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Abstract 

Abiraterone acetate (AA) has been proven effective for metastatic castration-resistant prostate cancer (mCRPC), and it has been 

proposed that adaptive AA may reduce toxicity and prolong time to progression, when compared to continuous AA. We developed 

a simple quantitative model of prostate-specific antigen (PSA) dynamics to evaluate prostate cancer (PCa) stem cell enrichment as a 
plausible driver of AA treatment resistance. The model incorporated PCa stem cells, non-stem PCa cells and PSA dynamics during 
adaptive therapy. A leave-one-out analysis was used to calibrate and validate the model against longitudinal PSA data from 16 mCRPC 

patients receiving adaptive AA in a pilot clinical study. Early PSA treatment response dynamics were used to predict patient response 
to subsequent treatment. We extended the model to incorporate metastatic burden and also investigated the survival benefit of adding 
concurrent chemotherapy for patients predicted to become resistant. Model simulations demonstrated PCa stem cell self-renewal as a 
plausible driver of resistance to adaptive therapy. Evolutionary dynamics from individual treatment cycles combined with metastatic 
burden measurements predicted patient response with 81% accuracy (specificity = 92%, sensitivity = 50%). In those patients predicted 

to progress, simulations of the addition of concurrent chemotherapy suggest a benefit between 1% and 11% reduction in probability 
of progression when compared to adaptive AA alone. This study developed the first mCRPC patient-specific mathematical model 
to use early PSA treatment response dynamics to predict subsequent responses to adaptive AA, demonstrating the putative value of 
integrating mathematical modeling into clinical decision making. 
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Prostate cancer (PCa) is the most prevalent cancer in men in the
S. About 1 in 9 American men will be diagnosed with PCa in his

ifetime ( > 248,000 estimated in 2021) and 1 in 41 will die from it.
onsequently, PCa remains the second leading cause of death in American
en [2] . Following surgery or radiation treatment, androgen deprivation

herapy (ADT) has been the mainstay treatment for hormone sensitive
Ca for over 70 years [3] . ADT suppresses the production of testicular
ndrogen, which both the normal and cancerous prostate cells depend
n for survival and proliferation [4] . Despite new strategies in “precision
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Fig. 1. Treatment times for patients included in the study . Sixteen patients were included in the model analysis. Gray and white denote when treatment was 
on and off, respectively. Red triangles and black x’s denote when patient developed PSA and radiographic progression, respectively. (Color version of figure is 
available online) 
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medicine” in which the specific therapy is guided by molecular biomarkers
for individual patients, treatment protocols are typically based on the
conventional strategy of “maximum tolerated dose until progression”. This
often results in the competitive release of the resistant phenotype, leading to
early treatment progression [5] . In an effort to delay progression, intermittent
ADT has been shown to be a promising alternative that reduces toxicity and
delays progression [6-8] . Despite this advance, patients inevitably develop
castration-resistant prostate cancer, which often progresses to metastatic
castration-resistant prostate cancer (mCRPC). 

Second-line hormone therapy with abiraterone acetate (AA), which
inhibits the production of androgens from other cells by blocking the protein
CYP17 9 , has been shown to prolong overall survival when compared to
prednisone or placebo [9-13] . In the COU-AA-302 trial evaluating AA with
prednisone versus prednisone alone in mCRPC, AA was shown to improve
median overall survival (35.3 with AA vs. 30.1 month without) and more than
double median radiographic progression-free survival (16.5 vs. 8.2 months).
While radiographic progression-free survival (rPFS) and overall survival (OS)
were the primary endpoints, the study also evaluated prostate-specific antigen
(PSA) progression. The PSA response rate (PSA decline ≥ 50%) to AA
was 68%, compared to just 29% in the prednisone alone group, with a
median time to PSA progression of 11.1 months versus 5.6 months with
prednisone alone [13] . It has been proposed that adaptively administering AA
in mCRPC, allowing for treatment holidays when a patient has sufficiently
responded, may be able to increase overall response and delay progression [5] .
However, maximizing the benefit of adaptive therapy requires understanding
the dominant drivers of resistance, predicting individual patient responses,
and identifying when and how to modulate treatment to maximize response
time. 

Many mathematical models have been developed to simulate the various
biological mechanisms of clinical PCa treatment resistance [ 5 , 14-19 ]. These
studies have contributed significantly to our understanding of how the
different mechanisms that may lead to resistance could be exploited for
adaptive therapies, but most mathematical models have yet to be rigorously
calibrated and validated with patient-specific disease dynamics, and to
be evaluated for predictive power [20] . For predictive certainty, model
complexity and uncertainty must be kept proportional to the available data.
PSA has been used as a marker of PCa development and progression for
many years, despite concerns regarding overdiagnosis and overtreatment. We
have previously demonstrated how PSA dynamics, rather than measurements
taken at single timepoints, can be used to predict individual patient responses
to intermittent hormone therapy in castration-naïve PCa [1] . In more
dvanced PCa, such as in the case of mCRPC, alternative biomarkers such as
ell-free DNA and circulating tumor DNA, have been shown to be correlated 
ith PSA response rates [21-24] . However, very few studies routinely collect 

uch data, when compared to PSA. Here, we sought to investigate if PSA
ynamics could be used to predict response to adaptive AA in mCRPC. 

We extended our relatively simple model of PCa stem cell dynamics with 
reviously demonstrated predictive power [1] . We calibrated and validated 
he model against longitudinal PSA data from 16 mCRPC patients receiving 
daptive AA in a proof-of-principle prospective pilot trial (NCT02415621). 
e then used early treatment dynamics to predict how individual patient 

espond to subsequent treatment cycles. We further investigated how 

o integrate individual metastatic burden into the predictive modeling 
ramework to increase patient-specific prediction accuracy. We also use the 
odel to simulate the addition of concurrent chemotherapy in those patients 

redicted to progress during the second cycle of treatment. 

aterials and Methods 

atient Data 

Sixteen mCRPC patients received adaptive AA therapy as part of a pilot 
rial at Moffitt Cancer Center [5] . Prior to trial registration, patients received
A plus prednisone as standard of care. Patients who achieved a 50% or
ore decline of their PSA were eligible to enroll in the trial. Each patient’s
SA immediately prior to beginning AA was considered as their baseline. 
reatment with 

AA was paused when PSA fell below 50% of the individual baseline 
SA, and resumed when PSA rose above baseline levels. PSA was monitored 
very 4 to 6 weeks, with restaging bone scan, pelvic and abdominal CT scan
erformed every 12 weeks. Patients remained on the trial until radiographic 
rogression based on PCWG2 criteria [25] . 

We analyzed longitudinal PSA data (collected every 4-6 weeks both whilst 
eceiving AA and during AA holidays) for the patients enrolled in the trial
average number of data points per patient = 24, range = 9 – 41) to evaluate
arly PSA response dynamics as predictive biomarker of PSA progression. 
SA progression is defined as PSA increasing ≥ 25% and at least 2 ng/ mL
bove the nadir, confirmed by a second value 3 or more weeks later. Eight
f the 16 patients developed PSA progression within the first four cycles 
f treatment, and eight patients were still responding after four cycles (one 
atient developed resistance after 9 cycles of treatment) ( Fig. 1 ). 
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Fig. 2. Cycle by cycle parameter changes . (A) Parameter distributions of p s for Cycles 1 through 4. (B) Cumulative probability distribution of relative changes 
in p s from Cycle 1 to Cycle 2. (C) α vs. p s fit (black curve) and 95% confidence interval (gray) for ( α, p s ) pairs (black dots) for Cycle 2. 
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Mathematical Model 

The mathematical model simulates the dynamics of prostate cancer stem-
like cells (PCaSCs) ( S), non-stem differentiated cells ( D), and PSA ( P ).
PCaSCs divide at rate λ ( da y −1 ) to produce either a PCaSC and non-
stem PCa cell with probability 1 − p s (asymmetric division) or two PCaSCs
with probability p s (symmetric division), with negative feedback from the
differentiated cells. Non-stem PCa cells die at rate α ( da y −1 ) in response
to treatment, which is modulated by the parameter T x = 1 and T x = 0 ,
denoting when treatment is on and off, respectively. PSA is produced by the
non-stem PCa cells at rate ρ ( μg/L da y −1 ) and decays at rate ϕ ( da y −1 ) . The
mathematical equations describing these interactions are given by 

dS 
dt 

= 

(
S 

S + D 

)
p s λS, 

dD 

dt 
= 

(
1 − S 

S + D 

p s 
)

λS − αT x D, 

dP 

dt 
= ρD − ϕP. (1)

Model calibration and validation 

Previous analysis has shown that the rate at which uninhibited PCaSCs
divide can be approximated as once a day, i.e., λ = ln (2) [26] . Sensitivity
and correlation analysis showed that ρ and ϕ could be uniform among all
patients and p s and α be patient-specific without significantly changing the
model results [1] . We deployed a Type 1b bootstrap internal validation leave-
one-out analysis [27] to determine the uniform values for ρ and ϕ, while
allowing p s and α to be patient-specific. That is, for patient j, we used nested
optimization to find the uniform values for ρ j and ϕ j and the patient-specific
values for p s and α for all patients n , with n � = j, in the training set, over
each patient’s treatment course. We then validated the model using ρ j and
ϕ j to determine the patient-specific p s and α for patient j. This process was
repeated for all N = 16 patients. 

Treatment response prediction 

For patient j, ρ j and ϕ j were used to fit the model to each cycle
individually for all patients in the training set. That is, finding the optimal
value for p s and α while allowing ρ j and ϕ j to remain fixed for each individual
cycle ( Fig. 2 A ). Given p s and α for cycle i for patient j, we used the relative
changes in p s for all patients in our training set to generate the cumulative
probability distribution of relative changes in p s from cycle i to cycle i + 1
( Fig. 2 B ). We sampled from this distribution to determine 100 values of p s 
for cycle i + 1 . As p s and α are exponentially related [1] , we sampled from
the 95% confidence interval around the exponential curve relating p s and α
( Fig. 2 C ) to find 100 values for αi+1 . We used these values to simulate the
distribution of patient j’s responses in cycle i + 1 . 
Each model simulation was determined to predict response or resistance
ased on the PSA progression criteria defined in the trial. That is, if PSA
ncreased more than 25% and at least 2 ng/ mL above the nadir during
reatment, then the simulation was classified as resistant. Of the 100 response
imulations, we quantified the number of resistant simulations to derive a
robability of resistance, Pr (�) . If Pr (�) was greater than a given threshold,
i , obtained from the training set for each predicted treatment cycle i,
hen the prediction was considered resistant. Otherwise, it was classified as
esponsive. For each leave-one-out patient, an optimal cutoff value k i for 
ycle iwas determined to be the threshold that maximized the accuracy within
he training set. Model predictions correctly classifying clinically observed 
esponders as responders ( Pr (�) < κi ) were denoted true negative, while
orrectly classified clinically resistors ( Pr (�) > κi ) were denoted as true
ositive. 

tatistical analysis 

The two-sample t-test was used to calculate the statistical significance of
he difference between parameter distributions. 

esults 

odel accurately describes clinical data 

The model is able to simulate longitudinal PSA data from mCRPC
atients ( Fig. 3 A-B ). In line with previous results of intermittent ADT [1] ,
he model fits to the data demonstrate that continuous responders have a
lowly increasing PCaSC population ( Fig. 3 A ), while patients who progress
ave a rapidly increasing PCaSC population ( Fig. 3 B ). This shows that
rostate cancer stem cell enrichment is a plausible driver of resistance to AA
herapy. A comparison of the stem cell self-renewal rate p s between responsive
nd resistant patients showed that resistant patients tend to have a larger p s 
alue, though not significant in this small cohort ( Fig. 3 C ). No difference in
he uniform values for ρ and ϕ for each leave-one-out analysis were found
 Fig. 3 D ). 

arly treatment dynamics can predict subsequent response 

Model predictions are classified as true positive, true negative, false
ositive and false negative in comparison to the clinical outcomes ( Fig. 4 A ).
odel predictions for a continuous responder and a patient who progressed

n the third cycle are shown in Fig. 4 B-C . The model was fit over the
rst treatment cycle using the ρ and ϕ values obtained from the training
et. Using the relative change in p s from cycle i to cycle i + 1 as well as
he exponential relationship between p s and α, we obtained 100 parameter
airs of ( p s i+1 , αi+1 ) that were used to forecast the patient’s response in the
ubsequent cycle. The model accurately predicted that Patient 1011 would
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Fig. 3. Leave-one-out analysis results . Model fits to PSA data and corresponding stem cell dynamics for a (A) continuous responder and (B) a patient who 
developed resistance in his third cycle of treatment. Parameter distributions for (C) patient-specific parameters p s and α and (D) uniform model parameters 
ϕ and ρ determined via leave-one-out analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m
p
n

 

w
t
l
P  

l

s  

d
a  

w
w
s
n
O
(

C

h
3  
continue to respond in both the second and third cycles ( Fig. 4 B ). Patient
1014 progressed in his third cycle of treatment. Though Pr (�) = 0 . 49 in
cycle 2, this is below the threshold κ2 and consequently the model correctly
predicts that this patient will continue to respond. In cycle 3, Pr (�) = 0 . 70
which is larger than κ3 . This is a correct prediction as Patient 1014 develops
resistance in cycle 3. Overall, the model is able to correctly predict patient
response with 78% accuracy (specificity = 92%, sensitivity = 38%). 

Incorporating metastatic burden 

Despite treatment, several patients continued to develop metastases
during the trial. Though rising PSA has been shown to be correlated with
metastatic burden, it is not predictive of the development of new metastatic
growths [28] . We sought to investigate whether correlating metastatic growth
with the stem cell self-renewal rate, p s , would improve the prediction accuracy
of our model. That is, developing new metastatic growths during a cycle
of treatment is likely the consequence of a larger number of anatomically
distributed PCaSCs, whose dynamics are primarily driven by the self-renewal
rate p s . Thus, we propose a novel way to correlate new metastatic growths
with p s . 

As previously described, ( p s i+1 , αi+1 ) pairs for cycle i + 1 were obtained
by uniformly sampling from the cumulative probability distribution of
relative changes in p s from cycle i to i + 1 . Fig. 5 A shows that in general,
the relative change ranged between -75% and 150%, with about 30% of
the patients experiencing larger relative changes in p s . To incorporate the
etastatic burden, we used a skewed sampling to sample from the cumulative 
robability distribution, with the degree of the skew dependent on the 
umber of new metastatic growths. This resulted in larger relative increases in 

p s for patients with larger metastatic burden . As shown in Fig. 3 C , patients
ith larger p s developed resistance to adaptive AA faster in comparison to 

hose with smaller p s values. Consequently, the skewed sampling results in a 
arger fraction of simulations that predict resistance, thereby increasing the 
r (�) . It should be noted that this also resulted in κi changing in response to

arger Pr (�) for particular patients within the training cohort. 
A comparison between the model predictions using a uniform and skewed 

ampling for an individual patient are shown in Fig. 5 B . Patient 1010
eveloped a new metastatic growth during his first cycle of treatment. With 
 uniform sampling, the model predicted that the Pr (�) = 0 . 47 . As this
as below the threshold κ2 , the model incorrectly predicted that this patient 
ould continue to respond in the second cycle (false negative). Using a 

kewed sampling, the Pr (�) increased to 0.53, which was larger than the 
ew threshold κ2 resulting in a correct resistant prediction (true positive). 
verall, incorporating each patient’s metastatic increased the accuracy to 81% 

specificity = 92%, sensitivity = 50%). 

oncurrent chemotherapy can improve time to progression 

Concurrently administering the chemotherapeutic docetaxel with ADT 

as shown benefit in metastatic hormone-naïve prostate cancer patients [29- 
1] . In particular, the STAMPEDE trial conducted in 2016 showed a 10
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Fig. 4. Model prediction results . (A) Prediction classifier table. Model predictions for (B) Patient 1011 who was a continuous responder and (C) Patient 1014 
who progressed in the third cycle. The model correctly predicted that Patient 1011 would continue to respond in both the second and third cycles and that 
Patient 1014 would continue to respond in the second cycle and develop resistance in the third cycle. Prediction classifications are determined using cycle- and 
patient-specific κ values. If the P( �) > κ , then the patient is predicted to develop resistance. Model predictions were compared to actual data to determine 
accuracy. 
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month increase in overall survival in high-risk, locally advanced PCa patients
receiving ADT with docetaxel compared to ADT alone [31] . Cabazitaxel
is a second-line chemotherapeutic that has shown survival benefit after
progression on docetaxel and is often given as standard of care after AA [32] .
As previous studies have shown that chemotherapy provides more benefit
when administered earlier in the disease course, we sought to investigate the
effect of administering concurrent chemotherapy prior to progression on AA
alone. 

Unlike AA, chemotherapy can induce cell death in both PCaSCs and
non-stem cells [33] . As such, we extended our model to include death terms
( δS , δD ) on both cell populations in response to chemotherapy ( T xD = 1 ).
That is, 

dS 
dt 

= 

(
S 

S + D 

)
p s λS − δS T xD S, 

dD 

dt 
= 

(
1 − S 

S + D 

p s 
)

λS − αT x D − δD T xD D, 

dP 

dt 
= ρD − ϕP. (2)

Due to the patients included in our study being chemotherapy-naïve,
we did not have clinical data to calibrate the model to obtain values for
δS and δD 

. Consequently, the values for these parameters were derived
from literature, where it is said that approximately three times more non-
stem cells die in response to chemotherapy than PCaSCs [33] . We chose
S = 0 . 0027 ( da y −1 ) and δD 

= 0 . 008 ( da y −1 ) such that model simulations
ould show a decline in each population when chemotherapy was given. 

For the patients predicted to progress during their second cycle of
daptive therapy, we simulated adding up to 10 cycles of concurrent
hemotherapy during cycle two and compared the responses with and
ithout chemotherapy ( Fig. 6 ). While some patients received minimal
enefit (3% decrease in P (�) , Patient 1015) from concurrent therapy, others
eceived as much as an 11% decrease in P (�) with concurrent treatment
Patient 1005). 

iscussion 

In this study, we have analyzed a simple mathematical model of PCaSC
nd PSA dynamics to predict individual mCRPC patient responses to
daptive AA therapy. The model has been calibrated and validated against
linical data from 16 mCRPC patients from a pilot trial. With just two
atient-specific parameters, our results show that the model is able to
ccurately describe individual patient dynamics. Similar to previous analyses 
f PCa stem cell dynamics underlying resistance to intermittent ADT, we
ound that stem cell enrichment is a likely driver of treatment resistance,
espite AA working through an alternative pathway than ADT [9] . As these
atients are advanced metastatic PCa patients, their PSA dynamics are likely
lso driven by multiple factors that the model may not be able to account
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Fig. 5. Model prediction results when considering metastatic burden. (A) Parameter sampling with and without metastases. When a patient’s metastatic burden 
is not considered, a uniform sampling is performed to determine p s value in next cycle. If a patient develops a new metastatic growth, the sampling is skewed 
such that the sampled stem cell self-renewal value is more likely to be larger in the next cycle. (B) Model predictions for Patient 1010 with and without 
incorporating metastatic burden. Patient 1010 developed on new metastatic growth during his first off-treatment cycle. Using PSA dynamics alone, the model 
incorrectly predicts that Patient 1010 will continue to respond. Using a skewed sampling results in a correct prediction that Patient 1010 will progress in cycle 
2. 

Fig. 6. Model simulation comparison between adaptive abiraterone with and without concurrent chemotherapy. (A) Without concurrent chemotherapy, Patient 
1015 is predicted to have a 58% probability of developing resistance in his second cycle of treatment (left). Concurrent chemotherapy (right) provides a 
minimal reduction (3%) in the probability of developing resistance. (B) Patient 1005 has a 79% probability of progressing during cycle 2 without concurrent 
chemotherapy (left). This can be reduced by 11% if chemotherapy is given concurrently during cycle 2 (right). 
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for. Despite that, the model was able to use early treatment evolutionary PSA
dynamics to predict subsequent responses with 78% accuracy. 

Incorporating the metastatic burden improved the overall accuracy to
82%, with a specificity of 92% and a sensitivity of 50%. The lower sensitivity
is due to the few progression events within this data cohort. While patients
respond on average for 3.3 treatment cycles, the majority of progression
events occurred within the second cycle. This limitation made it difficult to
determine the optimal threshold value for cycle predictions where few patients
progressed, resulting in a higher proportion of false negative results. We are
confident that model accuracy, as well as sensitivity and specificity, would
increase with a larger patient cohort. Nevertheless, the patients who were
incorrectly predicted to develop resistance during the second cycle instead
progressed during the third cycle. As such, the model may serve as an early
indicator of treatment resistance for a subset of patients. 

We also investigated the potential benefit of concurrent chemotherapy
with AA prior to progression on AA alone. Model simulations showed
a 3% to 11% decrease in the probability of resistance when compared
to AA alone. While 3% may be dismissed mathematically, it may mean
a difference for individual patients based on their individual risk-benefit
situation; as such the model predicted probabilities may provide invaluable
information for the clinician to discuss with each patient when deciding if,
when and how to adapt treatment. Using the presented model, the oncologist
can discuss different treatment routes with associated risk and likelihood
of success to guide patients decide what is the best course of action for
their individual treatment expectations. As such, we believe that this is an
option that should be considered for patients and warrants critical evaluation
in a prospective clinical trial setting. We do note that the concurrent
chemotherapy simulations used chemotherapy sensitivity parameters ( δS and
δD ) that were not previously calibrated to clinical data. Future studies will
include calibrating the model to clinical data of patients receiving concurrent
chemotherapy to determine the values for these parameters that can be used
in further model simulations. 

As previously mentioned, alternative biomarkers such as ctDNA, cfDNA,
and PCa stem cell antigen (PSCA) and other stem cell markers have been
shown to be correlated with advanced PCa and metastasis [ 21-24 , 34 ].
However, due to the lack of availability of data, we were not able to design our
model based on these dynamics. Collecting and analyzing such biomarkers are
promising future avenues for clinical studies and mathematical modeling. 

Conclusions 

This validation study demonstrates the utility of mathematical modeling
in clinical decision making. Using a simple dynamic model of PCaSC,
non-stem cells, and PSA, we are able to use early treatment dynamics
to predict who may or may not respond to subsequent treatment in
mCRPC. Despite PSA notoriously being considered a poor biomarker for
treatment response, both in early- and advanced-stage prostate cancer, we
showed that our model could use PSA dynamics – rather than absolute
PSA values – to predict response with an 81% accuracy. Our model is
the first of its kind to correlate PSA dynamics with metastatic burden to
understand how an individual patient’s disease is evolving. As this model
predicts PSA, and not radiographic progression, this may provide sufficient
lead-in time for clinicians to intercede with alternative treatment options
prior to radiographic progression, potentially minimizing adverse events
and toxicity and maximizing survival. After prospective validation, such
integrated approach could equip clinicians with an additional decision
support tool to use when deciding how to effectively treat patients. 
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