www.rstudio.com/.

HullRad Fleming and Fleming, 2018 N/A

ABSINTH implicit solvent model Vitalis and Pappu, 2009 N/A

CAMPARI Monte Carlo simulation (v3.0) http://campari.sourceforge.net/

V3/index.html

N/A

SWISS-MODEL Waterhouse et al., 2018 N/A

SOURSOP https://soursop.readthedocs.io/ N/A

MDTraj McGibbon et al., 2015 N/A

DSSP Algorithm Kabsch and Sander, 1983 N/A

Protfasta https://protfasta.readthedocs.io/ N/A

Metapredict Emenecker et al., 2021 N/A

LocalCIDER Holehouse et al., 2017 N/A

PIMMS simulation engine Martin et al., 2020 N/A

Other

Iberian recipe fly food Produced in-house N/A

Oil 10 S (95 Series Halocarbon Oil) VWR Chemicals N/A

Olympus FV3000 Confocal Laser Scanning Microscope Olympus FV3000

DeltaVision Core widefield microscope Applied Precision, LLC DeltaVision Core

Custom built dual-trap optical tweezer instrument Jahnel et al., 2011 N/A
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Materials availability
Reagents generated in this study are available upon request.

Data and code availability
d All other data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at [https://github.com/holehouse-lab/supportingdata/tree/master/2021/

sankaranarayanan_me31b_2021] and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila stocks
The following transgenic lines were used in this paper:

Me31B::GFP (BDSC 51530, (Buszczak et al., 2007)), hsp83-MCP-RFP and bcd-(ms2)6 (Weil et al., 2006), GFP::Tral (DGRC 110584,

(Morin et al., 2001)), tral1 (BDSC 14933) and Df(3L)ED4483 (BDSC 8070) (Wilhelm et al., 2005).

Fly stocks weremaintained at 25�C on Iberian recipe fly food as per standard procedure. Randomly selected, healthy, adult female

flies typically 2-3 days after eclosing, with the required genotype for each experiment, that had not been subjected to previous exper-

imental procedures were fed on yeast for two days at 25�C prior to dissection of ovaries or collection of embryos. For fattening,

approximately 20 females and 10 males were put in a vial together. For embryo collection, 50-100 females and 20-40 males were

placed in a cage together.

METHOD DETAILS

Oocyte sample preparation
Mature oocytes from fattened female flies were dissected (Weil et al., 2012b; Derrick et al., 2016) into 10S oil (95 halocarbon) on a

22mmby 40mmcover slip for live imaging. For extrusion assays, membranes of dissectedmature oocytes were poked and ruptured

using sharp forceps to extrude the oocyte contents into the oil. Extruded material was then subjected to live imaging.

Live imaging
Live imaging of in vivo and ex vivo P bodies, including all Fluorescent Recovery After Photobleaching experiments, were performed

on theOlympus FV3000microscope using the 1.35 NA, 60X silicone objective at a room temperature of 20�C (Note: subtle changes in

temperature can affect P body recovery kinetics). For all in vivo experiments, P bodies in the anterior to mid-lateral region of the

mature oocyte were imaged. Live imaging of recombinant Me31B condensates, induced on 35mm glass bottom MatTek dishes,

was performed on the DeltaVision Core widefield microscope using a 1.4 NA, 60X oil immersion objective.

Pharmacological treatments
Mature oocytesmounted in oil on a 22mmby 40mmcoverslip and set up under themicroscopewere treatedwith one or two drops of

10 mg/ml cytochalasin-D (Sigma-Aldrich) or 5% 1,6-HD (Sigma-Aldrich) or 500 ng/ml RNase A (Sigma-Aldrich) mixed in

1X Dulbecco’s Phosphate-buffered saline (PBS) solution without MgCl2 (Sigma-Aldrich), or home-made activation buffer (3.3 mM

NaH2PO4, 16.6 mM KH2PO4, 10 mMNaCl, 50 mM KCl, 5% PEG 8000, 2 mMCaCl2, pH 6.4; York-Andersen et al. 2015) using a glass

pipette. Me31B or Tral labeled P bodies before and after treatment were then imaged. For salt experiments, mature oocytes were

extruded into various concentrations of MgCl2 or NaCl mixed in 1X PBS for 15 minutes before being subjected to live imaging. In

the case of excessive movement of the oocytes or extruded material during addition of solutions, the focal plane of interest was

adjusted accordingly, and imaging was performed.

Protein purification
The plasmid backbones for the production viruses and the SF9 insect cells for the purification of the recombinant proteins were pro-

vided by the protein purification facility at the MPI-CBG in Dresden. The recombinant Me31B, (wild-type (WT) and Me31BDN-DC

(mutant)), were cloned using established cloning techniques, tagged with a monomeric GFP (produced in-house), expressed in

and purified fromSF9 insect cells using the FlexiBAC baculovirus vector system (Lemaitre et al., 2019). Cell lysis was performed using

a LM20 microfluidizer in lysis buffer containing 50 mM Tris/HCl pH 7.6, 2 mM EDTA, 1x EDTA-containing protease inhibitor cocktail

(Roche), 1 M KCl, 5% glycerol, 3 mg/L benzonase (degrades nucleic acids), 1 mMDTT. The soluble lysate fraction was collected after

centrifugation for 1 hour at 16000 rpm (Beckman Coulter JA-25.50) at 4�C. MBP-tagged protein was captured by gravity flow affinity

chromatography using amylose resin (New England Biolabs). Captured protein waswashedwith wash buffer (50mMTris/HCl pH 7.6,

2mMEDTA,1MKCl, 5%glycerol, 1mMDTT, 3 ug/L benzonase) and eluted using wash buffer containing 20mMmaltose. The eluted

protein was incubated with GST 3C – PreScission protease (1:50) at room temperature for 2 hours to cleave off affinity tags. Samples

were applied to size exclusion chromatography using a HiLoad 16/600 Superdex 200 pg (GE Life Sciences) on an Akta pure
e3 Developmental Cell 56, 2886–2901.e1–e6, October 25, 2021
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chromatography system in 50 mM Tris/HCl pH 7.6, 2 mM EDTA,1 M KCl, 5% glycerol, 1 mMDTT. Proteins were finally concentrated

using an Amicon Ultra centrifugal-500-30K filter at 4000 xg. Aliquots were flash frozen and stored at -80�C.
N terminal IDR sequence: MTEKLNSGHTNLTSKGIINDLQIAGNTSDDMGWKSKLKLPPKDNRFKTT

C-terminal IDR sequence: SVGDTCNNSDLNNSANEEGNVSK

In vitro condensation assay
Stored protein samples were thawed and spun at 5,000 rpm for a minute to remove any residual precipitates. To induce Me31B

condensates (WT and mutant), 7.5 mM recombinant GFP-Me31B protein was added to an Eppendorf tube containing the conden-

sation buffer (50 mMKCl, 20mMPIPES, pH 7, 1%PEG-2K). Note: Gentle tapping of the tube induced spherical condensates. Mixing

the content with a pipette tip was avoided as it prevented droplet formation.

Optical tweezer experiments
Condensate fusions for wildtype or mutant condensates were quantified using a custom built dual-trap optical tweezer instrument

(Jahnel et al., 2011). Condensates were induced in the condensation buffer containing 5%PEG-2K at 20 mMMe31B protein concen-

tration for both WT and mutant condensates. Post condensation, two condensates were trapped using separate optical traps and

brought into close contact to induce fusion.

Fluorescence recovery after photobleaching
For whole FRAP, Me31B/Tral labeled P bodies or in vitro Me31B condensates were entirely photobleached for 5 seconds using

40% laser intensity from the 405 nm laser channel. For internal FRAP, a small region within Me31B labeled in vivo P bodies or

in vitro Me31B condensates was photobleached for 5 seconds using 40% laser intensity from the 405 nm laser channel. Time

lapse series of Me31B fluorescence recovery was recorded every 30 seconds (in vivo P bodies) or 10 seconds (in vitro Me31B

condensates) using the pre-bleach imaging parameters (minimal laser intensity using the 488 nm laser channel, 2 Airy unit pinhole,

20482048 pixels).

Single molecule fluorescence in situ hybridization
Fly preparation: Ovaries from fattened female flies were dissected into 5% 1,6-HD(Sigma-Aldrich) dissolved in 1x PBS and teased

apart to allow for permeation of the oocytes by 5% 1,6-HD. Oocytes were then incubated for 30minutes before being transferred into

and incubated in Schneider’s Drosophila medium (Gibco) for 1 hour, oocytes were then fixed as below.

Fixation: Ovaries from fattened female flies were dissected into Schneider’s Drosophila medium and teased apart before

being fixed in 1 ml of 4% paraformaldehyde for 15 minutes at room temperature. Oocytes were washed thoroughly with

0.2% PBST before hybridization. Embryos collected for 1.5 hours were dechorionated with 50% household bleach. The em-

bryos were then washed thoroughly and were fixed in a solution containing 500 ml of 4% paraformaldehyde and 500 ml heptane

at room temperature for 15 minutes, the paraformaldehyde was replaced with 100% methanol, and this was shaken vigorously

to pop the vitelline membrane. All liquid was removed, and the embryos were rinsed in methanol, before being washed in

0.2% PBST.

Stellaris RNA fluorescence in situ hybridization: Custom Stellaris FISH Probes were designed against the 3’ UTR of bcd mRNA

(GenBank: NM_057477, GenBank: NM_169157, GenBank: NM_169159, GenBank: NM_176411, GenBank: NM_176410) by utilizing

the Stellaris RNA FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA) available online at www.biosearchtech.com/

stellarisdesigner. Drosophila oocytes and embryos were hybridized with the bcd mRNA Stellaris RNA FISH Probe set labeled with

Quasar 570 (Biosearch Technologies, Inc.), following the manufacturer’s instructions for ‘Drosophila embryos’ available online at

www.biosearchtech.com/stellarisprotocols.

Protocol adapted from Trovisco et al. (2016), briefly, fixed oocytes and embryos were washed using ‘Wash Buffer A’ before be-

ing hybridized with 500 nM Quasar 570 -conjugated antisense Stellaris probes for bcd RNA in hybridization buffer at 37 degrees

overnight. The oocytes and embryos were then re-washed in ‘Wash Buffer A’ before being washed with 0.2% PBST. The sample

was then incubated in GFP-Booster Alexa Fluor 488 (1:500 (Chromotek)) at room temperature for 1 hour in 1% PBST. Embryos

were washed well with 0.2% PBST before being mounted in SlowFade Diamond Antifade Mountant with DAPI (Thermofisher

Scientific).

Custom Stellaris FISH Probes for the 3’UTR of bcd RNA, adapted from Trovisco et al. (2016), see Table S2.

In situ hybridization chain reaction V3.0
Protocol adapted frommolecular instruments (Choi et al., 2018). Drosophila embryos were hybridized with 2 ml of odd and even HCR

probes for hbmRNA in 100 ml 30% hybridization buffer at 37 degrees overnight. The sample was then washed with 30% probe wash

buffer at 37 degrees and SSCT at room temperature. 2 ml of B4 Hairpin 1 and Hairpin 2 conjugated to an Alexa 647 were snap-cooled

by heating to 90 degrees and cooled in the dark before being added to 100 ml of amplification buffer, this was added to the Drosophila

embryos and incubated in the dark for 2 hours. The sample was thenwashedwith SSCT at room temperature followed by 0.2%PBST

before the addition of GFP-booster 488 (1:500 (Chromotek)) at room temperature for 1 hour in 1% PBST. Embryos were washed well

with 0.2% PBST before being mounted in Slowfade Diamond with DAPI (Thermofisher Scientific).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Optical tweezer experiments
For quantifying the scaled fusion time forWT condensates, firstly, a relaxation time constant was derived from the fusion process over

time. The scaled fusion time was then calculated by dividing the relaxation time constant by condensate radii to express the fusion

time as a function independent of condensate size. Formutant condensates, due to their rapid aggregation post condensation, fusion

was not quantifiable.

Fluorescence recovery after photobleaching
Mean fluorescence intensities were estimated using the Fiji ImageJ software. For whole FRAP analysis, background correction was

performed by dividing Me31B fluorescent intensities of bleached condensates by fluorescent intensities of unbleached, cytoplasm.

For internal FRAP, background correction was performed by dividing Me31B fluorescent intensities of bleached region within con-

densates by fluorescent intensities of whole condensates.

For all FRAP series, statistical analysis, curve fitting and plotting was performed using Rstudio/R software. Data for each

condition was averaged and standard deviation was calculated where applicable. Recovery fitting of the normalized mean intensity

as function of time was fitted by the least square analysis to determine fit to the single exponential equation: Normalized intensity =

P3(1�e(�t/t)) +y0 where y0 is the recovery plateau, t is time, t is the time constant and P is the amplitude of the fluorescence change.

To infer the spatiotemporal pattern of internal Me31B fluorescence recovery, kymographs were generated using the ImageJ plugin

‘reslice’ by measuring fluorescence across of a region of interest over time.

All statistical analysis was completed in R/R Studio, the distribution of all data sets were analyzed in R studio before statistical

analysis to assure the data met the assumptions for the appropriate statistical test. Statistical analysis of the difference in recovery

kinetics P bodies between the three stages of oogenesis (stage 7, stage 12 and stage 14) used a Students t-test (Figure S2).

Fluorescence intensity measurements
Analysis of Me31B::GFP and bcd-RFP fluorescence before and after PBS and 1,6-HD treatment was performed using ImageJ

processing software. Identical imaging parameters were utilized during imaging and measurement of fluorescence using ‘analyze

particles’ and ‘measure’ feature on ImageJ. Individual Me31B and bcd particles were manually counted and analyzed before and

after treatment with 1,6-HD. Random particles (bcd and Me31B together) were analyzed at different time points to avoid any bias.

Aspect ratio, circularity and particle area
P body aspect ratio, circularity, and area were measured using the ‘analyze particles’ and ‘measure’ features in ImageJ. Aspect ratio

values are measured as the ratio of the major axis of a particle to the minor axis of a particle which gives an estimate of particle

morphology. Circularity refers to the ‘‘roundedness’’ of a particle (and is calculated using the formula - circularity = 4pi (area/perim-

eter2) which gives an estimate of particle shape.

All statistical analysis was completed in R/R Studio, the distribution of all data sets were analyzed in R studio before statistical anal-

ysis to assure the data met the assumptions for the appropriate statistical test. Statistical analysis of the difference in area and circu-

larity of P bodies between the oocyte and embryo used a Two-Sampled Wilcoxon (Mann-Whitney) test. Statistical analysis of the

difference in circularity of P bodies in the oocyte before and after treatment with 1,6-HD used a Wilcoxon signed-rank test.

Apparent viscosity estimation
Protocol was adapted from: (Hubstenberger et al., 2013). P body viscosity was estimated from internal FRAP recovery kinetics.

Apparent diffusion of � 0.00071 mm2/s was estimated from the calculated half-maximum (62.79s) using the equation:

Dz0.224u2/ t1/2, where u is the radius of the bleach region, t is the time. Using the equation h=(KbT)6pRhD, where Rh is the

hydrodynamic radius (An approximate hydrodynamic radius of Me31B was estimated based on our all-atom simulations, with the

hydrodynamic radius calculated using HullRad (Fleming and Fleming, 2018), and T is the temperature at which experiments were

conducted (21�C), the apparent viscosity was estimated.

Particle displacement analysis
P bodies were tracked and their displacement calculated before and after the addition of Activation Buffer (AB) or Cytochalasin D.

Prior to tracking the images were pre-processed with a rolling ball background subtraction. Individual P bodies were then tracked

using the FIJI plugin Trackmate (Tinevez et al., 2017). A simple linear tracker was used to determine particle tracks, and statistical

analysis of the track displacement was completed in R/R Studio, using a Wilcoxon Signed Rank Test. The distribution of the data

was analyzed in R studio before statistical analysis to assure the data met the assumptions for the statistical test.

All-atom simulations
All-atom simulations were run with the ABSINTH implicit solvent model and the CAMPARI Monte Carlo simulation (V3.0)

(http://campari.sourceforge.net/V3/index.html) and with the ion parameters from previously published work (Mao and Pappu,

2012; Vitalis and Pappu, 2009). Preferential sampling is used such that the backbone dihedral angles of folded domains are held

fixed, while all sidechain dihedral angles, and the backbone dihedrals of folded proteins are fully sampled. In this way, we a priori
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ensure that the folded domains remain folded. While the combination of ABSINTH and CAMPARI is well-established route to obtain

reliable ensembles of disordered regions, more positional restraints on folded domains have been used previously applied to obtain

good agreement with experiment (Cubuk et al., 2021; Martin and Mittag, 2018; Martin et al., 2020; Newcombe et al., 2018).

Starting structures were generated first by constructing homology models of Me31B based on the DDX6 structure (PDB: 4CT5)

using SWISS-MODEL (Waterhouse et al., 2018). N- andC-terminal IDRswere constructed using CAMPARI. For all simulations, disor-

dered regions were started from randomly generated non-overlapping random-coil conformations, with each replica using a unique

starting structure. Monte Carlo simulations evolve the system via a series of moves that perturb backbone and sidechain dihedral

angles along with the rigid-body coordinates of both polypeptides and explicit ions. Simulation analysis was performed using

SOURSOP (https://protfasta.readthedocs.io/) and MDTraj (McGibbon et al., 2015). The protein secondary structure was assessed

using the DSSP algorithm (Kabsch and Sander, 1983).

Contact score analysis was performed by assessing the fraction of simulations in which two residues were in direct contact, a dis-

tance calibrated as 5.0 Å or shorter between heavy atoms. This fraction was divided by the analogous fraction computed from sim-

ulations in which all attractive molecular interactions (solvation effects, electrostatics, attractive component of the Lennard-Jones

potential) were set to 0.0, in the so-called excluded volume (EV) limit (Holehouse et al., 2015).

All simulations were run at 10mMNaCl, and PEG 310 K. Fifty independent simulations were run for a total of 80millionMonte Carlo

steps with 5 million steps for equilibration. The system state saved every 100,000 steps. Each simulation generated 750 frames,

generating a final ensemble of 37,500 frames. Where included, error bars are standard error of the mean over the fifty independent

simulations.

Bioinformatics
Disordered regions were calculated using both Mobidb-lite (Necci et al., 2017) and with metapredict (Emenecker et al., 2021;

Piovesan et al., 2021). Disordered regions were identified using consensus scores from Mobidib-lite with a minimum IDR length

of 25 residues and 3 or more predictors predicting a region to be disordered. The raw set of disordered regions from the Drosophila

proteome, alongwith analogous data for P body proteins is provided in the supplementary repository: https://github.com/holehouse-

lab/supportingdata/tree/master/2021/sankaranarayanan_me31b_2021.

Sequence analysis was performed using localCIDER (Holehouse et al., 2017).

Coarse-grained simulations
Coarse-grained simulations were performedwith the PIMMS simulation engine (Martin et al., 2020)https://paperpile.com/c/pRQFLB/

sMrm+DzJc. Lattice-based Monte Carlo simulations afford a computationally tractable approach to sample systems with coexisting

liquid phases, as has been applied in several different contexts (Boeynaems et al., 2019; Fei et al., 2017; Feric et al., 2016; Martin

et al., 2020). Monte Carlo moves include chain translate, rotate, and local/global pivot moves.

Simulationswere run using a simple representation scheme in whichMe31Bwas represented as a five-beadmodelmade up of two

N-terminal beads, a single central bead, and two C-terminal beads (Figure S4G-A). In this way, the protein consists of intrinsically

disordered region (IDR) beads and ordered domain (OD) beads. RNA is represented as a 20-bead homopolymer (Figure S4G-A).

We emphasize that these models are designed to describe a class of phenomenon, as opposed to capturing features specific to

Me31B over RNA binding proteins. Our simplification of RNA and protein not-withstanding, these simple models allow us to interro-

gate general behavior.

The strength of interactions between the three bead types is shown in Figures S4G-A and S4G-B. Units are in per kT (where k=1).

The core key files and parameter files used to run these simulations are provided at https://github.com/holehouse-lab/

supportingdata/tree/master/2021/sankaranarayanan_me31b_2021.

Protein:RNA and RNA:RNA interaction strengths are held fixed across all simulations, while the protein:protein interaction strength

is systematically altered across the simulations shown in Figures S4G-A and S4G-B. The specific interaction strengths were chosen

to qualitatively reflect insights from experimental work - i.e. OD:OD interaction is stronger thanOD:IDR interaction, with IDR:IDR inter-

action being the weakest. We also assume both OD and IDR beads can interact with RNA, and that RNA:RNA interaction is repulsive.

As a final note, we anticipate that RNA:RNA interactions plays an additional role in P body stability, assembly, and disassembly. How-

ever, for our initial model, absent of other specific information, we avoided adding more tunable parameters to develop a simple yet

physically reasonable.

All simulations were run with 800 Me31B protein molecules. Simulations with RNA were also run with 50 RNA molecules. These

numbers were chosen to ensure that reasonable statistics on droplet recruitment could be obtained with a sufficiently large system

where bona fide condensation occurs. Simulations were run on a 60 x 60 x 60 lattice with periodic boundary conditions, and simu-

lation analysis was performed on the terminal 20% of the frames. Simulations were run for around 2.5 billion Monte Carlo moves, and

three independent replicas were performed, such that error bars are the standard error of the mean on these replicas.

ADDITIONAL RESOURCES

No additional resources provided
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