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Learning molecular dynamics with simple language
model built upon long short-term memory neural
network
Sun-Ting Tsai1, En-Jui Kuo2 & Pratyush Tiwary3✉

Recurrent neural networks have led to breakthroughs in natural language processing and

speech recognition. Here we show that recurrent networks, specifically long short-term

memory networks can also capture the temporal evolution of chemical/biophysical trajec-

tories. Our character-level language model learns a probabilistic model of 1-dimensional

stochastic trajectories generated from higher-dimensional dynamics. The model captures

Boltzmann statistics and also reproduces kinetics across a spectrum of timescales. We

demonstrate how training the long short-term memory network is equivalent to learning a

path entropy, and that its embedding layer, instead of representing contextual meaning of

characters, here exhibits a nontrivial connectivity between different metastable states in the

underlying physical system. We demonstrate our model’s reliability through different

benchmark systems and a force spectroscopy trajectory for multi-state riboswitch. We

anticipate that our work represents a stepping stone in the understanding and use of

recurrent neural networks for understanding the dynamics of complex stochastic molecular

systems.

https://doi.org/10.1038/s41467-020-18959-8 OPEN

1 Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA. 2Department of Physics
and Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA. 3 Department of Chemistry and Biochemistry and Institute for Physical
Science and Technology, University of Maryland, College Park, MD 20742, USA. ✉email: ptiwary@umd.edu

NATURE COMMUNICATIONS |         (2020) 11:5115 | https://doi.org/10.1038/s41467-020-18959-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18959-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18959-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18959-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18959-8&domain=pdf
mailto:ptiwary@umd.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Recurrent neural networks (RNN) are a machine learning/
artificial intelligence (AI) technique developed for model-
ing temporal sequences, with demonstrated successes

including but not limited to modeling human languages1–7. A
specific and extremely popular instance of RNNs are long short-
term memory (LSTM)8 neural networks, which possess more
flexibility and can be used for challenging tasks such as language
modeling, machine translation, and weather forecasting6,9,10.
LSTMs were developed to alleviate the limitation of previously
existing RNN architectures wherein they could not learn infor-
mation originating from far past in time. This is known as the
vanishing gradient problem, a term that captures how the gra-
dient or force experienced by the RNN parameters vanishes as a
function of how long ago did the change happen in the under-
lying data11,12. LSTMs deal with this problem by controlling flows
of gradients through a so-called gating mechanism where the
gates can open or close determined by their values learned for
each input. The gradients can now be preserved for longer
sequences by deliberately gating out some of the effects. This way
it has been shown that LSTMs can accumulate information for a
long period of time by allowing the network to dynamically learn
to forget aspects of information. Very recently LSTMs have also
been shown to have the potential to mimic trajectories produced
by experiments or simulations13, making accurate predictions
about a short time into the future, given access to a large amount
of data in the past. Similarly, another RNN variant named
reservoir computing14 has been recently applied to learn and
predict chaotic systems15. Such a capability is already useful for
instance in weather forecasting, where one needs extremely
accurate predictions valid for a short period of time. In this work,
we consider an alternate and arguably novel use of RNNs, spe-
cifically LSTMs, in making predictions that in contrast to pre-
vious work13,15, are valid for very long periods of time but only in
a statistical sense. Unlike domains such as weather forecasting or
speech recognition where LSTMs have allowed very accurate
predictions albeit valid only for short duration of time, here we
are interested in problems from chemical and biological physics,
where the emphasis is more on making statistically valid pre-
dictions valid for extremely long duration of time. This is typified
for example through the use of the ubiquitous notion of rate
constant for activated barrier crossing, where short-time move-
ments are typically treated as noise, and are not of interest for
being captured through a dynamical model.

Here we suggest an alternative way to use LSTM-based lan-
guage model to learn a probabilistic model from the time
sequence along some low-dimensional order parameters pro-
duced by computer simulations or experiments of a high-
dimensional system. We also show by our computer simulations
of different model systems that the language model can produce
the correct Boltzmann statistics (as can other AI methods such as
refs. 16,17) but also the kinetics over a large spectrum of modes
characterizing the dynamics in the underlying data. We highlight
here a unique aspect of this calculation that the order parameter
our framework needs could be arbitrarily far from the true
underlying slow mode, often called reaction coordinate. This in
turn dictates how long of a memory kernel must be captured
which is in general a very hard problem to solve18,19. Our fra-
mework is agnostic to proximity from the true reaction coordi-
nate and reconstructs statistically accurate dynamics in a wide
range of order parameters. We also show how the minimization
of loss function leads to learning the path entropy of a physical
system, and establish a connection between the embedding layer
and transition probability. Followed by this connection, we also
show how we can define a transition probability through
embedding vectors. We provide tests for Boltzmann statistics and
kinetics for Langevin dynamics of model potentials, MD

simulation of alanine dipeptide, and trajectory from single
molecule force spectroscopy experiment on a multi-state ribos-
witch20, respectively. We also compare our protocol with alter-
nate approaches including Hidden Markov Models. Our work
thus represents a new usage of a popular AI framework to per-
form dynamical reconstruction in a domain of potentially high
fundamental and practical relevance, including materials and
drug design.

Results
Molecular dynamics can be mapped into a sequence of char-
acters. Our central rationale in this work is that molecular
dynamics (MD) trajectories, adequately discretized in space and
time, can be mapped into a sequence of characters in some lan-
guages. By using a character-level language model that is effective
in predicting future characters given the characters so far in a
sequence, we can learn the evolution of the MD trajectory that
was mapped into the characters. The model we use is stochastic
since it learns each character through the probability they appear
in a corpus used for training. This language model consists of
three sequential parts shown schematically in Fig. 1. First, there is
an embedding layer mapping one-hot vectors to dense vectors,
followed by an LSTM layer which connects input states and
hidden states at different time steps through a trainable recursive
function, and finally a dense layer to transform the output of
LSTM to the categorical probability vector.

Specifically, here we consider as input a one-dimensional time
series produced by a physical system, for instance through
Langevin dynamics being undergone by a complex molecular
system. The time series consist of data points {ξ(t)}, where t labels
the time step and ξ 2 R is some one-dimensional collective
variable or order parameter for the high-dimensional molecular
system. In line with standard practice for probabilistic models, we
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Fig. 1 Neural network schematic. The schematic plot of the simple
character-level language model used in this work. The model consists of
three main parts: The embedding layer, the LSTM layer, and a dense output
layer. The embedding layer is a linear layer which multiplies the one-hot
input s(t) by a matrix and produces an embedding vector x(t). The x(t) is
then used as the input of LSTM network, in which the forget gate f(t), the
input gate i(t), the output gate o(t), and the candidate value ~cðtÞ are all
controlled by (x(t), h(t−1)). The forget gate and input gate are then used to
produce the update equation of cell state c(t). The output gate decides how
much information propagates to the next time step. The output layer
predicts the probabilities ŷðtÞ by parametrizing the transformation from h(t)

to ŷ with learned weights Dd and learned biases bd. Finally, we can compute
the cross entropy between the predicted probability distribution ŷðtÞ and the
true probability distribution y(t)= s(t+1).
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convert the data points to one-hot encoded representations that
implement spatial discretization. Thus each data point {ξ(t)} is
represented by a N-dimensional binary vector s(t), where N is
the number of discrete grid-points. An entry of one stands for the
representative value and all the other entries are set to zeros. The
representative values are in general finite if the order parameter is
bounded, and are equally spaced in R with in total N
representative values. Note that the time series {ξ(t)} does not
have to be one-dimensional. For a higher-dimensional series, we
can always choose a set of representative values corresponding to
locations in the higher-dimensional space visited trajectory. This
would typically lead to a larger N in the one-hot encoded
representations, but the training set size itself will naturally stay
the same. We find that the computational effort only depends on
the size of training set and very weakly on N, and thus the time
spent for learning a higher dimensional time series does not
increase much relative to a one-dimensional series.

In the sense of modeling languages, the one-hot representation
on its own cannot capture the relation between different
characters. Take for instance that there is no word in the English
language where the character c is followed by x, unless of course
one allows for the possibility of a space or some other letter in
between. To deal with this, computational linguists make use of
an embedding layer. The embedding layer works as a look-up
table which converts each one-hot vector s(t) to a dense vector
xðtÞ 2 RM by the multiplication of a matrix Λ which is called the
embedding matrix, where M is called the embedding dimension

xðtÞ ¼ ΛsðtÞ ð1Þ
The sequence of dense representation x(t) accounts for the
relation between different characters as seen in the training time
series. x(t) is then used as the input of the LSTM layer. Each x(t)

generates an output hðtÞ 2 RL from LSTM layer, where L is a
tunable hyperparameter. Larger L generally gives better learning
capability but needs more computational resources. The LSTM
itself consists of the following elements: the input gate i(t), the
forget gate f(t), the output gate o(t) the cell state c(t), the candidate
value ~cðtÞ, and h(t) which is the hidden state vector and the final
output from the LSTM. Each gate processes information in
different aspects.8 Briefly, the input gate decides which informa-
tion to be written, the forget gate decides which information to be
erased, and the output gate decides which information to be read
from the cell state to the hidden state. The update equation of
these elements can be written as follows:

f ðtÞ ¼ σðWf x
ðtÞ þ Uf h

ðt�1Þ þ bf Þ ð2Þ

iðtÞ ¼ σðWix
ðtÞ þ Uih

ðt�1Þ þ biÞ ð3Þ

oðtÞ ¼ σðWox
ðtÞ þ Uoh

ðt�1Þ þ boÞ ð4Þ

~cðtÞ ¼ tanhðWcx
ðtÞ þ Uch

ðt�1Þ þ bcÞ ð5Þ

cðtÞ ¼ f ðtÞ � cðt�1Þ þ iðtÞ � ~cðtÞ ð6Þ

hðtÞ ¼ oðtÞ � tanhðcðtÞÞ ð7Þ
where W and b are the corresponding weight matrices and bias
vectors. The tanhðvÞ operates piecewise on each element of the
vector v. The operation ∘ is the Hadamard product21.

The final layer in Fig. 1 is a simple dense layer with fully
connected neurons which converts the output h(t) of the LSTM to
a vector y(t) in which each entry denotes the categorical
probability of the representative value for the next time step t
+ 1. The loss function J for minimization during training at every
timestep t is then defined as the cross entropy between the output

of the model ŷðtÞ and the actual probability for the next timestep
yðtÞ which is just the one-hot vector st+1

ŷðtÞ ¼ softmaxðDdh
ðtÞ þ bdÞ ð8Þ

J ¼ �
XT�1

t¼0

yðtÞ � ln ŷðtÞ ¼ �
XT�1

t¼0

sðtþ1Þ � ln ŷðtÞ ð9Þ

where T is the total length of trajectory, and the final loss function
is the sum over the whole time series. The softmaxðxÞi ¼
expðxiÞ=

P
j expðxjÞ is a softmax function mapping x to a

probability vector ŷ.

Training the network is equivalent to learning path entropy.
The central finding of this work, which we demonstrate through
numerical results for different systems, is that a LSTM framework
used to model languages can also be used to capture kinetic and
thermodynamic aspects of dynamical trajectories prevalent in
chemical and biological physics. In this section we demonstrate
theoretically as to why LSTMs possess such a capability. Before
we get into the mathematical reasoning detailed here, as well as in
Supplementary Note 1, we first state our key idea. Minimizing the
loss function J in LSTM (Eq. (9)), which trains the model at time t
to generate output ŷðtÞ resembling the target output st+1, is
equivalent to minimizing the difference between the actual and
LSTM-learned path probabilities. This difference between path
probabilities can be calculated as a cross-entropy J 0 defined as:

J 0 ¼ �
X

xðTÞ:::xð0Þ
PðxðTÞ:::xð0ÞÞlnQðxðTÞ:::xð0ÞÞ ð10Þ

where P(x(t+1), . . . , x(0)) and Q(x(t+1), . . . , x(0)) are the cor-
responding true and neural network learned path probabilities of
the system. Equation (10) can be rewritten22 as the sum of path
entropy H(P) for the true distribution P and Kullback–Liebler
distance DKL between P and Q: J 0 ¼ HðPÞ þ DKLðPjjQÞ. Since
DKL is strictly non-negative22 attaining the value of 0 iff Q= P,
the global minimum of J 0 happens when Q= P and J 0 equals the
path entropy H(P) of the system.23 Thus we claim that mini-
mizing the loss function in LSTM is equivalent to learning the
path entropy of the underlying physical model, which is what
makes it capable of capturing kinetic information of the dyna-
mical trajectory.

To prove this claim we start with rewriting J in Eq. (9). For a
long enough observation period T or for a very large number of
trajectories, J can be expressed as the cross entropy between
conditional probabilities:

J ¼ �
XT�1

t¼0

X

xðtþ1Þ
Pðxðtþ1ÞjxðtÞ:::xð0ÞÞ

´ lnQðxðtþ1ÞjxðtÞ:::xð0ÞÞ
ð11Þ

where P(x(t+1)∣x(t). . . x(0)) is the true conditional probability for
the physical system, and Q(x(t+1)∣x(t). . . x(0)) is the conditional
probability learned by the neural network. The minimization of
Eq. (11) leads to minimization of the cross entropy J 0 as shown in
the SI. Here we conversely show how Eq. (10) reduces to Eq. (9)
by assuming a stationary first-order Markov process as in ref. 23:

PðxðTÞ:::xð0ÞÞ ¼ PðxðTÞjxðT�1ÞÞ:::Pðxð1Þjxð0ÞÞPðxð0ÞÞ
QðxðTÞ:::xð0ÞÞ ¼ QðxðTÞjxðT�1ÞÞ:::Qðxð1Þjxð0ÞÞQðxð0ÞÞ ð12Þ

where Pðxðtþ1Þ
j jxðtÞi Þ � Pij is the transition probability from state

xi to state xj and Pðxð0Þk Þ � Pk is the occupation probability for the
single state xk. Plugging Eq. (12) into Eq. (10), and following the
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derivation in ref. 23 with the constraints
X

j

Pij ¼ 1
X

i

PiPij ¼ Pj ð13Þ

we arrive at an expression for the cross-entropy J, which is very
similar to the path entropy type expressions derived for instance
in the framework of Maximum Caliber23:

J 0 ¼ �
X

i

PilnQi � T
X

lm

PlPlmln ðQlmÞ ð14Þ

! �T
X

lm

PðxlÞPðxmjxlÞlnQðxmjxlÞ ð15Þ
In Eq. (14) as the trajectory length T increases, the second term
dominates in the estimate of J leading to Eq. (15). This second
term is the ensemble average of a time-dependent quantity
~JðxðtÞl Þ � �P

mPðxðtþ1Þ
m jxðtÞl ÞlnQðxðtþ1Þ

m jxðtÞl Þ. For a large enough
T, the ensemble average can be replaced by the time average. By
assuming ergodicity24:

J 0 ¼ �
XT

t¼1

X

m

Pðxðtþ1Þ
m jxðtÞl ÞlnQðxðtþ1Þ

m jxðtÞl Þ ð16Þ

from which we directly obtain Eq. (9). Therefore, under first-
order Markovianity and ergodicity, minimizing the loss function J
of Eq. (9) is equivalent to minimizing J 0 and thereby learning the
path entropy. In the SI we provide a proof for this statement that
lifts the Markovianity assumption as well—the central idea there
is similar to what we showed here.

Embedding layer captures kinetic distances. In word embedding
theory, the embedding layer provides a measure of similarity
between words. However, from the path probability representa-
tion, it is unclear how the embedding layer works since the
derivation can be done without embedding vectors x. To have an
understanding to Qlm in the first-order Markov process, we first

write the conditional probability Qlm ¼ Qðxðtþ1Þ
m jxðtÞl Þ explicitly

with softmax defined in Eq. (8) and embedding vectors x defined
in Eq. (1):

Qlm ¼ expðsðtþ1Þ
m � ðDdh

ðtÞ þ bdÞÞP
k expðsk � ðDdh

ðtÞ þ bdÞÞ

¼ expðsðtþ1Þ
m � ðDdf θðxðtÞÞ þ bdÞÞP

k expðsk � ðDdf θðxðtÞÞ þ bdÞÞ

ð17Þ

where f is the recursive function h(t)= fθ(x(t), h(t−1)) ≈ fθ(x(t))
which is defined with the update equation in Eq. (2)–(7). In Eq.
(17), θ denotes various parameters including all weight matrices
and biases, and the summation index k runs over all possible
states. Now we can use multivariable Taylor’s theorem to
approximate fθ as the linear term around a point a as long as a is
not at any local minimum of fθ:

f θðxðtÞÞ � f θðaÞ þ AθðxðtÞ � aÞ ð18Þ
where Aθ is the L by M matrix defined to be ðAθÞij ¼ ∂ðf θÞi

∂xj
jx¼a.

Then Eq. (17) becomes

Qlm ¼ expðCðtþ1Þ
m Þ expðsðtþ1Þ

m �DdAθx
ðtÞ
l Þ

P
k expðCkÞ expðsk �DdAθx

ðtÞ
l Þ

ð19Þ

where Cðtþ1Þ
i ¼ sðtþ1Þ

i � ½Ddðf θðalÞ þ AθalÞ þ bd�. We can see in
Eq. (19) how the embedding vectors come into the transition
probability. Specifically, there is a symmetric form between out-

put one-hot vectors sðtþ1Þ
m and the input one-hot vectors s(t), in

which x(t)=Λs(t) and Λ is the input embedding matrix, DdAθ can

be seen as the output embedding matrix, and Cðtþ1Þ
i is the cor-

rection of time lag effect. While we do not have an explicit way to
calculate the output embedding matrix so defined, Eq. (19)
motivates us to define the following ansatz for the transition
probability:

Qlm ¼ QðxmjxlÞ ¼
expðxm � xlÞP
k expðxk � xlÞ

ð20Þ

where xm and xl are both calculated by the input embedding
matrix Λ. The expression in Eq. (20) is thus a tractable approx-
imation to the more exact transition probability in Eq. (19).
Furthermore, we show through numerical examples of test sys-
tems that our ansatz for Qlm does correspond to the kinetic
connectivity between states. That is, the LSTM embedding layer
with the transition probability through Eq. (20) can capture the
average commute time between two states in the original physical
system, irrespective of the quality of low-dimensional projection
fed to the LSTM25–27.

Test systems. To demonstrate our ideas, here we consider a range
of different dynamical trajectories. These include three model
potentials, the popular model molecule alanine dipeptide, and
trajectory from single molecule force spectroscopy experiments
on a multi-state riboswitch.20 The sample trajectories of these test
systems and the data preprocessing strategies are put in the
Supplementary Note 5 and Supplementary Figs. 14–18 When
applying our neural network to the model systems, the embed-
ding dimension M is set to 8 and LSTM unit L set to 64. When
learning trajectories for alanine dipeptide and riboswitch, we took
M= 128 and L= 1024. All time series were batched into
sequences with a sequence length of 100 and the batch size of 64.
For each model potential, the neural network was trained using
the method of stochastic gradient descent for 20 epochs until the
training loss becomes smaller than the validation loss, which
means an appropriate training has been reached. For alanine
dipeptide, 40 training epochs were used. Our neural network was
built using TensorFlow version 1.10. Further system details are
provided in “Methods” section.

Boltzmann statistics and kinetics for model potentials. The first
test we perform for our LSTM set-up is its ability to capture the
Boltzmann weighted statistics for the different states in each
model potential. This is the probability distribution P or
equivalently the related free energy F ¼ � 1

β log P, and can be
calculated by direct counting from the trajectory. As can be seen
in Fig. 2, the LSTM does an excellent job of recovering the
Boltzmann probability within error bars.

Next we describe our LSTM deals with a well-known problem
in analyzing high-dimensional data sets through low-dimensional
projections. One can project the high-dimensional data along
many different possible low-dimensional order parameters, for
instance x, y, or a combination thereof in Fig. 2. However most
such projections will end up not being kinetically truthful and
give a wrong impression of how distant the metastable states
actually are from each other in the underlying high-dimensional
space. It is in general hard to come up with a projection that
preserves the kinetic properties of the high-dimensional space.
Consequently, it is hard to design analysis or sampling methods
that even when giving a time-series along a sub-optimal
projection, still capture the true kinetic distance in the underlying
high-dimensional space.

Here we show how our LSTM model is agnostic to the quality
of the low-dimensional projection in capturing accurate kinetics.
Given that for each of the 3 potentials the LSTM was provided
only the x−trajectory, we can expect that the chosen model
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potentials constitute different levels of difficulties in generating
correct kinetics. Specifically, a one-dimensional projection along x
is kinetically truthful for the linear 3-state potential in Fig. 2a but
not for the triangular 3-state and the 4-state potentials in Fig. 2b
and c, respectively. For instance, Fig. 2e gives the impression that
state C is kinetically very distant from state A, while in reality for
this potential all 3 pairs of states are equally close to each other.
Similar concerns apply to the 4-state potential.

In Figs. 3 and 4a–c and d–f we compare the actual versus
LSTM-predicted kinetics for moving between different metastable
states for different model potentials, for all pairs of transitions in
both directions (i.e., for instance A to B and B to A). Specifically,
Fig. 3a–c and 3d–f shows results for moving between the 3 pairs
of states in the linear and triangular 3-state potentials,
respectively. Figure 4 shows results for the 6 pairs of states in
the 4-state potential. Furthermore, for every pair of state, we
analyze the transition time between those states as a function of
different minimum commitment or commit time, i.e., the
minimum time that must be spent by the trajectory in a given
state to be classified as having committed to it. A limiting value,
and more specifically the rate at which the population decays to
attain to such a limiting value, corresponds to the inverse of the
rate constant for moving between those states28,29. Thus here we
show how our LSTM captures not just the rate constant, but time-
dependent fluctuations in the population in a given metastable
state as equilibrium is attained. The results are averaged over 20

independent segments taken from the trajectories of different
trials of training for the 3-state potentials and 10 independent
segments for the 4-state potential.

As can be seen in Figs. 3 and 4, the LSTM model does an
excellent job of reproducing well within errorbars the transition
times between different metastable states for different model
potentials irrespective of the quality of the low-dimensional
projection. Firstly, our model does tell the differences between
linear and triangular 3-state models (Fig. 3) even though the
projected free energies along the x variable input into LSTM are
same (Fig. 2). The number of transitions between states A and C
is less than the others; while for triangular configuration, the
numbers of transitions between all pairs of states are similar. The
rates at which the transition count decays as a function of
commitment time is also preserved between the input data and
the LSTM prediction.

The next part of our second test is the 4-state model potential.
In Fig. 4 we show comparisons for all 6 pairs of transitions in
both forward and reverse directions. A few features are
immediately striking here. Firstly, even though states B and C
are perceived to be kinetically proximal from the free energy
(Fig. 2), the LSTM captures that they are distal from each other
and correctly assigns similar kinetic distance to the pairs B, C as it
does to A, D. Secondly, there is asymmetry between the forward
and backward directions (for e.g., A to D and D to A, indicating
that the input trajectory itself has not yet sufficiently sampled the
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slow transitions in this potential. As can be seen from Fig. 2c the
input trajectory has barely 1 or 2 direct transitions for the very
high barrier A to D or B to C. This is a likely explanation for why
our LSTM model does a bit worse than in the other two model
potentials in capturing the slowest transition rates, as well as the
higher error bars we see here. In other words, so far we can
conclude that while our LSTM model can capture equilibrium
probabilities and transition rates for different model potentials
irrespective of the input projection direction or order parameter,
it is still not a panacea for insufficient sampling itself, as one
would expect.

Boltzmann statistics and kinetics for alanine dipeptide. Finally,
we apply our LSTM model to the study of conformational tran-
sitions in alanine dipeptide, a model biomolecular system com-
prising 22 atoms, experiencing thermal fluctuations when coupled
to a heat bath. The structure of alanine dipeptide is shown in
Fig. 5a. While the full system comprises around 63 degrees of
freedom, typically the torsional angles ϕ and ψ are used to
identify the conformations of this peptide. Over the years a large
number of methods have been tested on this system in order to
perform enhanced sampling of these torsions, as well as to con-
struct optimal reaction coordinates30–33. Here we show that our
LSTM model can very accurately capture the correct Boltzmann
statistics, as well as transition rates for moving between the two
dominant metastable states known as C7eq and C7ax. Importantly,

the reconstruction of the equilibrium probability and transition
kinetics, as shown in Fig. 5 and Table 1 is extremely accurate
irrespective of the choice of one-dimensional projection time
series fed into the LSTM. Specifically, we do this along sinϕ and
sinψ, both of which are known to quite distant from an opti-
mized kinetically truthful reaction coordinate19,34, where again
we have excellent agreement between input and LSTM-predicted
results.

Learning from single molecule force spectroscopy trajectory. In
this section, we use our LSTM model to learn from single
molecule force spectroscopy experiments of a multi-state ribos-
witch performed with a constant force of 10.9 pN. The data points
are measured at 10 kHz (i.e., every 100 μs). Other details of the
experiments can be found in ref. 20. The trajectory for a wide
range of extensions starting 685 nm up to 735 nm was first spa-
tially discretized into 34 labels, and then converted to a time
series of one hot vectors, before being fed into the LSTM model.
The results are shown in Fig. 6. In Fig. 6a, we have shown an
agreement between a profile of probability density averaged over
5 independent training sets with the probability density calculated
from the experimental data. Starting from the highest extension,
the states are fully unfolded (U), longer intermediate (P3) and
shorter intermediate (P2P3)20. From Fig. 6b–c, we see that the
LSTM model captures the kinetics for moving between all 3 pairs
of states for a very wide range of commitment times.
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Embedding layer based kinetic distance. In Eq. (19), we derived
a non-tractable relation for conditional transition probability in
the embedding layer, and then through Eq. (20) we introduced a
tractable ansatz in the spirit of Eq. (19). Here we revisit and
numerically validate Eq. (20). Specifically, given any two
embedding vectors xl and xm calculated from any two states l and
m, we estimate the conditional probability Qlm using Eq. (20). We
use Qi to denotes the Boltzmann probability predicted by the
LSTM model. We then write down the interconversion prob-
ability klm between states l and m as:

klm ¼ QlQlm þ QmQml � 1=tlm ð21Þ
From inverting this rate we then calculate an LSTM-kinetic time
as tlm≡ 1/klm= 1/(QlQlm+QmQml). In Fig. 7, we compare tlm
with the actual transition time τlm obtained from the input data,
defined as

τ lm ¼ T=hNlmi ð22Þ
Here Nlm is the mean number of transitions between state l and
m. As this number varies with the precise value of commitment
time, we average Nlm over all commit times to get 〈Nlm〉. These
two timescales tlm and τlm thus represent the average commute

time or kinetic distance25,26 between two states l and m. To
facilitate the comparison between these two very differently
derived timescales or kinetic distances, we rescale and shift them
to lie between 0 and 1. The results in Fig. 7 show that the
embedding vectors display the connectivity corresponding to the
original high-dimensional configuration space rather than those
corresponding to the one-dimensional projection. The model
captures the correct connectivity by learning kinetics, which is
clear evidence that it is able to bypass the projection error along
any degree of freedom. The result also explains how is it that no
matter what degree of freedom we use, our LSTM model still
gives correct transition times. As long as the degree of freedom we
choose to train the model can be used to discern all metastable
states, we can even use Eq. (20) to see the underlying connectivity.
Therefore, the embedding vectors in LSTM can define a useful
distance metric which can be used to understand and model
dynamics, and are possibly part of the reason why LSTMs can
model kinetics accurately inspite of quality of projection and
associated non-Markvoian effects.

Comparing with Markov state model and Hidden Markov
Model. In this section, we briefly compare our LSTM model with
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standard approaches for building kinetic models from trajec-
tories, namely the Markov state model (MSM)35 and Hidden
Markov model (HMM)36–38. Compared to LSTM, the MSM and
HMM have smaller number of parameters, making them faster
and more stable for simpler systems. However, both MSM and
HMM require choosing an appropriate number of states and lag
time35,38,39. Large number of pre-selected states or small lag time
can lead to non-Markovian behavior and result in an incorrect
prediction. Even more critically, choosing a large lag time also
sacrifices the temporal precision. On the other hand, there is no
need to determine the lag time and number of states using the
LSTM network because LSTM does not rely on the Markov
property. Choosing hyperparameters such as M and L may be
comparable to choosing number of hidden states for HMM, while
very similar values of M and L worked for systems as different as
MD trajectory of alanine dipeptide and single molecule force
spectroscopy trajectory of a riboswitch. At the same time, LSTM
always generates the data points with the same temporal precision
as it has in the training data irrespective of the intrinsic timescales
it learns from the system. In Fig. 8, we provide the results of using
HMM and MSM for the riboswitch trajectory with the same
binning method and one-hot encoded input, to be contrasted
with similar plots using LSTM in Fig. 6. Indeed both MSM and
HMM achieve decent agreement with the true kinetics only if the
commit time is increased approximately beyond 10 ms, while

LSTM as shown in Fig. 6 achieved perfect agreement for all
commit times. From this figure, it can be seen that the LSTM
model achieves an expected agreement with as fine of a temporal
precision as desired, even though we use 20 labels for alanine
dipeptide and 34 labels for experimental data to represent the
states. The computational efforts needed for the various
approaches (LSTM, MSM, and HMM) are also provided in the
Supplementary Note 3 and Supplementary Table 2–3, where it
can be seen that LSTM takes similar amount of effort as HMM.
The package we used to build the MSM and HMM is PyEMMA
with version 2.5.640. The models were built with lag time= 0.5 ms
for MSM and lag time= 3 ms for HMM, where the HMM were
built with number of hidden states= 3. A more careful com-
parison of the results along with analyses with other parameter
choices such as different number of hidden states for HMM are
provided in the Supplementary Note 4 and Supplementary
Figs. 1–13, where we find all of these trends to persist.

Discussion
In summary we believe this work demonstrates potential for
using AI approaches developed for natural language processing
such as speech recognition and machine translation, in unrelated
domains such as chemical and biological physics. This work
represents a first step in this direction, wherein we used AI,
specifically LSTM flavor of recurrent neural networks, to perform
kinetic reconstruction tasks that other methods41,42 could have
also performed. We would like to argue that demonstrating the
ability of AI approaches to perform tasks that one could have
done otherwise is a crucial first step. In future works we will
exploring different directions in which the AI protocol developed
here could be used to perform tasks which were increasingly non-
trivial in non-AI setups. More specifically, in this work we have
shown that a simple character-level language model based on
LSTM neural network can learn a probabilistic model of a time
series generated from a physical system such as an evolution of
Langevin dynamics or MD simulation of complex molecular
models. We show that the probabilistic model can not only learn
the Boltzmann statistics but also capture a large spectrum of
kinetics. The embedding layer which is designed for encoding the
contextual meaning of words and characters displays a nontrivial
connectivity and has been shown to correlate with the kinetic
map defined for reversible Markov chains25,26,43. An interesting
future line of work for the embedding layer can be to uncover
different states when they are incorrectly represented by the same
reaction coordinate value, which is similar to finding different
contextual meaning of the same word or character. For different
model systems considered here, we could obtain correct time-
scales and rate constants irrespective of the quality of order
parameter fed into the LSTM. As a result, we believe this kind of
model outperforms traditional approaches for learning thermo-
dynamics and kinetics, which can often be very sensitive to the
choice of projection. Finally, the embedding layer can be used to
define a new type of distance metric for high-dimensional data
when one has access to only some low-dimensional projection.
We hope that this work represents a first step in the use of RNNs
for modeling, understanding and predicting the dynamics of
complex stochastic systems found in biology, chemistry and
physics.

Methods
Model potential details. All model potentials have two degrees of freedom x and
y. Our first two models (shown in Fig. 2a and b) have three metastable states with
governing potential U(x, y) given by

Uðx; yÞ ¼Wðx6 þ y6Þ � Gðx; x1ÞGðy; y1Þ
� Gðx; x2ÞGðy; y2Þ � Gðx; x3ÞGðy; y3Þ

ð23Þ
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Fig. 5 Boltzmann statistics for alanine dipeptide. a The molecular structure
of alanine dipeptide used in the actual MD simulation. The torsional angles ϕ
and ψ as the collective variables (CVs) are shown. b and c The 1-dimensional
free energy curves along sinϕ and sinψ are calculated using actual MD data
and the data generated from LSTM. For the calculation of a different epoch,
please see Supplementary Note 2 and Supplementary Table 1.

Table 1 Kinetics for alanine dipeptide.

Alanine dipeptide

CVs Label C7eq to C7ax (ps) C7ax to C7eq (ps)
sinϕ Actual 5689.22 ± 962.366 107.93 ± 11.267

LSTM 5752.16 ± 710.399 103.81 ± 14.268
sinψ Actual 5001.42 ± 643.943 105.70 ± 13.521

LSTM 4325.01 ± 526.293 81.68 ± 10.288

Inverse of transition rates for conformational transitions in alanine dipetide calculated from
actual MD trajectories of LSTM model. Here we show the calculation along two different CVs:
sinϕ and sinψ.
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where W= 0.0001 and Gðx; x0Þ ¼ e�
ðx�x0 Þ2

2σ2 denotes a Gaussian function centered at
x0 with width σ= 0.8. We also build a 4-state model system with governing
interaction potential:

Uðx; yÞ ¼Wðx4 þ y4Þ þ Gðx; 0:0ÞGðy; 0:0Þ
� Gðx; 2:0ÞGðy;�1:0Þ � Gðx; 0:5ÞGðy; 2:0Þ
� Gðx;�0:5ÞGðy;�2:0Þ � Gðx;�2:0ÞGðy; 1:0Þ

ð24Þ

The different local minima corresponding to the model potentials in Eq. (23) and
Eq. (24) are illustrated in Fig. 2. We call these as linear 3-state, triangular 3-state,
and 4-state models, respectively. The free energy surfaces generated from the

simulation of Langevin dynamics44 with these model potentials are shown in
Fig. 2a–c.

Molecular dynamics details. The integration timestep for the Langevin
dynamics simulation was 0.01 units, and the simulation was performed at β=
9.5 for linear 3-state and 4-state potentials and β= 9.0 for triangular 3-state
potential, where β= 1/kBT. The MD trajectory for alanine dipeptide was
obtained using the software GROMACS 5.0.445,46, patched with PLUMED 2.447.
The temperature was kept constant at 450 K using the velocity rescaling
thermostat48.
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Data availability
The single-molecule force spectroscopy experiment data for riboswitch was obtained
from the authors of ref. 20 and they can be contacted for the same. All the other data
associated with this work is available from the corresponding author on request.

Code availability
MSM and HMM analyses were conducted with PyEMMA version 2.5.6.40 and available
at http://www.pyemma.org. A Python based code of the LSTM language model is
implemented using keras (https://keras.io/) with tensorflow-gpu (https://www.
tensorflow.org/) as a backend, and available for public use at https://github.com/
tiwarylab/LSTM-predict-MD.
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