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Abstract

Background: Opioids exert a profound influence on immunomodulation and enhance HIV infection and replication.
However, the mechanism(s) of their action remains to be determined. We thus investigated the impact of morphine on the
intracellular innate antiviral immunity.

Methodology/Principal Findings: Seven-day-cultured macrophages were infected with equal amounts of cell-free HIV Bal
or SIV DeltaB670 for 2 h at 37uC after 24 h of treatment with or without morphine. Effect of morphine on HIV/SIV infection
and replication was evaluated by HIV/SIV RT activity assay and indirect immunofluorescence for HIV p24 or SIV p28 antigen.
The mRNA expression of cellular factors suppressed or induced by morphine treatment was analyzed by the real-time RT-
PCR. We demonstrated that morphine treatment of human blood monocyte-derived macrophages significantly inhibited
the expression of interferons (IFN-a, IFN-b and IFN-l) and IFN-inducible genes (APOBEC3C/3F/3G and 3H). The further
experiments showed that morphine suppressed the expression of several key elements (RIG-I and IRF-7) in IFN signaling
pathway. In addition, morphine treatment induced the expression of suppressor of cytokine signaling protein-1, 2, 3 (SOCS-
1, 2, 3) and protein inhibitors of activated STAT-1, 3, X, Y (PIAS-1, 3, X, Y), the key negative regulators of IFN signaling
pathway.

Conclusions: These findings indicate that morphine impairs intracellular innate antiviral mechanism(s) in macrophages,
contributing to cell susceptibility to AIDS virus infection.
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Introduction

Injection drug users (IDUs) are at a significant high risk for

aquiring HIV infection and contribute to the spread of the virus

[1,2]. Several early studies indicated that intravenous use of

opiates influences the outcome of HIV infection [1,2,3,4,5]. IDUs

frequently involve the abuse of heroin, the most common abused

opiate. Heroin injection increased the risk of acquiring HIV [6]

and progression to AIDS [3]. However, because of the extreme

complexity of opiate addition and/or HIV infection, it has been

extremely difficult to compare different clinical and epidemiolog-

ical findings in studying the impact of opiate abuse on HIV disease

progression [7]. In contrast, laboratory in vitro studies have yielded

relatively agreeable data, showing that morphine, the active

metabolite of heroin, enhances susceptibility of the immune cells to

HIV infection. Peterson et al. first reported that morphine

enhances HIV replication in human PBMC coculture system

[8]. Several studies [9,10,11,12,13,14,15] showed that morphine

could activate mu opioid receptors of human immune cells

(macrophages, T lymphocytes, microglia) and up-regulate the

expression of CCR5 and CXCR4, the key HIV entry coreceptors.

Morphine-mediated induction of CCR5 and CXCR4 was

associated with increased HIV infection of macrophages [10,16].

Morphine also enhanced simian immunodeficiency virus (SIV)

infection and replication in both in vivo and in vitro systems.

Morphine treatment increased SIV replication in CEM6174 cells

[17]. Injection with morphine enhanced SIV replication in Rhesus

Macaques [18]. Induction of CCR5 expression in monkey

peripheral mononuclear cells by morphine contributes to en-

hanced SIV replication [14]. However, it has also been reported

that morphine treatment slowed SIV disease progression

[7,19,20].

Although the role of opiates in promoting HIV disease

progression is still debatable, overwhelming evidence indicates

that heroin and other opiate derived substances affect both

adaptive and innate immunity [20,21,22,23]. Innate immunity is

the first line of the defense mechanism against viral infections.

Interferons (IFNs) are key players in host innate immunity, as they

possess antiviral activity against a variety of viruses [24], including

HIV [25,26]. While both type I IFNs (IFN-a, -b, -v, -k, -e, -t, -d
and -n subtypes) and type II IFN (IFN-c) have been known for

decades as the antiviral cytokines, a novel class of cytokines

(interleukin-28/29) was recently discovered and named as type III

IFNs (also called IFN-l) [27]. Although IFN-l exerts its action

through a receptor complex distinct from that for the type I IFNs

[28,29,30,31], IFN-l shares a number of common biological
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functions with type I IFNs. Similar to type I IFNs, IFN-l has

potent antiviral activity against viral infections [32,33,34],

including HIV [26]. Given the critical role of IFNs control of

HIV replication, it is of importance to determine the specific

impact of opiates on IFN signaling pathway and the mechanisms

responsible for the actions.

Materials and Methods

Cell culture
Peripheral blood was purchased from the Center for AIDS

Research at the University of Pennsylvania. The protocol used to

isolate blood from donors, purify the blood components, and

distribute this material to the investigators was approved by the

IRB of the Center for AIDS Research. These blood samples were

screened for all normal blood-borne pathogens and certified to be

pathogen free. Monocytes were purified from peripheral blood of

three healthy adult donors according to our previously described

technique [35]. Freshly isolated monocytes were cultured in 48-

well culture plates at a density of 2.56105 cells/well in Dulbecco

modified Eagle medium (DMEM) containing 10% fetal calf serum.

Macrophages refer to 7-day-cultured monocytes in vitro.

Reagents
Morphine sulfate was obtained from National Institute on Drug

Abuse (Rockville, MD). Naltrexone was obtained from Sigma (St

Louis, MO). Mouse anti-HIV p24 monoclonal obtained from the

AIDS Research and Reference Reagent Program (NIH, Bethesda,

MD). Mouse anti-SIV p28 monoclonal antibody was purchased

from Fitzgerald Industries (Acton, MA). Alexa Fluor 488 goat anti-

mouse IgG and Hoechst 33342 were purchased from Invitrogen

(Carlsbad, CA).

Morphine and/or naltrexone treatment
Seven-day-cultured macrophages (2.56105cells/well) were

treated with or without morphine at different concentrations

(10212 to 1028 M) for different time points (3–24 h). To

investigate whether naltrexone antagonizes the morphine action,

we used naltrexone (1028 M) to treat macrophages for 1 h

followed by morphine treatment. There were no cytotoxic effects

of morphine and naltrexone treatment on macrophages as

demonstrated by trypan blue dye staining (data not shown).

Infection of macrophages with HIV Bal strain or SIV
DeltaB670 strain

HIV Bal strain and SIV DeltaB670 strain were obtained from the

AIDS Research and Reference Reagent Program (NIH, Bethesda,

MD). Macrophages were infected with equal amounts of cell-free

HIV Bal (p24 20 ng/106 cells) or SIV DeltaB670 (p28 20 ng/106

cells) for 2 h at 37uC after 24 h of treatment with or without

morphine. The cells were then washed three times with Dulbecco’s

modified Eagle’s medium to remove unabsorbed virus, and fresh

media containing morphine and/or naltrexone were added to the

cell cultures. The final wash was tested for HIV/SIV reverse

transcriptase (RT) activity and shown to be free of residual inocula.

Untreated cells served as a control. Culture supernatants were

collected for HIV/SIV RT activity assay at days 3, 6, 9, 12 and 15

after infection.

HIV/SIV RT assay
HIV and SIV RT activity was determined based on the

technique of [36] with modifications [37]. In brief, 10 ml of culture

supernatants from macrophages infected with or without HIV/

SIV was added to a cocktail containing poly(A), oligo(dT)

(Amersham Biosciences, Inc., Piscataway, NJ), MgCl2, and

[32P]dTTP (Amersham Biosciences, Inc.) and incubated for

20 h at 37uC. Then, 30 ml of the cocktail was spotted onto

DE81 paper (Whatman Internatianl Ltd, England), dried and

washed five times with 26 saline-sodium citrate buffer and once

with 95% ethanol. The filter paper was then air-dried.

Radioactivity was counted in a liquid scintillation counter

(PerkinElmer Life Sciences, Boston, MA).

RNA extraction and real-time RT-PCR
Total RNA from macrophages was extracted with Tri-Reagent

(Molecular Research Center, Cincinnati, OH) as previously

described [38]. Total RNA (1 mg) was subjected to RT using the

RT system (Promega, Madison, WI) with random primers for 1 h

at 42uC. The reaction was terminated by incubating the reaction

mixture at 99uC for 5 min, and the mixture was then kept at 4uC.

The resulting cDNA was then used as a template for real-time

PCR quantification. Real-time PCR was performed with 1/10 of

the cDNA with the iQ SYBR Green Supermix (Bio-Rad

Laboratories, Hercules, CA) as previously described [39]. The

amplified products were visualized and analyzed using the

software MyiQ provided with the thermocycler (iCycler iQ real

time PCR detection system; Bio-Rad Laboratories). The oligonu-

cleotide primers were synthesized by Integrated DNA Technol-

ogies, Inc. (Coralville, IA) and sequences will be available upon

request. The cDNA was amplified by PCR and the products were

measured using SYBR green I (Bio-Rad Laboratories, Inc.,

Hercules, CA). The data were normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and presented as the change

in induction relative to that of untreated control cells.

Immunofluorescence assay
The macrophages infected with HIV Bal or SIV DeltaB670

strain were cultured on glass coverslips at adensity of 2.56105/well

in 48-well plates. The macrophages were washed with 16 cold

PBS (with Ca2+ and Mg2+) twice. Cells were fixed at 4uC in 4%

paraformaldehyde-4% sucrose in PBS for 20 min followed by

0.2% Triton X-100 for additional 10 min. Cells were blocked in

Block Solution (Pierce, Rockford, IL) for 1 h at room temperature.

To examine expression of HIV p24 or SIV p28, the fixed cells

were stained with mouse anti-HIV p24 (1:500) or mouse anti-SIV

p28 monoclonal antibody (1:500). After washing five times with

16PBS, the cells were incubated with fluorescein isothiocyanate-

conjugated goat anti-mouse IgG antibody (green, 1:100) for 1 h.

The cells were then mounted on a glass coverslip in mounting

media (Biomeda, Foster City, CA) and viewed with a fluorescence

microscopy (Zeiss, Jena, Germany). Hoechst 33342 was used for

nuclei staining.

Statistical analysis
Student’s t-test was used to evaluate the significance of

difference between groups, and multiple comparisons were

performed by regression analysis and one-way analysis of variance.

P values of less than 0.05 were considered significant. All data are

presented as mean 6 SD. Statistical analyses were performed with

SPSS 11.5 for Windows. Statistical significance was defined as

P,0.05.

Results

Morphine enhances AIDS virus infection of macrophages
We first determined the effect of morphine on AIDS virus (HIV

and SIV) infection of macrophages. The addition of morphine to

Morphine Enhances HIV/SIV Infection
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Figure 1. Morphine enhances HIV Bal strain (A) and SIV DeltaB670 strain (B) infection of macrophages. Seven-day-cultured macrophages
were incubated with or without morphine (10210 M) for 24 h before HIV or SIV infection. An opioid receptor antagonist, naltrexone (1028 M) was
added to macrophage cultures 1 h before morphine (10210 M) treatment. HIV or SIV RT activity in culture supernatant was determined at day 6
postinfection. Data are expressed as HIV (A) and SIV (B) RT activity in morphine-treated cells (percentage of control) to those in untreated cells,
morphine-treated cells plus naltrexone versus morphine only. The results represent the mean 6 SD of three experiments using cells from three
different donors. Statistical analysis was performed using one-way analysis of variance, and significance is shown with * P,0.05 (morphine vs control
or morphine vs morphine + naltrexone).
doi:10.1371/journal.pone.0031167.g001

Figure 2. Effects of morphine on HIV p24 protein or SIV p28 protein expression in macrophages. Seven-day-cultured macrophages were
treated with or without morphine (10210 M) for 24 h and then incubated with HIV Bal strain or SIV DeltaB670 strain for 2 h in the presence or absence
of morphine (10210 M). HIV p24 (A) or SIV p28 (B) protein expression in macrophages at day 15 postinfection was determined by immunofluoresence
staining with antibodies against HIV p24 or SIV p28 protein (green). The nuclei were stained with Hoechst 33342 (blue) (magnification, 1006; scale
bar: 100 mm).
doi:10.1371/journal.pone.0031167.g002

Morphine Enhances HIV/SIV Infection
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the cultures resulted in an increase in HIV RT activity (Fig. 1A)

and viral protein expression (Fig. 2A). Similarly, morphine

treatment enhanced SIV DeltaB670 replication (Fig. 1B) and viral

protein expression in macrophages (Fig. 2B). These effects of

morphine on HIV or SIV were time- and dose-dependent (Fig. 3)

and could be abrogated by naltrexone (Fig. 1A and 1B).

Morphine suppresses intracellular type I and type III IFN
expression

IFNs play a key role in host cell innate immunity against viral

infections, including HIV. We then examined whether mor-

phine has the ability to inhibit intracellular IFN gene expression

in macrophages. Morphine treatment significantly suppressed

IFN-a (Fig. 4A), IFN-b (Fig. 4B) and IFN-l (Fig. 4C) expression

in macrophages. These negative effects of morphine on IFNs

could be abrogated by naltrexone treatment of macrophages

(Fig. 4). Naltrexone alone had little effect on the IFN expression

(Fig. 4).

Morphine suppresses RIG-I, IFN regulatory factors and
APOBEC3

Since TLR and RIG-I play the key roles in IFN-mediated

innate immunity against viral infections, we examined whether

morphine treatment has the ability to modulate TLR or RIG-I

expression. Morphine treatment of macrophages had little effect

on TLR-3 or TLR-7 expression (Fig. 5A). In contrast, morphine

inhibited RIG-I expression in macrophages (Fig. 5A). We also

examined the effect of morphine on IRF expression in macro-

phages, as IRFs have a crucial role in the regulation of IFNs

[40,41,42]. Morphine treatment resulted in a significant decrease

of IRF-7 expression in macrophages (Fig. 5B). However, morphine

had little effect on the expression of IRF-3 and IRF-5 in

macrophages (Fig. 5B). Because some of the apolipoprotein B

mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3)

family members have been shown to inhibit the expression of HIV

or SIV [43,44], we thus examined whether morphine has the

ability to inhibit APOBEC3 gene expression in macrophages.

Morphine-treated macrophages expressed the lower levels of

several members (3C, 3F, 3G and 3H) of APOBEC3 family than

untreated macrophages (Fig. 6). Morphine had little effect on

APOBEC3B expression (Fig. 6).

Morphine induces SOCS and PIAS
To further investigate the mechanism(s) involved in the

morphine action on HIV and IFN signaling pathway, we

investigated effects of morphine on the negative regulatory factors

of IFN pathway. SOCS and PIAS are two major families of

negative regulators of signal transduction induced by cytokines

[45,46]. SOCS members form a classical negative feedback loop

with key actions involving in inhibition of the JAK-STAT

signaling cascade, while PIASs are specific inhibitors of STAT

signaling. As demonstrated in Figure 7, morphine treatment

induced the expression of SOCS-1, 2, 3 and PIAS1, 3, X, Y in

macrophages.

Figure 3. Dose-dependent and time-course effects of morphine on AIDS virus replication. A and C: Dose-dependent effect of morphine
on HIV or SIV replication. Seven-day-cultured macrophages were treated with or without morphine at indicated concentrations for 24 h and then
incubated with HIV Bal or SIV DeltaB670 strain for 2 h in the presence or absence of morphine. Day 6 culture supernatant was collected for HIV (A) or
SIV (C) RT assay. B and D: Time-course effect of morphine on HIV or SIV. Seven-day-cultured macrophages were treated with or without morphine
(10210 M) for 24 h prior to infection with HIV Bal strain or SIV DeltaB670 strain for 2 h and then cultured for 15 days. HIV (B) or SIV (D) RT activity was
determined in cultured supernatants at indicated time points postinfection. Data are expressed as HIV or SIV RT activity in morphine-treated cells
(percentage of control) compared with those in untreated cells. The results represent the mean 6 SD of three independent experiments using
macrophages from three different donors. Statistical analysis was performed by one-way analysis of variance (A, C) or Student’s t-test (B, D), and
significance is shown morphine versus control with * (P,0.05) and ** (P,0.01).
doi:10.1371/journal.pone.0031167.g003

Morphine Enhances HIV/SIV Infection
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Discussion

Given immunomodulation and immunocompromising effect of

opiates, abuse of opiates has been suggested as a cofactor in

promoting HIV disease progression. However, much remain to

be learned about the mechanisms of opiate-mediated broad

influence on host immunity related to control of viral replication.

In this study, we showed that morphine significantly inhibited

endogenous type I (IFN-a/b) and III (IFN-l1) IFN expression

(Fig. 4), which was associated with increased susceptibility of

macrophages to HIV and SIV infection and enhanced virus

replication. This morphine effect is specific through the opioid

receptor, as the suppression of IFN expression by morphine could

be abrogated by naltrexone (Fig. 4). These findings support the

earlier reports showing that morphine suppresses Sendai virus-

induced IFN-a production by peripheral blood mononuclear cells

and monocytes [47,48]. Our earlier study also showed that

morphine inhibited endogenous IFN-a expression and enhanced

complete hepatitis C virus replication in human hepatocytes [49].

A novel finding of this study is that morphine inhibited IFN-l
expression in macrophages (Fig. 4). IFN-l has been shown to

inhibit replication of a number of viruses, including HIV [26].

Thus, the finding that morphine inhibited endogenous IFN-l
expression in macrophages provides a sound mechanism for the

morphine action on HIV or SIV.

In order to further investigate the mechanism(s) responsible for

the action of morphine, we examined the effect of morphine on

Figure 4. Effect of naltrexone on morphine-mediated down-
regulation of IFNs expression. Seven-day-cultured macrophages
were incubated with or without naltrexone (1028 M) for 1 h before
treatment with or without morphine (10210 M) for 3 h. Cellular RNA
was subject to the real-time RT-PCR for IFN-a (A), IFN-b (B) and IFN-l1
mRNA (C). Data are expressed as mRNA levels in morphine treated cells
(percentage of control) those untreated cells and morphine treated
cells. The results represent the mean 6 SD of three independent
experiments. Statistical analysis was performed using one-way analysis
of variance, and significance is shown with *P,0.05 (morphine vs
control or morphine vs morphine + naltrexone).
doi:10.1371/journal.pone.0031167.g004

Figure 5. Effect of morphine on TLRs, RIG-I (A) and IRFs (B)
expression. Seven-day-cultured macrophages were treated with or
without morphine (10210 M) for 3 h, and then cellular RNA was
subjected to the real-time RT-PCR for mRNA detection. Data are
expressed as mRNA levels in morphine-treated cells (percentage of
control) to those in untreated cells. The results represent the mean 6
SD of three independent experiments. Statistical analysis was per-
formed by Student’s t-test and significance is shown with *P,0.05
(morphine vs control).
doi:10.1371/journal.pone.0031167.g005

Morphine Enhances HIV/SIV Infection
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the expression of TLRs and RIG-I, which recognize viral

infections and activate IFN pathway signaling [50]. A recent

study showed that purified genomic RNA from HIV induced a

RIG-I dependent type I IFN response [51]. Thus, to suppress

RIG-I expression by morphine should impair intracellular innate

immunity, providing a favorable environment for viral replication.

In addition to its negative effect on RIG-I expression, morphine

also suppressed the expression of IRF-7, the key regulator of type I

IFNs [52]. Similar to type I IFNs, IFN- l1 is also activated by both

IRF-3 and IRF-7 [53]. IRFs not only recognize the elements in the

IFN promoter to modulate the expression of type I IFN genes

selectively, but also regulate the IFN-stimulated response element

(ISRE) in some of IFN-stimulated genes (ISGs), leading to

induction of an antiviral state [54,55]. We were particularly

interested in IRF-3 and IRF-7, as IRF-3 and IRF-7 are the key

regulators of type I IFN gene expression induced by viruses [56].

IRF-7 is the master regulator of type I IFN-dependent immune

response, as it not only induces IFN-a expression, but also

activates many antiviral ISGs [52,57]. Therefore, the suppression

of IRF-7 expression in macrophages by morphine treatment

explains inhibitory effect of morphine on both type I and type III

IFN expression.

APOBEC3 family members are cellular cytidine deaminases

that have the ability to inhibit the mobility of HIV [43,44]. Among

the APOBEC3 family members, APOBEC3G, APOBEC3F and

APOBEC3H have been identified to have the ability to restrict

HIV replication in both CD4+ T cells and macrophages

[58,59,60,61]. APOBEC3G can either edit the newly synthesized

viral DNA or have an inhibitory effect through lethal editing of

nascent reverse transcripts of the HIV life cycle [62,63,64].

APOBEC3F also encodes an antiretroviral protein that is

selectively packaged into HIV virions and profoundly inhibits

HIV infectivity [65]. APOBEC3B and APOBEC3C have been

shown to act as the potent inhibitors of SIV replication [44]. Thus,

the suppression of several key members of APOBEC3 family in

macrophages by morphine justifies the enhancing effect of

morphine action on HIV or SIV infection and replication.

To further explore the mechanisms involved in morphine-

mediated enhancement of AIDS virus infection of macrophages,

we attempted to determine whether morphine modulates the

expression of the negative regulators of the JAK-STAT signaling

pathway. It is known that the JAK-STAT signaling pathway is the

major pathway for IFN-mediated signaling and activation of gene

expression [66]. IFNs through binding to their specific receptors

activate JAK-STAT pathway, which regulates the expression of

immune system genes [67]. Morphine treatment not only induced

the expression of SOCS-1, SOCS-2 and SOCS-3, but also

enhanced the expression of PIAS-1, PIAS-3, PIAS-X and PIAS-Y,

the potent suppressors of the JAK-STAT signaling cascade

[45,46,68]. These findings support our earlier in vivo investigation,

showing that the heroin users had significantly higher levels of

SOCS and PIAS than the control subjects [69].

Taken together, our study provides compelling experimental

evidence that morphine enhances AIDS virus replication in

macrophages through the modulation of multiple factors in IFN

signaling pathway at both cellular and molecular levels. Although

additional mechanisms might also be involved in the morphine

action on AIDS virus, to suppress the expression of endogenous

IFNs and IFN-inducible antiviral genes should account for much

of morphine-mediated HIV or SIV enhancement in macrophages.

Because morphine exerts a profound and detrimental effects on

Figure 6. Effect of morphine on APOBEC3B/C/F/G/H mRNA
expression. Seven-day-cultured macrophages were treated with or
without morphine (10210 M) for 3 h, and then cellular RNA was
subjected to the real-time RT-PCR for mRNA detection. Data are
expressed as mRNA levels in morphine-treated cells (percentage of
control) to those in untreated cells. The results represent the mean 6
SD of three independent experiments. Statistical analysis was per-
formed by Student’s t-test and significance is shown with *P,0.05
(morphine versus control).
doi:10.1371/journal.pone.0031167.g006

Figure 7. Effects of morphine on SOCS-1, 2, 3 (A), PIAS-1, 3, X
and Y (B) expression. Seven-day-cultured macrophages were treated
with or without morphine (10210 M) for 3 h, and cellular RNA was
subjected to the real-time RT-PCR for mRNA detection. Data are
expressed as mRNA levels in morphine-treated cells (percentage of
control) to those in untreated cells. The results represent the mean 6
SD of three independent experiments. Statistical analysis was per-
formed by Student’s t-test and significance is shown with *P,0.05
(morphine versus control).
doi:10.1371/journal.pone.0031167.g007

Morphine Enhances HIV/SIV Infection
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host cell innate immunity that has a critical role in restricting HIV

or SIV replication in macrophages, it is likely that opiate abuse has

the ability to alter the course of HIV disease progression.
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