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A B S T R A C T   

Background: Cancer has been disproportionally affecting minorities. Genomic-based cancer disparity analyses 
have been less common than conventional epidemiological studies. In the past decade, mutational signatures 
have been established as characteristic footprints of endogenous or exogenous carcinogens. 
Methods: Integrating datasets of diverse cancer types from The Cancer Genome Atlas and geospatial environ-
mental risks of the registry hospitals from the United States Environmental Protection Agency, we explored 
mutational signatures from the aspect of racial disparity concerning pollutant exposures. The raw geospatial 
environmental exposure data were refined to 449 air pollutants archived and modeled from 2007 to 2017 and 
aggregated to the census county level. Additionally, hepatitis B and C viruses and human papillomavirus 
infection statuses were incorporated into analyses for skin cancer, cervical cancer, and liver cancer. 
Results: Mutation frequencies of key oncogenic genes varied substantially between different races. These dif-
ferences were further translated into differences in mutational signatures. Survival analysis revealed that the 
increased pollution level is associated with worse survival. The analysis of the oncogenic virus revealed that 
aflatoxin, an affirmed carcinogen for liver cancer, was higher in Asian liver cancer patients than in White pa-
tients. The aflatoxin mutational signature was exacerbated by hepatitis infection for Asian patients but not for 
White patients, suggesting a predisposed genetic or genomic disadvantage for Asians concerning aflatoxin. 
Conclusions: Environmental pollutant exposures increase a mutational signature level and worsen cancer prog-
nosis, presenting a definite adverse risk factor for cancer patients.   

1. Introduction 

As a leading cause of death, cancer receives ongoing, timely, and 
systematic surveillance at national and worldwide strategic levels [1]. 
The incidence, mortality, and survival of a specific cancer type vary 
geographically and differ across ethnicity and population boundaries, 
giving rise to the issue of cancer disparity. Cancer disparities must be 

closely monitored, analyzed, and, ideally, suppressed. In the U.S., cancer 
disparity is a complex issue attributed to a series of intertwined factors, 
including poverty, lifestyle, education, income, environmental expo-
sures, and others [2]. Fortunately, the gravity of cancer disparity has 
garnered substantial research attention, and substantial efforts have 
been put into epidemiological analyses of ethnic and environmental risk 
factors associated with cancer disparity. Often, the effects of cultural or 
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socioeconomic inequalities are explored in extra depth. For example, 
using Whites as a reference, Ellis et al. found Black cancer patients had 
the lowest survival while Asians had the highest survival [3]. The stage 
at diagnosis was the largest attributing factor for the survival disparity, 
which can be directly tied to the socioeconomic status of each racial 
group. In another study, Butler et al. approached cancer disparity from 
the unique angle of physician cultural competency [4], finding that 
minorities were not adequately matched with culturally competent 
physicians, and this suboptimal reality might have impacted the overall 
quality of care for minorities. 

In the U.S., it is well documented that minorities are disproportion-
ally affected by environmental pollution. For example, it was found that 
racial disparity in pollution exposure is strongest among neighborhoods 
with median incomes below $25,000, which predominantly represent 
Blacks and Hispanics [5]. Another recent study shows that there is a 
45-fold difference in average pollution exposure between the most and 
least exposed, disproportionally affecting Blacks the most [6]. Liu et al. 
examined the disparities between race and ethnicity in air pollution 
exposure across critical air pollutants within the U.S. between 1990 and 
2010, and found that racial and ethnic minorities were more than twice 
as likely as non-Hispanic Whites to live in a census block group with the 
highest levels of air pollution [7]. There is also evidence in other na-
tional studies that non-Hispanic Black populations were more likely to 
live closer to industrial PM2.5 emissions [8] and experience higher 
average exposures to industrial air toxins [9] than other race and 
ethnicity groups. According to Bell and Ebisu’s study conducted across 
215 U.S. census tracts in 2000–2006, Whites generally were exposed to 
PM2.5 components at the lowest level and Hispanics at the highest level; 
non-Hispanic Blacks were exposed to 13 of the 14 PM2.5 components at 
higher levels than Whites [10]. Kravitz-Wirtz et al. reported that envi-
ronmental inequality can be observed at the level of census blocks, with 
non-Hispanic Blacks and Hispanic residents having significantly higher 
levels of NO2, PM2.5, and PM10 exposures than White residents [11]. 

In the past two decades, high-throughput sequencing platforms have 
been continually optimized, along with steadily decreasing costs. As a 
result, genome-wide variant analysis becomes a promising approach to 
cancer research. The accumulated cancer variant data thus allow for 
examination of cancer differences from a genomics perspective. Among 
all directions around genomic variants, an emerging, prospective 
approach to carcinogenesis is through the paradigm of “mutational 
signatures”, with a mutational signature representing a characteristic 
combination of somatic variant types and theoretically mapping to a 
specific cancer etiology [12–14]. Here, we focus on mutational signa-
tures defined around single base substitution (SBS). To date, there are 
nearly 100 well-defined mutational signatures [14], and more than half 
are associated with known etiologies. For example, mutational signature 
SBS7 represents mutation footprints caused by UV light exposure, SBS4 
represents tobacco smoking, and SBS24 represents aflatoxin exposure. 
Because a mutational signature is presumed to be an aggregate of all 
types of SBS somatic variants, they may be used as quantitative inter-
mediate surrogate phenotypes for otherwise unattainable environ-
mental variables, enabling delving into cancer racial variance at the 
etiology level. In literature, artificial exposure to carcinogens has been 
proven to induce mutational signatures [15]. On the contrary, no 
empirical evidence has clearly linked environmental pollutants to 
mutational signatures based on human data. 

Conventionally, cancer disparity studies are set against cohort-level 
epidemiological measures such as incidence, prevalence, mortality, 
survival, mortality, and morbidity. With the advancements in mea-
surement and interpretation of genomics data, burgeoning studies are 
able to take summary statistics for an individual genome, epigenome, or 
transcriptome, such as mutational burden [16,17], complex arm aber-
ration index [18], and Alu editing index [19]. In this study, we envi-
sioned that similar summary indices built around individual mutational 
signatures may form proxies for intermediate phenotypes indicative of 
environmental toxic exposures. Additionally, decomposing 

genome-wide mutations into diverse mutational signatures allowed for a 
finer granularity to delve into the etiological heterogeneity of the same 
clinically defined cancer. With these principles in mind, we conducted a 
mutational-signature-based cancer study by incorporating SBS variants 
and environmental exposures (air pollutants) of tens of thousands of 
cancer patients into an array of statistical analyses. 

2. Methods 

2.1. Genomic, survival, and mutational signature data 

Variant data for 10,182 patients classified to 33 cancer types were 
downloaded from Genomic Data Commons, the data portal of The 
Cancer Genome Atlas (TCGA). Disease specific survival data of the same 
cohorts of cancer patients were obtained from Pan-Cancer Data 
Resource [20]. During data analysis, we excluded datasets with race 
sample size less 30. The SBS mutational signature reference file (v3.3) 
was downloaded from The Catalog Of Somatic Mutations In Cancer [14], 
and we adopted 49 well-defined, non-artifact mutational signatures 
[21]. These reference mutational signatures are named with SBS pre-
fixes, e.g. SBS4. 

Each subject’s variant data were quantified to a catalog of 96 three- 
base motifs centered upon the mutated SBS (upstream, SBS, down-
stream), and all patients’ mutation catalogs for one cancer type were 
fitted by R package MutationalPatterns [22] to infer the level (quanti-
tative contribution) of each reference mutational signature in each pa-
tient. The fitting function from MutationalPatterns outputted a subject’s 
mutational signature level as a non-negative value, indicating the 
quantitative contribution of this particular signature to the mutation 
catalog of the patient. A zero value for mutational signature level means 
this particular signature was not present in the subject, contributing a 
null variant. 

2.2. Air pollution data from United States environmental protection 
agency 

According to the geographical locations of patients’ visiting hospi-
tals, the environmental exposure of cancer patients was surveyed on a 
panel of 449 air pollutants modeled and archived by the United States 
Environmental Protection Agency (EPA). The air pollution data were 
obtained from Risk-Screening Environmental Indicators (RSEI) modeled 
and archived by the United States Environmental Protection Agency (U. 
S. EPA). Since 1987, U.S. facilities in different industrial sectors have 
been required to report their environmental releases of more than 600 
toxic chemicals on an annual basis under the U.S. EPA’s Toxics Release 
Inventory (TRI) program. RSEI incorporates TRI information as well as 
other data sources and risk factor concepts in order to evaluate the po-
tential impacts of industrial emissions of TRI-listed chemicals. The 
American Meteorological Society/EPA Regulatory Model (AERMOD), a 
steady-state Gaussian plume model (https://www.epa.gov/scram/air- 
quality-dispersion-modeling-preferred-and-recommended-models), was 
used in RSEI to model the dispersion of air emissions of toxic chemicals, 
which produces detailed air pollution concentration modeling results at 
various spatial and temporal scales for data users. This study collected 
the RSEI-modeled annual average concentrations for all available air 
pollutants in each grid cell of 810 m by 810 m in the United States during 
the period 2007–2017. In total, 449 chemicals were modeled in each of 
the 11 years, which were kept for further analysis. The unit of the 
pollutant is the concentration of chemicals at grid cell (µg/m3). After-
ward, modeled concentrations were aggregated to the county level by 
averaging the values across all grids within the respective county. An 
individual TCGA subject’s exposure to a particular chemical was rep-
resented by the 11-year average concentrations of the county in which 
the visiting hospital or reporting agency is located. Thus, each TCGA 
subject is associated with exposure values for each of the 449 toxic air 
pollutants calculated from the RSEI. The pollution data used in this 
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study is viewable in Supplementary Table S1. 

2.3. Data analysis 

All statistical analyses and data science operations were performed in 
the open source environment R (v3.6). All analyses were performed for 
each cancer type in parallel. For all regression analyses, we adjusted for 
clinical variables including age, sex, tumor stage, and race wherever 
possible. The race definition was based on TCGA’s clinical data. For all 
statistical tests, when applicable, the Benjamini-Hochberg adjusted p- 
value < 0.05 or adjusted p-value < 0.01 was used as the statistical sig-
nificance threshold. 

First, logistic regression was adopted to discern the difference in a 
binary variable between two (racial) groups. For this particular type of 
analyses, a variant in a single gene in a subject was treated as a binary 
variable, and the continuous level of a mutational signature in a subject 
was dichotomized to a binary variable of zero vs. non-zero. In brief, for 
each single gene or each single mutational signature, we calculated the 
proportion of subjects presenting a variant or a non-zero mutational 
signature contribution and compared the proportions in two compara-
tive groups with logistic regression. In most analyses, patients were 
divided into groups by race, but at times, they were grouped by the 
geographical locations of the hospitals they visited. Such logistic re-
gressions were conducted with respect to all genes and all mutational 
signatures in a repetitive manner. 

Second, using a sensitivity analysis, we modeled the level of a 
mutational signature in a subject with either a univariate linear 
regression on race (Eq. 1) or a multivariate linear regression on race 
along with a pollutant (Eq. 2). Here, the level of a mutational signature, 
MS, retained its continuous nature as outputted by MutationalPattern 
(without dichotomization). The multivariate linear regression included 
race and pollutant as independent variables: race was coded as a cate-
gorical variable (R), and pollutant was a continuous value representing 
the intensity of an air pollutant (P). The other notations of the equations 
referred to the constant term (a) and the coefficients of the independent 
variables (b, b1, and b2). Each subject contributed a sample or an 
instantiation of the regression model. For every pollutant, the model of 
inclusion (Eq. 2) and the corresponding model of exclusion (Eq. 1) were 
compared via the ANOVA test, so that the net contribution of the 
pollutant variable was assessed in addition to the race effect. 

Third, logistic regression was deployed in addition to linear regres-
sion to mitigate vulnerability to extreme levels of mutational signatures. 
In addition to the aforementioned linear regression analyses (Eqs. 1 and 
2) , we employed logistic regression in similarly parallel frameworks 
after dichotomizing mutational signature intensities (MS) to zero and 
none-zero values (MS’, Eqs. 3 and 4). Again, ANOVA tests were per-
formed to assess the net contribution of the additional pollutant vari-
able. A pollutant was considered as significantly associated with a 
mutational signature only if all four adjusted p-values were significant: 
the two p-values for the pollutant coefficient b2 from both the linear and 
the logistic regressions (Eqs. 2 and 4), and the two ANOVA p-values for 
the Eq. 1 vs. Eq. 2 and Eq. 3 vs. Eq. 4 comparisons. 

MS = a+ b • R (1)  

MS = a+ b1 • R+ b2 • P (2)  

Prob(MS′) = e(a+b•R)

1 + e(a+b•R) (3)  

Prob(MS′) = e(a+b1•R+b2•P)

1 + e(a+b1•R+b2•P) (4) 

Furthermore, with respect to the disease-specific survival data, we 
implemented Cox Proportional Hazard models to investigate if the sur-
vival span showed a difference for pollution at high and low levels. The 
survival analysis was only applied to datasets with the number of event 

Table 1 
Genes that displayed significant differences in variant frequency between a 
minority group and Whites.  

Cancer Gene Freq1a Freq2b Adjusted Pc Minorityd 

BRCA TP53  28.5 %  42.3 %  0.005 Black 
BRCA PYHIN1  0.6 %  8.5 %  0.005 Asian 
BRCA ITGAM  0.4 %  8.5 %  0.006 Asian 
BRCA FBXW7  1.0 %  5.5 %  0.008 Black 
BRCA PRPF8  0.4 %  6.8 %  0.011 Asian 
BRCA FOXO4  0.4 %  6.8 %  0.011 Asian 
BRCA PPP6R3  0.4 %  6.8 %  0.011 Asian 
BRCA SSX2IP  0.3 %  5.1 %  0.012 Asian 
BRCA OR10J3  0.3 %  5.1 %  0.013 Asian 
BRCA CENPE  1.8 %  8.5 %  0.013 Asian 
BRCA PHC2  0.4 %  5.1 %  0.013 Asian 
BRCA EYS  1.8 %  8.5 %  0.015 Asian 
BRCA ZNF334  0.6 %  5.1 %  0.017 Asian 
BRCA SCN8A  1.1 %  6.8 %  0.020 Asian 
BRCA HERC6  0.9 %  6.8 %  0.020 Asian 
BRCA MRPL2  0.4 %  5.1 %  0.020 Asian 
BRCA CDCP1  0.4 %  5.1 %  0.020 Asian 
BRCA ZNF776  0.4 %  5.1 %  0.020 Asian 
BRCA ZNF252P  0.1 %  5.1 %  0.020 Asian 
BRCA IFT88  0.3 %  5.1 %  0.021 Asian 
BRCA OPLAH  0.4 %  5.1 %  0.022 Asian 
BRCA MCM3  0.1 %  5.1 %  0.022 Asian 
BRCA TP53  28.5 %  49.2 %  0.022 Asian 
BRCA CPXM1  0.4 %  5.1 %  0.023 Asian 
BRCA QSER1  1.4 %  6.8 %  0.023 Asian 
BRCA KMT2D  2.4 %  8.5 %  0.023 Asian 
BRCA TRIM42  0.4 %  5.1 %  0.023 Asian 
BRCA FTSJ3  1.0 %  5.1 %  0.023 Asian 
BRCA MSL2  0.3 %  5.1 %  0.023 Asian 
BRCA SLCO5A1  0.7 %  5.1 %  0.024 Asian 
BRCA PREX2  2.0 %  8.5 %  0.024 Asian 
BRCA MAP10  0.6 %  5.1 %  0.024 Asian 
BRCA GOLGB1  1.6 %  6.8 %  0.024 Asian 
BRCA CSTF3  0.9 %  5.1 %  0.024 Asian 
BRCA ABCA5  0.9 %  5.1 %  0.024 Asian 
BRCA EFEMP1  0.4 %  5.1 %  0.024 Asian 
BRCA PDCL3  0.4 %  5.1 %  0.024 Asian 
KIRC VHL  48.5 %  20.8 %  0.026 Black 
BRCA SMARCC2  0.6 %  5.1 %  0.028 Asian 
KIRC CASP8AP2  0.7 %  7.5 %  0.030 Black 
BRCA POTEA  0.6 %  5.1 %  0.030 Asian 
BRCA ARID1A  2.6 %  10.2 %  0.030 Asian 
BRCA CYP11B2  0.6 %  5.1 %  0.030 Asian 
BRCA CSPP1  1.1 %  5.1 %  0.031 Asian 
BRCA MROH5  0.4 %  5.1 %  0.031 Asian 
BRCA TARBP1  0.6 %  5.1 %  0.033 Asian 
BRCA SLIT2  1.4 %  6.8 %  0.033 Asian 
BRCA MYH4  1.1 %  6.8 %  0.034 Asian 
BRCA TRPC5  1.1 %  5.1 %  0.036 Asian 
BRCA SSH2  1.0 %  5.1 %  0.036 Asian 
BRCA LAMB4  1.6 %  6.8 %  0.037 Asian 
BRCA PTPRB  2.0 %  6.8 %  0.038 Asian 
BRCA MADD  1.1 %  5.1 %  0.038 Asian 
BRCA MICAL2  0.7 %  5.1 %  0.038 Asian 
BRCA SPINK5  0.7 %  5.1 %  0.038 Asian 
BRCA UACA  0.9 %  5.1 %  0.038 Asian 
BRCA ANO6  1.1 %  5.1 %  0.043 Asian 
BRCA PIK3CA  29.6 %  20.2 %  0.045 Black 
BRCA HAND2  0.9 %  5.1 %  0.046 Asian 
BRCA FBN2  1.1 %  5.1 %  0.047 Asian 
BRCA PPP1R3A  1.0 %  5.1 %  0.047 Asian 
BRCA ASH1L  2.3 %  8.5 %  0.049 Asian 
BRCA ROBO1  1.0 %  5.1 %  0.050 Asian  

a Frequency (shortened as Freq) of mutation in White. 
b Frequency of mutation in the minority group. Frequencies are calculated as 

the number of subjects who have at least one non-silent variant in this gene 
divided by the total number of subjects. 

c Benjamini-Hochberg-adjusted p from logistic regression. 
d The race of the minority group. 
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greater than 10. We used logistic regression to investigate the relation-
ship between heptatitis infection status and aflatoxin signature SBS24. 

3. Results 

3.1. Racial difference in single-gene variant frequency 

We conducted an analysis of genomic variant frequencies across 
different racial groups, utilizing Whites as the reference cohort. This 
investigation identified a total of 63 significant genes (Table 1), 
encompassing several well-known oncogenic elements. Specifically, 
within the context of breast cancer, the TP53 oncogene exhibited a 
mutation frequency of 28.8% in Whites, 42.3 % in Blacks (adjusted 
p = 0.005), and 49.2 % in Asians (adjusted p = 0.02). Additionally, the 
transcription factor FOXO4, shown to both suppress and promote breast 
cancer progression [23] in breast cancer displayed a mutation frequency 
of 0.4% in Whites and 6.8 % in Asians (adjusted p = 0.01). Among the 
63 significant genes, 61 were associated with breast cancer, while the 
remaining two were identified in kidney renal clear cell carcinoma. The 
prominence of breast cancer findings can be attributed to the increased 
statistical power derived from a larger sample size. A closer examination 
of the data revealed 58 gene-cancer instances where Whites show no 
mutation, and yet the minorities have a variant frequency > 5 % (Fig. 1). 

3.2. Racial difference in mutational signature level 

A mutational signature is the footprint of the carcinogenesis process. 
Deconvolving the mutation catalogs of TCGA patients against the 49 
reference mutational signatures, we rendered a landscape of mutational 
signature intensities in around 10,000 cancer patients (Fig. 2A, Sup-
plementary Table S2). Linear regression of mutational signature level on 
race identified 11 significant racial disparities with respect to separate 
mutational signatures, concerning diverse cancer types (Fig. 2B). Seven 
of the 11 results were with elevated mutational signatures in minority 
compared to Whites. The most significant result was observed for 
esophageal carcinoma (ESCA), where Asian patients have a significantly 
higher level of SBS16 compared to White patients (adjusted p = 8.73 ×

10− 19). The other racially disparate mutational signatures with a higher 
level in minorities include SBS17a, SBS24, SBS34, SBS16, SBS17a, and 
SBS34, most of which are of unknown etiology. SBS24 is a signature that 
signifies the exposure of aflatoxin, a well-known carcinogen for liver 
cancer. In our analysis, Asian liver cancer patients were found to receive 
higher contribution from SBS24 than Whites (adjusted p = 0.002), likely 
indicating a higher exposure to aflatoxin for Asian patients than Whites. 

We also conducted logistic regression to detect whether a mutational 
signature is more represented in one race. The tests identified four sig-
nificant associations between race and mutational signatures. In 
esophageal carcinoma, mutational signature SBS16 with unknown eti-
ology is identified in 93.5 % of Asians compared to 41.2 % of Whites 
(adjusted p = 9.85 × 10− 5). For the same mutational signature in head 

and neck squamous cell carcinoma, Blacks (78.7 %) have more presence 
than Whites (50.0 %) (adjusted p = 0.016); also in liver hepatocellular 
carcinoma, Asians (66.2 %) are significantly more than Whites (53.3 %) 
(adjusted p = 0.018). More interestingly, mutational signature SBS24, 
the signature of aflatoxin, a known carcinogen for liver cancer, is found 
in more Asians (82.8 %) than Whites (72.2 %) (adjusted p = 0.018). 

Furthermore, logistic regressions were also conducted for a cancer 
type between distinct registry hospitals. This hospital-centered analysis 
revealed seven geospatial disparities for esophageal carcinoma, where 
signatures SBS7b, SBS16, and SBS17b were found to be significantly 
different between distinct hospitals (Table 2). To visually display the 
most drastic geospatial mutational signature difference in esophageal 
carcinoma patients, we plot the mutational signature proportion and 
race composition for esophageal carcinoma patients of three registry 
hospitals on a U.S. map: MD Anderson Cancer Center, ILSBio, and the 
University of Michigan (Fig. 2B). Signature SBS16 was observed in 
94.74% of the subjects visiting ILSBio but was in only 29.17 % of the 
subjects visiting the University of Michigan. Such differences are pri-
marily explained by disparate racial compositions of distinct medical 
facilities. Nearly 100 % of esophageal carcinoma patients of University 
of Michigan are White patients, while 100 % of ILSBio patients are from 
Asians. 

3.3. Impacts of environmental pollutants on cancer survival and 
mutational signature level 

In our investigation, we employed a multi-variate Cox survival 
model to scrutinize the prognostic implications of individual pollutants 
on patients’ disease-specific survival. The analysis yielded 770 signifi-
cant survival outcomes (Supplementary Table S3), with an enormously 
prevalent trend (96 %) indicating that a lower pollution level is asso-
ciated with a more favorable prognosis. This observation underscores 
the robustness of our data, as it is less susceptible to statistical noise. Six 
noteworthy findings were selected for further analysis, including barium 
compounds in low-grade glioma, dimethylcarbamyl chloride, and 
hydrogen fluoride in colon adenocarcinoma, carbonyl sulfide and 
chlorimuron ethyl in liver hepatocellular carcinoma, and arsenic in skin 
cutaneous melanoma. Kaplan-Meier curves were constructed for these 
pollutants, as illustrated in Fig. 3, A-F. Many of the identified pollutants 
with significant prognostic impact are recognized carcinogens. For 
instance, arsenic, a heavy metal often present in contaminated water 
and food sources, has been established to elevate cancer risk, particu-
larly in the context of skin cancer [24]. The observed significance of our 
results suggests that these pollutants may have influenced prognosis 
during treatment, or tumors developed under the influence of these 
pollutants may exhibit a more aggressive nature. 

Next, we examined whether there are any associations between 
environmental pollutants and mutational signatures after adjusting for 
racial differences. Using stringent statistical criteria (details in Methods, 
Eqs. 1–4), our analysis identified 60 significant associations (adjusted 

Fig. 1. Heatmap shows variant frequencies of 58 genes that had at least 5% variant frequencies for a cancer type in a minority ratial group. These genes had zero 
variant frequency in Whites. 
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p < 0.01), all of which occurred in association with stomach adeno-
carcinoma and SBS19 (Supplementary Table S4). All of the 60 signifi-
cant associations affirm the direction that increased pollutant correlates 
with an increased level of a mutational signature. We selected six 

pollutants and plotted their association with mutational signature levels 
in barplots (Fig. 3, G-L). These results suggest environmental pollution 
with many known carcinogens may positively affect the tumorigenesis 
process. SBS19 has previously been associated with cobalt [25]. In our 

Fig. 2. Analysis results of mutational signatures and race. A. Overall mutational signatures of all patients. B. The four significant results where significant racial 
disparities were observed based on linear regression. Asians are denoted in green, Africans in red, and Whites (baseline) in blue. C. Esophageal carcinoma 
geographical etiology disparity among three cancer care units is entangled with racial disparity in esophageal carcinoma patients. Mutational signature compositions 
are displayed as pie charts, race compositions are displayed as donut charts. 
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analysis, cobalt was statistically significant for several cancer and 
signature types, but did not meet our stringent threshold. 

3.4. Mutational Signature level in relation to oncogenic virus 

Infection with oncogenic viruses causes cancers. Cancer patients 
susceptible to an oncogenic virus may exhibit different mutational 
patterns than patients who are not infected. Of the 33 cancer types 
covered in TCGA, cervical squamous cell carcinoma and Head and Neck 
Squamous Cell Carcinoma are known to be influenced by Human 
Papillomavirus Virus (HPV), while liver hepatocellular carcinoma is 
known to be impacted by Hepatitis B or C Viruses (HBV or HCV). 

We first examined the association between HPV status and muta-
tional signature in CESC and HNSC. There is no significant difference in 
terms of HPV status among races: for HNSC cancer, 20 % of White pa-
tients, 10 % of Asian patients, and 11% of Black patients are HPV pos-
itive; for CESC, 95 % of White patients, 95 % of Asian patients, and 93 % 
of Black patients are HPV positive. From the CESC dataset and the HNSC 
cancer datasets, respectively, we identified 17 and 3 mutational signa-
tures significantly associated with HPV status (Table 3). Interestingly, of 
the 20 total significant associations, 18 are negatively associated with 
HPV status, meaning HPV positive subjects have lower levels of certain 
mutational signature. The two positive associations involve SBS2 (AID/ 
APOBEC family of cytidine deaminases) and SBS10b (polymerase 
epsilon exonuclease domain variants) in HNSC. These results suggest 
that HPV virus may induce cancer, but not directly through promoting 
excessive variants. 

HBV and HCV are liver-specific viruses [26]. Using linear regression 
adjusted for race, we examined the association between mutational 
signatures and the infection status of HBV or HCV. The analysis found 
one significant result for SBS24: the signature of aflatoxin, with positive 
HCV correlating to a higher level of SBS24 (adjusted p = 0.0003). As in 
the cases of CESC and HNSC, the virus positive rates are not substantially 
different among races (HBV: Whites = 60 %, Blacks = 82 %, Asians = 63 
%; HCV: Whites = 31 %, Blacks = 31 %, Asians = 25 %). 

Since the aflatoxin signature SBS24 is related to a known liver cancer 
carcinogen, we performed additional in-depth analyses of SBS24 
(Fig. 4A). The results show that Asian liver cancer patients have higher 
SBS24 levels than White patients (p < 0.001). Stratifying the race 
groups by virus infection status, Asian liver patients still show elevated 
SBS24 levels than Whites: Asian patients with HBV or HCV infection 
have higher SBS24 levels than White patients with the same infections 
(HBV p = 0.008, HCV p = 0.035), and Asian patients without hepatitis 
infection have higher SBS24 levels than White patients without hepatitis 
infection (p = 0.024). Comparing the SBS24 level between virus infec-
tion statuses, Asians and Whites show disparate phenomena: Asian pa-
tients with hepatitis infection (HBV or HCV) have higher SBS24 levels 
than Asian patients without hepatitis infection (p = 0.028), whereas no 
significant differences were observed between different hepatitis groups 
of White patients. These results suggest that virus-infected Asian liver 
cancer patients are more susceptible to aflatoxin exposure than vius- 

infected White patients. For Asian liver cancer patients, HBV or HCV 
infections exacerbate the aflatoxin mutational signature. 

Furthermore, survival analysis was performed by incorporating 
hepatitis infection status and SBS24 in liver hepatocellular carcinoma, 
examining their interaction (Fig. 4B). HBV, HCV, and SBS24 exhibit 
associations with survival outcomes. Notably, infection with either HBV 
(p = 0.031) or HCV (p < 0.001) is correlated with a deteriorated prog-
nosis, while lower SBS24 levels (p < 0.005) are associated with 
improved survival. However, the interaction term does not demonstrate 
a significant association with survival. 

4. Discussion 

Despite the longstanding efforts put to improve care for minority 
cancer patients, the evidence of cancer racial disparities is still strong. 
Instead of using traditional disparity measurements such as incidence 
rate and mortality, here we conducted a cancer desparity study linking 
environmental pollution to mutational signatures, intermediate surro-
gate phenotypes with traceable etiological mechanisms. Looking at 
mutational signatures is like looking at the history of tumorigenesis. 
Combining mutational signature data with environmental pollution 
data, we provide powerful evidence that pollutants can affect patients’ 
overall mutational signature and prognosis. Through our analyses, we 
show that racial disparity has profound cascading effects. The disparate 
average socioeconomic statuses of different races often have a strong 
influence on the living conditions and locations, which subsumes the 
disparate types and degrees of pollutants inherent in the environments 
exposed to human subjects. First and foremost, we show that there are 
strong racial disparities in the variant frequencies of key oncogenes such 
as TP53. The variant frequency differences of these genes naturally 
translated into dispate mutational signature levels among different 
races, and indeed, we reported a plothera of Racial disparties in muta-
tional signature levels regarding a multitude of cancer types. In partic-
ular, we pinpointed that the geospatial difference in SBS7b, SBS16, and 
SBS17b levels in esophageal carcinoma is overwhelmingly attributed to 
the drastically different racial composition of the patients visiting the 
different medical facilities. 

The mutational signature SBS16, repeatedly appeared in our signif-
icant results. Currently (October 2023), the etiology is listed as unknown 
on the COSMIC website. However, SBS16 was previously associated 
with alcohol consumption in esophageal squamous cell carcinoma [27]. 
In our results, SBS16 was observed more in Asian than White for liver 
hepatocellular carcinoma and esophageal carcinoma. This is inconsis-
tent with the previous report [27] that SBS16 is observed less in Asians. 
Also, a study has shown that alcohol consumption is least prevalent 
among Asian americans (38.0 %) compared to Whites (58.9 %) [28]. 
This suggests that SBS16 may represent multiple etiologies. 

Performing cancer analyses at the mutational signature level enabled 
us to elucidate the disparate contribution of certain etiological factors to 
tumorigenesis in different races. For example, liver cancer has displayed 
an unambiguous racial difference, showing higher morbidity and 

Table 2 
Significant results from logistic regressions that capture the difference of mutational signature between contributing hospitals for esophageal carcinoma patients.  

Signature Hospital1 Hospital2 Sample Size, Location 1 Sample Size, Location 2 Freq, Location 1a Freq, Location 2b Adjusted pc 

SBS16 ILSBio University of Michigan  38  48  94.74 %  29.17 % 1.04E-06 
SBS17b ILSBio University of Michigan  38  48  21.05 %  81.25 % 1.26E-05 
SBS17b ILSBio MD Anderson Cancer Center  38  13  21.05 %  92.31 % 2.41E-03 
SBS17b University of Michigan Henry Ford Hospital  48  19  81.25 %  26.32 % 4.88E-03 
SBS16 ILSBio MD Anderson Cancer Center  38  13  94.74 %  46.15 % 2.25E-02 
SBS17b Henry Ford Hospital MD Anderson Cancer Center  19  13  26.32 %  92.31 % 3.96E-02 
SBS7b ILSBio University of Michigan  38  48  44.74 %  81.25 % 3.96E-02  

a Frequency (shortened as Freq) of mutational signature in hospital 1. 
b Frequency of mutational signature in hospital 2. Frequencies are calculated as the number of subjects who have a nonzero mutational signature value divided by 

the total number of subjects. 
c Adjusted p from logistic regression, adjusted with the Benjamini-Hochberg procedure. 
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shorter survival in Asians than in Whites [29]. On the other hand, an 
array of risk factors have been associated with liver cancer, including 
virus infection of HBV and HCV, excessive alcohol intake, aflatoxin 
ingestion, and obesity. With the traditional approach that does not 
dissect the causes of liver cancer, no progress has been made to 

differentiate the etiology factors underlying ethnically different cancer 
patients. In our study, by quantifying the intensity of individual muta-
tional signatures and modeling the intensity with race, we revealed that 
there is a racial difference in liver cancer in relation to aflatoxin. Afla-
toxin is a carcinogen that commonly contaminates fermented foods and 

Fig. 3. Example pollutant analysis results. A. Six example survival plots that showing the increased pollution level is associated with poor prognosis. B. Six example 
bar plots that showing the increased pollution is associated with increased mutational signature level. 
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condiments, especially in hot and damp climates. Asians are more 
vulnerable to aflatoxin because fermented foods are more favorable 
among Asian [30]. 

Moreover, many developing countries in Asia are undergoing expe-
rience tropical climates, fostering the cultivation of crops that are 
particularly vulnerable to the proliferation of aflatoxins [31]. Chronic 
HBV infection and exposure to dietary aflatoxin play crucial roles in the 
multifaceted development of hepatocellular carcinogenesis, potentially 
acting synergistically. This synergy is manifested through the generation 
of DNA and protein adducts, accompanied by lipid peroxidation. 
Notably, individuals with hepatocellular carcinoma and HBV infection 
frequently demonstrate a prominent GC → TA transversion mutation at 
the third position of codon 249 in the p53 gene. Additionally, the HBx 
protein of HBV elicits diverse effects, including the promotion of cell 
cycle progression, augmentation of telomerase reverse transcriptase 
expression, deactivation of negative growth regulators, and suppression 
of the expression of p53 and other antiapoptotic tumor suppressor genes, 
along with factors associated with cellular senescence [32]. 

These disparate environmental exposure factors may account for the 
higher aflatoxin contribution to Asian liver cancer patients than White 
patients. Our analysis result of the higher susceptibility of aflatoxin in 
Asians can inspire race-specific preventative and intervention guidance. 
Beyond the elaborated liver cancer example, our analyses revealed a 
panel of elevated mutational signatures in minorities compared with the 
Whites. These pan-cancer analysis results can help combat cancer 
disparity in racial populations of diverse environmental exposure 
backgrounds. 

Our study encountered two limitations. Firstly, the approximation of 
patient location based on the contributing hospital’s location may 

Table 3 
Mutational signatures that are significantly associated with HPV status in head 
and neck cancer and cervical cancer.  

Signature Cancer Betaa StdErra Adjusted pa 

SBS2 HNSC  14.41  4.07 2.17E-02 
SBS16 HNSC  -2.57  0.77 2.21E-02 
SBS10b HNSC  4.08  1.40 3.74E-02 
SBS12 HNSC  -0.99  0.32 3.74E-02 
SBS24 HNSC  -4.36  1.49 3.74E-02 
SBS17a HNSC  -0.74  0.26 4.08E-02 
SBS10a CESC  -97.94  16.94 5.39E-07 
SBS3 CESC  -9.22  1.57 5.39E-07 
SBS1 CESC  -213.97  39.90 1.82E-06 
SBS10b CESC  -162.19  29.88 1.82E-06 
SBS17b CESC  -10.86  2.03 1.82E-06 
SBS21 CESC  -55.57  10.84 4.79E-06 
SBS15 CESC  -433.08  90.35 1.95E-05 
SBS26 CESC  -48.56  10.61 4.48E-05 
SBS6 CESC  -260.99  58.42 6.45E-05 
SBS14 CESC  -93.50  21.34 8.41E-05 
SBS28 CESC  -42.16  10.22 2.04E-04 
SBS33 CESC  -19.69  4.75 2.04E-04 
SBS7b CESC  -92.74  22.63 2.10E-04 
SBS37 CESC  -13.61  3.34 2.14E-04 
SBS44 CESC  -0.52  0.14 6.72E-04 
SBS8 CESC  -3.41  1.02 2.83E-03 
SBS12 CESC  -0.94  0.37 3.20E-02 

bStardard error from linear regression. 
cBenjamini-Hochberg-adjusted p from linear regression. 

a Estimate/effect size from linear regression. 

Fig. 4. A. Bar plots showing the results of SBS24 difference between Asian and White in liver hepatocellular carcinoma, grouping by different hepatitis infection 
status. B. Kaplan-Meier curve shows HBV infection is associated with worse survival. C. Kaplan-Meier curve shows HCV infection is associated with worse survival. D. 
Kaplan-Meier curve shows increased SBS24 level is associated with worse survival. 
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introduce inaccuracies, particularly for hospitals of national renown 
that attract patients from across regions. However, for the majority of 
patients, this approximation is deemed sufficiently accurate, and any 
associated noise is unlikely to impact statistical outcomes given a sub-
stantial sample size. Additionally, the environmental exposure data 
collected spanned from 2007 to 2017, preceding the initiation of the 
TCGA consortium around 2010. Most patients were recruited during the 
early stages of the consortium or prior to its inception. While it would be 
ideal to measure environmental exposures years before cancer devel-
opment for optimal representation of mutational signature impact, the 
average exposure levels from 2007–2017 still effectively characterize 
the overall exposure during the preceding decade. To mitigate these 
limitations, rigorous statistical procedures were employed. Notably, our 
results exhibit remarkable consistency and alignment with conventional 
expectations. Specifically, 100% of significant outcomes indicate a 
negative association between pollutant levels and prognosis, and 96% 
demonstrate a positive correlation between pollutant levels and muta-
tional signature levels. The evident coherence in our results attests to 
their reliability, particularly in the absence of undue noise within the 
datasets. 

In addition to the results related to mutational signatures, our ana-
lyses also revealed several interesting findings. For large consortiums, 
data tracking is of critical importance. Most large consortiums lack 
detailed information, such as patients’ residential locations, which 
forced us to interpolate the approximate location. Our analysis shows 
that race is strongly associated with contributing hospitals. For example, 
a hospital’s contributing samples are of one single race. Such informa-
tion is often neglected in pan-cancer analyses. Moreover, given the effort 
to represent minorities in consortium studies, some specific groups are 
still severely underrepresented. For example, Native Americans are 
virtually nonexistent in the TCGA or any other large consortiums. His-
panics are also very poorly represented in some of the TCGA’s cancer 
types. This calls for more inclusive studies so the genomic characteristics 
of these underrepresented minorities can be closely examined to 
pinpoint the source of the disparity, thus allowing the implementation of 
more effective preventive measures. 

5. Conclusion 

There are four important findings from our study: 1) racial cancer 
difference can be observed at the mutational signature level; 2) muta-
tional signatures are exacerbated by pollution exposure; 3) pollution 
exposures negatively affect patient survival; 4) Asian liver cancer pa-
tients were exposed to higher level of aflatoxin than Whites, and hepa-
titis infections are usually associated with a higher level of aflatoxin 
signatures. Our study is unique because it combines data from two 
governmental agencies and illustrates cancer racial disparity in the 
context of mutational signatures. Such a difference is just one of the 
many outcomes of the deep-rooted racial disparity problem in the U.S. 
Eradicating cancer racial disparities requires sustained efforts from 
government, and private organizations, as well as in-depth research that 
can shed light on racial genetics and genomics. 
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