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Abstract: Green space exposure is considered an important aspect of a livable environment and
human well-being. It is often regarded as an indicator of social justice. However, due to the difficulties
in obtaining green space exposure data from a ground-based view, an effective evaluation of the green
space exposure inequity at the community level remains challenging. In this study, we presented
a green space exposure inequity assessment framework, integrating the Green View Index (GVI),
deep learning, spatial statistical analysis methods, and urban rental price big data to analyze green
space exposure inequity at the community level toward a “15-minute city” in Zhengzhou, China. The
results showed that green space exposure inequality is evident among residential communities. The
areas in the old city were with relatively high GVI and the new city districts were with relatively
low GVI. Moreover, a spatially uneven association was observed between the degree of green space
exposure and housing prices. Especially, the wealthier communities in the new city districts benefit
from low green space, compared to disadvantaged communities in the old city. The findings provide
valuable insights for policy and planning to effectively implement greening strategies and eliminate
environmental inequality in urban areas.

Keywords: green space exposure; inequity; street view images; deep learning

1. Introduction

Over the past century, environmental justice has been a global issue [1]. The con-
cept of environmental justice is based on the universal principle that all people have the
right to be protected from specific environmental problems (e.g., pollution, noise) and
to access the same services (e.g., green space, transport) [2]. Environmental inequality
focuses on the broader level of intersection between environmental quality and social
class. Environmental inequality addresses structural issues such as social inequality (the
unequal distribution of power and resources in society) and environmental burden [3].
Most research on environmental justice is mainly focused on pollution exposure [4,5], green
exposure [6], and green space accessibility [7,8]. In recent years, green space inequity, as
part of these aspects, has attracted particular attention [9,10]. In terms of access to green
space, environmental equality refers to residents’ fair access to green space, not affected
by other residents’ factors. Environmental inequality indicates the uneven distribution of
green space among residents [10].

The COVID-19 outbreak has had a significant impact on the civilian economy. The
past concept of urban development of “material-oriented” and “seeing things but not
seeing people” has been reconsidered and turned into the people-oriented concept of
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urban development [11]. How to build more resilient and sustainable cities has attracted
worldwide attention. In 2018, the new urban Residential Area Planning and Design
Standard released by the Ministry of Housing and Urban-Rural Development, the “15-min
city “, “10-min city” and “5-min city” are taken as the core objects of residential area
planning and facility configuration. The reasonable planning of street green space has
undoubtedly become an important part of building a 15-min high-quality community city.

Urban street greening is an important component in the urban landscape, supporting
the ecological environment [12]. Urban street greening also plays an important role in
making neighborhoods more attractive and walkable [13]. With the construction of livable
cities, the government has spared no effort to improve the walkability of cities, and green
space has increasingly become an important standard to measure the livable environment
of cities [7]. Several studies have shown that green space may reduce people’s exposure to
air pollution [14] by promoting carbon sequestration and oxygen production, absorbing
air pollutants, and mitigating the urban heat island’s effect. In addition, green spaces can
restore people’s attention and improve mental and physical health by reducing stress [15,16].
In fact, people are becoming increasingly aware of the benefits of green space in creating
a livable urban environment. However, many previous studies showed that urban green
space is not equally distributed in cities, thus urban residents and communities may not be
able to equally benefit from green space [17–20].

A large number of studies on the topic of environmental inequality have been con-
ducted in developed countries [21–23]. These studies reported that urban green exposure
varies according to socioeconomic status (SES). Generally, neighborhoods with higher SES
usually own greater financial resources, cultural and social capital, and political influences
to maintain and improve green space [24], while low-income communities and communi-
ties of color have limited green space investments [25,26]. In addition, vulnerable groups
cannot equally enjoy the services of green space [19,27]. For example, Li et al. [21] con-
ducted a quantitative analysis of the spatial distribution of different types of urban green
space in Hartford, Connecticut, using green indicators calculated based on multi-source
spatial data sets, and found that higher-income neighborhoods in Hartford, Connecticut
tend to have more green streets compared to low-income neighborhoods. Astell-Burt
et al. [28] used a negative binomial and Logit regression model to investigate the relation-
ship between green space availability and socio-economic environment, and found that
green space availability was substantively lower with a higher percentage of low-income
residents in Australia. Pham et al. [29] found differences in vegetation distribution in
Montreal by extracting satellite images of Montreal from constant high resolution, which
was unfavorable to low-income people. In China, studies in Shenzhen [16], Shanghai [30],
and Guangzhou [31] revealed a direct relationship between SES and inequity of green space
provision; people with higher SES enjoy more green space resources, and in affluent areas,
the amount of and accessibility to public green space is better.

Previous research methods on green inequalities mainly focus on the green space in
or around residential areas and take the neighborhood as the unit of analysis from the
perspective of a 2D view [22,29,32]. Based on satellite remote sensing image data, the
green space exposure is mainly measured by the coverage rate, area, and quantity of green
space [29,33,34]. The common indicators for calculating green space included the NDVI
and Leaf Area Index [16,20,35,36]. The mean NDVI method is convenient for horizontal
and vertical comparison, which is intuitive and easy to calculate. However, there may be
several limitations to adopting 2D remote sensing images to access green space exposure
data. Firstly, it is inadequate for monitoring the personal exposure degree and cannot
accurately assess personal daily exposure to the natural environment. Secondly, the low
resolution of remote sensing images (e.g., 30 m) may result in biased estimates of indicators,
consequently resulting in inaccurate results in the case of street-level monitoring [37,38].
While high-resolution images provide a great tool for depicting green Spaces at a fine level,
they are not always available and are expensive to collect. Thirdly, the monitoring of the
green space by satellite images is based on a bird’s-eye view, rather than a ground-based
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view [39]. They do not take into account the green-covered side view, which cannot capture
the street plan and vertical section of urban greening [24]. In addition, there is not a high
consistency between objectively derived green from remote sensing images and perceived
green by humans [40], which is greatly affected by distance threshold or regional division
and does not consider road network and actual availability.

The panoramic image analysis method evaluates the characteristics of street greening from
the perspective of the human eye. Perceived green is directly related to the benefits provided
by street greening. Some companies such as Google Maps, Baidu Maps, Tencent Maps, etc.,
provide users with 360-degree panoramic images of cities, streets, or other environments
for free. Therefore, a few studies have used street view image data to extract green spatial
indexes such as the green visual rate from the human eye perspective to measure green space
exposure [29,41]. Some scholars have examined the distribution of street greening, including
street trees, lawns, and other green spaces along the street [20,21,23]. Residential street greening,
as a component of urban green space, makes an important contribution to the attractiveness
and walkability of streets [12]. This represents what people really see from the ground. Yang
et al. [42] developed the GVI to assess the visibility of the surrounding urban forest using color
images as a proxy for pedestrians’ perception of green space. Li et al. [43] developed a new
method based on Google Street View (GSV) to assess the spatial distribution of street greening.
Recent developments in machine learning methods combined with online map data allow
people to combine the sentiment of residents towards green spaces from social media (Flickr)
with ground objects (e.g., trees and grass) from interactive panoramas (e.g., street view images
(SVIs)) to better capture indicators of the quality of urban green spaces. Therefore, SVIs have
been used to assess the amount of green space at eye level [44,45]. Street View is an interactive
digital map that provides panoramic city street maps for users with 360◦, as a representative
of the urban landscape. It creates a seamless tour of the city’s streets that can feel immersive.
This is very similar to what one might see exploring a city by car, bike, or foot [43], and it
provides a large number of image resources for urban visual greening research. It has the
advantages of high reachability, high resolution, and wide coverage. Unlike remote sensing
techniques, the GSV-based method quantifies the green space at the street level, resulting in
more accurate results. For example, Yin et al. [46] proposed an automated pedestrian detection
and counting tool based on GSV images and machine learning algorithms to help local planners
in the walkability improvement in several cities in the United States (USA). Seiferling et al. [47]
measured and evaluated the number of tree canopies perceived by pedestrians along roads
in Boston and New York in the USA using a large number of SVI datasets. In addition, Liu
et al. [48] proposed a useful tool for measuring physical fitness in the streets of Beijing in China,
using GSV images and machine learning algorithms. Others such as Helbich et al. [44] have
studied the relationship between geriatric depression and street view greening obtained by
deep learning and street view data using correlation analysis, to ensure effective street greening
planning that supports human health. However, there are still two shortcomings in the current
research. First, the green space inequity was analyzed based on 2D remote sensing images, but
research based on the ground-based view is rare. Second, how to calculate the green space
exposure distribution at the community level and assess green space inequity from a 15-min
city perspective is still not comprehensively understood.

To fill the aforementioned research gap and better inform urban planners and pol-
icymakers in order to promote urban green equity and sustainable urban development,
this study selected Zhengzhou as the case study to provide a framework for green space
exposure inequity assessment, combining GVI, deep learning, spatial statistical analysis
methods, and urban rental price big data toward a “15-min city” in China. This will enable
the analysis of the green space exposure patterns based on the ground-based view and the
assessment of its spatial inequity. Our specific objectives are: (1) To quantify the concept of
“visual contact with green space”, using street view images to complement the traditional
variables associated with green space; (2) to use location entropy to analyze the inequity of
urban green space exposure; and (3) to use bivariate Moran I to evaluate the relationship
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between green space exposure and community SES. This study can provide a reference for
managing urban green space, thus ensuring the sustainable development of the study area.

2. Materials and Methods
2.1. Study Area

Zhengzhou is located in the eastern part of China (Figure 1). It is the central city
of the central Plains Economic Zone, China’s important railway, aviation, highway, and
another major hub city. It is a developing megalopolis in central China with a popula-
tion of more than 22 million. However, compared with other cities, the actual level of
economic development and urbanization is low. Since the beginning of the new century,
the urban functions have been diversified and the core functions of the central city have
been enhanced. Zhengzhou has gradually formed a double-core complex spatial structure
consisting of the original urban core and the new development zone of eastern Zhengzhou,
including 9 districts, 1 county, and 5 county-level cities. The research area of this paper
is limited to five districts of Zhengzhou. The built-up area of the central city is about
1006 km2. Based on the analysis of residential areas, 499 spatial elements were studied.
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Figure 1. Study area.

In recent years, the scale of Zhengzhou has expanded rapidly. In the latest stage of
urban expansion, Zhengzhou has formed a concentric ring structure of the first, second,
third, and fourth rings, and residential areas have gradually shifted from the core area to the
outside [8]. Zhengzhou is one of the fastest urbanization cities, with a typical regional urban
expansion. In 2017, Zhengzhou was classified as one of China’s new first-tier cities [49].
Due to the rapid development of urbanization, the expansion and population density of
cities has been accelerated, which threatens the urban green space and seriously damages
the ecological environment. In Zhengzhou, several key tasks and major projects are planned
for enhancing green and low-carbon transformation.

2.2. Data Sources
2.2.1. Street View Images Data

The green space refers to areas of green vegetation (e.g., grass, trees, and shrubs)
in the image, measured by the GVI. The GVI is the ratio of the total green area of four
images taken at an intersection to the total area of the four images. Street view images
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mainly measure street vegetation at eye level and the green space between neighborhoods
in a three-dimensional space from a human perspective [44]. In this study, the semantic
segmentation tool of visual images based on a deep learning full convolutional network
(FCN) was used to obtain the scene classification results of the street view panorama of
each sample point, and then the GVI of each sample point was calculated according to the
classification results. In this study, each street in downtown Zhengzhou was segmented
with an interval of 200 m, and the segmented points were considered as sample points
to obtain street view images of each sample point at 0◦, 90◦, 180◦, and 270◦ from the
public API interface of Baidu Maps (https://map.baidu.com/). Street view images were
collected from Baidu Maps on 23 July 2020. Some images were obtained during non-green
seasons. We visually checked the vegetation conditions in each image and deleted those
sites with images captured during non-green seasons. we locally adjusted the interval
of sampling points (50 m) to obtain more images and correct them. This resulted in 7994
sampling points and street view images. The amount of street view green space for each
sampling point was determined as the proportion of the average green space quality of
the four images taken from different main directions. In previous studies, it was found
that the distance factor was the main factor affecting residents’ travel. For the purpose
of walking and exercising, the maximum psychological endurance time of travelers was
usually 30 min [50,51]. Therefore, 30 min walking distance was selected as the maximum
buffer radius in this study. Based on the walking speed per minute (72 m/min) of residents
in “15-min cities”, we calculated the walking buffer distances of 5 min (360 m), 10 min
(720 m), 15 min (1080 m), 30 min (2160 m). Buffer zones with 320 m, 720 m, 1080 m, and
2160 m distance radii were established according to the community boundary geographical
location of the residential area. For each community cell, the green space exposure quality
was calculated using the average GVI value of all sampling points within the polygon
buffer boundary of the cell, which is considered as the GVI of the cell under different
buffer radii.

2.2.2. Housing Price Data

In the context of the real estate market boom, housing prices were used to indicate the
SES of residents [7]. Green space is increasingly considered an environmental advantage of
luxury residential areas over disadvantaged neighborhoods [52]. Therefore, the housing
price can reflect the affordability of the community residents to obtain a green space. In this
study, the housing (rental) price data from the secondary site Anjuke (https://zhengzhou.
anjuke.com), accessed on 20 December 2020, which was used to assess the neighborhood
SES of residents. Anjuke provides users with housing information, including second-hand
housing, new housing, rentals, and so on. There is a complete residential community
attribute on the Anjuke website, including the type of community address, property, price,
building area, property rights, the fixed number of years, green rate, etc. We used Python
code to extract residential community attributes from the real estate section of Anjuke. The
data contains 499 residential communities within the central city of Zhengzhou.

2.3. Data Analysis
2.3.1. Framework Design

The green space exposure inequity assessment framework combining GVI, deep learn-
ing, spatial statistical analysis methods, and urban rental price big data toward a “15-min
city” is developed and presented in Figure 2. First, we obtained street view images (0◦, 90◦,
180◦, 270◦) from the road network from Baidu Maps. Second, the semantic segmentation of
street view images was carried out using a deep learning method. We calculated the green
space exposure at the community scale by use of the buffer (5-min, 10-min, 15-min, 30-min)
method. Third, we adopted the Python program (python 3.7) to obtain the urban rental big
data at the community level from Anjuke, which was used to indicate each community’s
socioeconomic status. Finally, we assessed the green space exposure inequity using spatial

https://map.baidu.com/
https://zhengzhou.anjuke.com
https://zhengzhou.anjuke.com
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statistical analysis, such as bivariate Moran’s I and the location entropy method. Figure 2
shows the framework of this study.
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2.3.2. Image Segmentation Based on Machine Learning

In order to extract street-view green objects (e.g., grass, trees, and shrubs), semantic image
segmentation through a fully convolutional neural network (FCN-8s) was used [44,53]. This
method was proposed by Long et al. [53] using classical classification networks. Based on
pixel comparison and manual segmentation [54], the accuracy of the FCN-8s was reasonably
high. Essentially, FCN-8s consists of a number of processing layers that connect the input layer
and the output layer (semantically segmented images) in order to learn the different levels
of the abstraction of data. For the input street view images, the convolution layer extracts
the features, and the pooling layer compresses the data to learn the advanced feature map
while reducing the spatial dimension of the feature map. Figure 3 is an example diagram of
semantic segmentation.

Figure 3. Segmentation results of FCN-8s Net ((A) the original images; (B) segmentation images).

Yang et al. [42] proposed the GVI to assess the visibility of urban forests. Street
landscape greening at each sampling point was defined as the ratio of the number of green
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pixels in each image in four directions (east, west, south, and north) to the total number of
pixels in each image in the four directions. In order to measure the streetscape greening,
based on the edge of the residential area, the average image specific green space of each
community was calculated according to the buffers of 5 min (360 m), 10 min (720 m), 15 min
(1080 m), and 30 min (2160 m), using the following formula:

GVI =
∑4

n=1 Areag_n

∑4
n=1 Areat_n

(1)

where Areag_n is the number of green pixels in an image taken in the nth of the four
directions (east, west, south, and north) of a sample point; Areat_n is the total number of
pixels in an image taken at the nth direction of the sampling point.

2.3.3. Location Entropy

The location entropy method can analyze the spatial social equity performance [55].
In this study, the location entropy analysis method was used to assess the spatial equity
distribution pattern of urban public green space resources by housing price unit and
analyze the distribution of urban public green space resources according to different social
income groups. The location entropy index of each space unit is the ratio between the
public green space by income group within the spatial unit and the public green space by
unit income group within the entire study area. The calculation formula is:

LQi = (GVIi /pricei)/(GVI/price) (2)

LQi is the location entropy index of community i, GVIi is the average occupancy of
green space of community i, pricei is the average housing price of community i, and GVI is
the sum of the mean green space of the study area. Price is the sum of average rental prices
in the study area.

2.3.4. Spatial Statistical Analysis

Spatial autocorrelation is the most suitable method for systematically determining
the unequal spatial pattern of urban green space exposure. In this paper, global bivariate
Moran’s I and local bivariate Moran’s I [56] were used both to assess the spatial autocorre-
lation between housing price and green exposure. The formula gives the basic principles of
global and local bivariate Moran statistics:

IP,A =
N ∑N

i ∑N
j 6=i WijZP

i ZA
j

(N − 1)∑N
i ∑N

j 6=i Wij
(3)

I′P,A = ∑N
j=1 WijZA

j (4)

IP,A and I’P,A are global bivariate Moran’s I and local bivariate Moran’s I, respectively;
N is the total number of cells; ZP

i is the standardized value of housing price in the ith
community, ZA

j is the standardized value of green exposure in jth cell; Wij is the spatial
weight matrix of i; and j is used to determine the correlation between the ith and jth. In this
study, GeoDa was used to calculate the binary Moran’s I.

The Moran’s I values vary between −1 and 1. For bivariate Moran’s I with statistical
significance, a positive value indicates spatial clustering (spatial positive correlation), while
a negative value implies spatial dispersion (spatial negative correlation) [57]. Moran’s
I > 0 reflects positive spatial correlation, and the larger the value is, the more obvious the
spatial correlation is; Moran’s I < 0 means negative spatial correlation, and the smaller the
value is, the greater the spatial difference is, whereas, a value of 0 for Moran’s I implies
random space.

Global Moran’s I reflects the overall spatial autocorrelation level of neighborhood
green space [20]. Therefore, to determine the spatial autocorrelation coefficient between
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housing price and green exposure in each community, local bivariate Moran’s I was used
for detection.

Based on the spatial autocorrelation concept, cluster mapping by local bivariate
Moran’s I is considered to be an effective method for detecting environmental exposure
inequity hot spots or clustering regions. The cluster graph obtained by local bivariate
Moran’s I can be used to identify four types of spatial correlations between housing price
and GVI at the community level: Low-Low (low rental prices surrounded by low GVI),
Low-High (low rental prices surrounded by high GVI), High-High (high rental prices
surrounded by high GVI), and High-Low (high rental prices surrounded by low GVI).

3. Results
3.1. Spatial Inequity of Green Space Exposure

A location entropy of the community greater than 1 indicates that the urban green
space services enjoyed by the population with unit income in the region are higher than the
overall average level. While a location entropy of the community less than 1 indicates that
the urban green space services enjoyed by the population with unit income in the region
are lower than the overall average level.

Table 1 shows the location entropy value of each spatial unit within the buffer zone of
the residential area, which is divided into seven levels for a certain income level and the
average occupancy of urban public green space. Figure 4 shows the spatial distribution
pattern of the location entropy values of each community. In order to analyze the unfairness
of urban green space more accurately, we only focused on the results where the location
entropy was less than 0.5 and greater than 2. First of all, the areas with very low location
entropy (a location entropy value lower than 0.5; that is, the urban public green space
service enjoyed by each income level is less than half of the average level) number 55 in the
buffer zone of 360 m, accounting for 11.02% of the total number of cells; 42 in the buffer
zone of 720 m, accounting for 8.42% of the total number of cells; and 41 in the buffer zone
of 1080 m, accounting for 8.22% of the total number of cells. Moreover, there are 31 cells
within the 2160 m buffer zone, accounting for 6.21% of the total number of cells. Secondly,
for areas with high location entropy (location entropy value is higher than 2; that is, the
urban public green space service enjoyed by each income level is two times higher than
the average level), the 360 m buffer contains 41 cells, accounting for 8.22% of the total cell
number; the 720 m buffer contains 41 cells, accounting for 8.22% of the total cell number;
the 1080 m buffer contains 37 cells, accounting for 7.41% of the total cell number; and the
2160 m buffer contains 28 cells, accounting for 5.61% of total cell number.

As seen in Figure 4, the location entropy index showed a gradual decrease in the circle
structure, and the number of communities with a higher location entropy index decreased
from the inner ring to the periphery of the city, forming a circle layer structure. It can be
highlighted that there is an inequality mismatch in the allocation of green public space
resources in the residential areas in the study area. The communities with a lower location
entropy index are mainly distributed along the outer ring. The communities with a lower
location entropy index were mainly distributed in the periphery of the city, including the
east of Jinshui District, the east of Erqi District, and the northeast Guancheng Minority
District. The communities with a higher location entropy index were mainly distributed in
the city center, including the west of Jinshui District, the east of Zhongyuan District, the
north of Erqi District, and the northwest of Guancheng Minority District.
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Table 1. Statistics of location entropy of each buffer distance (5 min, 10 min, 15 min, and 30 min).

Buffer Distance LQ Count (Percentage)

5 min (360 m)

<0.2 3 (0.60)
0.2–0.5 52 (10.42)
0.5–1.0 205 (41.08)
1.0–1.5 122 (24.45)
1.5–2.0 76 (15.23)
2.0–5.0 37 (7.42)

>5.0 4 (0.80)

10 min (720 m)

<0.2 1 (0.20)
0.2–0.5 41 (8.22)
0.5–1.0 223 (44.69)
1.0–1.5 124 (24.85)
1.5–2.0 69 (13.83)
2.0–5.0 37 (7.41)

>5.0 4 (0.80)

15 min (1080 m)

<0.2 0 (0.00)
0.2–0.5 41 (8.22)
0.5–1.0 220 (44.09)
1.0–1.5 135 (27.05)
1.5–2.0 66 (13.23)
2.0–5.0 33 (6.61)

>5.0 4 (0.80)

30 min (2160 m)

<0.2 0 (0.00)
0.2–0.5 31 (6.21)
0.5–1.0 204 (40.88)
1.0–1.5 164 (32.87)
1.5–2.0 72 (14.43)
2.0–5.0 24 (4.81)

>5.0 4 (0.80)Int. J. Environ. Res. Public Health 2022, 19, x  10 of 18 
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3.2. The Association between Green Space Exposure and Rental Prices

Figure 5 shows the spatial distribution of rental prices, relatively low in the inner city,
such as the southwest of Jinshui District, the northeast of Erqi District, and the northwest
of Guancheng Minority District. Rental prices in the new development zone of eastern
Zhengzhou are relatively high. In this study, first, we adopted the global bivariate Moran’s I
to measure the correlation between green space exposure and socioeconomic status. Table 2
indicates that there exists a negative spatial correlation between housing price and green
space exposure. That is, a community with a higher housing price generally enjoys low
green space exposure. Next, the bivariate LISA was applied for locally examining the
association between socioeconomic conditions and green space exposure.
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Table 2. Global Moran’s I for the distribution of the GVI values for 5-min, 10-min, 15-min, and 30-min
buffer distances.

Buffer Distance Moran’s I

5 min (360 m) −0.057 ***
10 min (720 m) −0.080 ***

15 min (1080 m) −0.083 ***
30 min (2160 m) −0.096 ***

*** p < 0.001.

As shown in Figure 6, local Moran’s I revealed uneven spatial distribution between
green space and different income groups, especially in High-Low (high housing price and
low GVI) and Low-High (low housing price and high GVI) types.
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As shown in Figure 6a, the High-Low type (high housing price and low GVI), com-
prised of 105 residential areas, is mainly distributed along the east new city district. Low-
High type (low housing price and high GVI) are comprised of 124 residential areas concen-
trated in the north part of Erqi District and the southwest part of Jinshui District. On the
other hand, the Low-Low type (low housing price and low GVI) comprises 85 residential
areas located in the eastern part of Erqi District and the western part of Guancheng Mi-
nority District, while the High-High type (high housing price and high GVI) consists of
74 residential areas, mainly concentrated in the western part of Jinshui District.

As shown in Figure 6b, regarding the 720 m buffer zone considered, the results showed
that the High-Low type (high housing price and low GVI) comprises 104 communities,
mainly concentrated in the north part of Guancheng Minority District and the new devel-
opment zone of eastern Zhengzhou, while the Low-High type (low housing price and high
GVI) comprises 130 residential areas, mainly distributed in the southwest part of Jinshui
District and in the north part of Erqi District. Moreover, the Low-Low type (low housing
price and low GVI) comprises 88 residential areas, mainly concentrated in the east of Erqi
District and the western part of Guancheng Minority District, whereas the High-High type
(high housing price and high GVI) comprises 75 residential areas, mainly concentrated in
the western part of Jinshui District.

As shown in Figure 6c, regarding the 1080 m buffer zone considered, the High-Low
type (high housing price and low GVI) consists of 102 communities located in the northeast
part of Guancheng Minority and the east new city district, while the Low-High type (low
housing price and high GVI) consists of 133 residential areas, mainly distributed in the
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north of Erqi District and the southwest part of Jinshui District. Additionally, the Low-Low
type (low housing price and low GVI) consists of 87 residential areas, mainly concentrated
in the east of Erqi District and the western part of Guancheng Minority District, whereas
the High-High type (high housing price and high GVI) consists of 73 residential areas,
mainly concentrated in the western part of Jinshui District.

On the other hand, regarding the 2160 m (Figure 6d) buffer zone considered, the
High-Low type (high housing price and low GVI) consists of 104 communities distributed
in the northeast part of Guancheng Minority and the east new city district, while the
Low-High type (low housing price and high GVI) consists of 141 residential areas, mainly
distributed in the Zhongyuan District, the southwest part of Jinshui District, and the
north part of Erqi District. Moreover, the Low-Low type (low housing price and low GVI)
comprises 85 residential areas, mainly concentrated in the east of Erqi District and the west
part of Guancheng Minority District, whereas the High-High type (high housing price
and high GVI) comprises 83 residential areas, mainly concentrated in Jinshui District and
Zhongyuan District.

As shown in Figure 6, the High-Low type (high housing price and low GVI) are mainly
distributed along the new development zone of eastern Zhengzhou. This may be because
the eastern part of Zhengzhou is a new development zone with large development space,
so the housing prices are relatively high. However, various facilities are not perfect and the
green environment is under planning, so the GVI value is relatively low. Low-High type
(low housing price and high GVI) residential areas are mainly within the inner ring road,
including the old urban area. This may be due to the shabby houses and traffic congestion
in the old city, and the housing prices are relatively low. However, the old urban area,
usually with high street density and good greening, is more suitable for residents to walk
for leisure. The GVI is relatively high.

4. Discussion

This study took Zhengzhou as the research object, combined with GVI, deep learning,
spatial statistical analysis methods, and the big data of urban rent prices, and constructed
an evaluation framework of the unfairness of urban green space exposure, and analyzed
the unfairness of green space exposure at the community level of a “15-min city” in
Zhengzhou. The results show that the exposure inequality of green space in residential
areas is obvious, and the index of green space in old urban areas is higher than that in the
new development zone of eastern Zhengzhou. In particular, the more affluent communities
in the new development zone have a lower green space compared with the disadvantaged
communities in the old urban areas.

In our study, we found that there existed a gradual decrease in circle structure from the
city center to the peri-urban areas, indicating that the community residents in the central
urban area of Zhengzhou may better benefit from street view greening when compared to
the suburbs, which is consistent with the results reported in Singapore [58]. This may be
due to several reasons. In the old city, green plants are cultivated for a long time and grow
better. In addition, the streets are narrow. The street density is relatively higher within the
buffer distance, leading to a high GVI. On the contrary, in the new development zone of
eastern Zhengzhou, the streets are generally wide and sparse. There are simple green belts
on both sides of the streets. Thus, the GVI is relatively low (Figure 7). Although most green
space in China is public green space provided by the government, from the perspective of
SES, the distribution of green space in different communities is still unequal [16,59], which
is consistent with the findings of previous studies. The city government and policymakers
should give priority to improving the streetscape to ensure that residents in the new
development zone can enjoy enough green space.
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Figure 7. Street view ((a) old city; (b) new development zone).

Based on the LISA cluster map, all types of street view greening correlation (High-High,
High-Low, Low-Low, and Low-High) clustered are observed in the interior of the city, while
High-Low was observed in the new development zone of eastern Zhengzhou. The Low-
High cluster was mainly observed in the central part of the city. The results in this study
were inconsistent with previous studies [21,28,30]. This may be the reason that the density
of the public transport network in the new development zone of eastern Zhengzhou is not
consistent with the growth of street greening. It may also be that the greening strategies
implemented in new development zones are not as large as those implemented in central
urban areas. In the old city, there is the presence of high vegetation density in downtown
streets with appropriate maintenance. These neighborhoods are relatively dilapidated and
crowded due to old-fashioned buildings and a high density of population, resulting in
relatively low rental prices. This may explain why some neighborhoods within the old city
have low rental prices but high green exposure. The High-Low are mainly concentrated in
the eastern suburbs of Zhengzhou, which belong to the new development zone of eastern
Zhengzhou. The houses are relatively new and the surrounding greening may not be
perfect, but there is a large space for development, so the housing price may be relatively
high. In addition, previous studies mainly adopted 2D remote sensing data to measure
green space around the community [22,29,34]. Due to street-view data limitations inside
the community, this study focused on calculating the green space outside the community
along the road toward a “15-min city”. The difference in the evaluation methods of green
space would lead to inconsistent results.

This study proposes a method to measure the amount of green space based on street
view data and machine learning methods. Compared with traditional green space quanti-
tative assessment methods, this method is less time-consuming and more efficient. Thus,
there is a significant contribution to explaining the role of green space quality in pub-
lic health [20].

In the current study, several outputs were highlighted. First, a new framework and
perspective were put forward to analyze green space exposure inequity at the community
level toward a “15-min city” in Zhengzhou, China. Second, based on street view images,
the neighborhood green space was measured in three-dimensional space from a human
perspective, then the street view data were combined with machine learning methods to
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evaluate the street green space environment at a large scale and in a short time. Third,
urban rental price big data were used to represent the economic status of the neighborhood,
which is more accurate than census data.

This study may also have the following limitations, which need to be further addressed
in future studies. First, rental prices were used to reflect residents’ SES without considering
relevant factors, such as location, environment, and transportation. In future work, these
factors can be incorporated as variables to reflect the SES of residents. Second, the GVI
used in this study reflects only the total green proportion of street scenes on both sides
of the street, without subdividing green space types. In fact, green spaces with different
sizes, comfort, and attractiveness may have different impacts on rental prices, while street
view data generally only includes the main road, secondary road, branch road, and other
types of roads on which vehicles can drive, collected by a customized camera installed
on the automobile roof. Which will lead to a lack of street view pictures of pedestrian
streets that vehicles cannot enter. Third, as the exact time when the street view images were
taken was not available, the SVIs may not be taken in the same season [58,60]. Fourth, GVI
images cover a limited number of observation points and cannot capture the greening of
all parts of the city, which may affect the results to some extent. In addition, this paper only
focuses on the green exposure of residents along the road, while the green exposure in the
community has not been considered due to data limitations. The data can be enriched by
collecting green exposure data in the community in the future. A new method is needed
for evaluating green space exposure by combining street view data and 2D remote sensing
data in the future.

The spatial imbalance of green space exposure in Zhengzhou can provide the basis
for municipal and planning departments to further improve the residents’ green space
exposure. The spatial mismatch between rental prices and green space exposure helps to
implement appropriate greening strategies. Planning efforts should fund green space in
Low-Low type neighborhoods around cities to meet the needs of low-income residents for
green infrastructure. Authorities and planners should be more sensitive to environmental
inequality in green spaces and raise awareness of the problem. Green space cannot be
built only in urban centers, affluent neighborhoods, and any major location, because green
space has a public character. In addition, the need for green exposure among different
social groups should be a key indicator of green planning [61]. Social groups living in
disadvantaged communities should be given more green space to ensure the equality
of opportunities [7].

5. Conclusions

The equitable distribution of green space is increasingly seen as an issue of environ-
mental inequality and has an urgent need to be addressed. Combined with GVI, deep
learning, spatial statistical analysis, and the big data of urban rent prices, this study devel-
oped and proposed a “15-min city” green space exposure inequity evaluation framework.
Instead of remote sensing-based field observations or vegetation indices, we used street
view data and deep learning to extract the metrics of green space. Taking Zhengzhou city
as an example, this paper explores the relationship between street greening and the social
and economic status of residents.

In this study, the location entropy method and bivariate Moran’s I were used to analyze
the environmental inequality of residents’ green exposure. The results show that green
space exposure inequality is evident among residential communities. The communities in
the old city were with relatively high GVI and new city districts were with relatively low
GVI. Moreover, a spatially negative correlation was observed between the degree of green
space exposure and housing prices. The wealthier communities in the new development
zone benefit from low green space, compared with disadvantaged communities in the
old city.

In order to realize the “15-min city” and improve the sustainability and livability of
urban areas, it is suggested that policymakers and planners pay more attention to the
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differences in green space exposure among communities. In terms of future planning, we
highlight three policy recommendations: (i) the construction of new green spaces should
be the priority goal of infrastructure construction in new development zones; (ii) imple-
menting appropriate greening strategies for different types of communities; and (iii) in new
development zones, urban development should focus on community-centered walkability.
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