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A B S T R A C T

Phytoestrogens have an impact on both animals and humans due to use of legumes in animal diets as well as the
increase of vegetarian diets in some human populations. Phytoestrogens thought to have varieties of adverse
effects, among which immune system was involved. The present study aimed to investigate the effect of prenatal
exposure to dietary soy isoflavones on some immunological parameters in male albino rat offspring. The
pregnant rats were divided to three groups (12/group). Control group (free soy isoflavones), low soy isoflavones
group (6.5%) and high soy isoflavones group (26%). The male offspring cell-mediated immune response was
determined using phytohemagglutinin (PHA) injection and the intumesce index which was calculated on
postnatal day 50 (PND 50). At PND 50, blood samples were collected for interleukin 12 (IL-12), interferon γ
(IFN-γ) and tumor necrosis factor α (TNF-α) determination. Spleen, thymus, and PHA injected footpads were
fixed for histopathology. Intumesce index, IL-12, IFN-γ, spleen and thymus relative weights were significantly
(P < 0.05) decreased in offspring born to dams fed low and high dietary soy isoflavones. In contrary, TNF-α was
significantly (P < 0.05) increased in offspring born to dams fed high dietary soy isoflavones. Spleen of rats born
to dams fed high dose of dietary soy isoflavones showed coagulative necrosis in white pulp. In conclusion, male
offspring born to dams fed different levels of soy isoflavones showed marked immunosuppression after PHA
stimulation. This effect was mediated through the reduced IFN-γ that interacts with the IL-12 production
pathway.

1. Introduction

Progressive accumulation of endocrine disruptors in the environ-
ment has deteriorated the ecological balances in natural populations
and affected human health [1]. Although estrogen hormone and es-
trogen like substances can promote both humoral and cell-mediated
immune responses, there are a considerable number of reports that
show the suppressing effect of estrogens on some cell-mediated immune
responses [2,3]. Phytoestrogens are natural polyphenolic non-steroidal
plant compounds with estrogen-like biological activities [4,5] and
structurally are similar to mammalian estrogen 17β-estradiol) E2) [5].
The isoflavones genistein (GEN) and daidzein are among the most
abundant phytoestrogens in human diets [6]. They can be classified as
selective estrogen receptor modulators (SERMs) [7,8], where they have
the ability to trigger estrogenic activity to act as agonist or antagonist
[9,10] depending on the tissue, estrogen receptors (ERs) and

concentration of circulating endogenous estrogens [10]. The interaction
between isoflavones and nuclear estrogen receptors that activates es-
trogen response elements is called genomic signaling pathway [11].
Another more faster and rapid action of isoflavones is mediated through
binding of membrane ERs [12]. Binding membrane ERs promotes a
cascade of intracellular events that comprises activation of G-proteins,
protein kinase, phospholipase, or adenylate cyclase activities [13].
Isoflavones can act as tyrosine kinase inhibitors [14]. Moreover, these
compounds possess antioxidant activity [15] due to its polyphenolic
nature [16]. Isoflavones exert myriad effects on different body systems
and organs. They can affect immune system [2,17], reproductive
system [4,18], nervous system [19], liver [6], bone [20] as well as their
potential antioxidant effect and antidiabetic effect [21].

Interleukin 12 (IL-12) is an important immunoregulatory cytokine
that is produced mainly by antigen-presenting cells. The expression of
IL-12 during infection regulates innate responses and outlines the type
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of the adaptive immune responses to be triggered. IL-12 can provoke
the production of interferon-γ (IFN-γ) and triggers CD4+ T cells to
differentiate into type 1 T helper (Th1) cells [22]. TNF-α has a crucial
role in immune regulation by modulating lymphocyte proliferation and
apoptosis, which is implicated in maintaining immune homeostasis and
self-tolerance [23]. TNF-α activates cell inflammation, proliferation,
survival and cell death depending on autocrine/paracrine signals, and
on the cellular context [24,25].

In toxicity studies, endocrine-mediated effects have been reported in
rat pups of dams treated with GEN during the gestational and/or lac-
tation periods [26–28]. Moreover, most studies have focused on the
effects of estrogenic pesticides and toxic substances on immune func-
tion [29,30]; less attention has been paid to the effects of naturally
occurring phytoestrogens administrated during pregnancy on the im-
mune system of the male’s first generation. Therefore, the aim of this
study was to examine the effects of maternal exposure to soy iso-
flavones on cellular immune response of male offspring through de-
termination of the immune response to intradermal PHA injection, IL-
12, IFN-γ and TNF-α levels and to investigate the histopathological
changes in foot pad, spleen and thymus.

2. Materials and methods

2.1. Rats

Forty five adult (36 females and 9 males), Wister albino rats,
weighing from 180 to 250 g, were housed in a plastic cage (3/cage) at
Laboratory Animal House, Faculty of Veterinary Medicine, Suez Canal
University, Egypt. They were maintained under standard natural day
light with a temperature of 25° C (± 1° C) and allowed to diet and
water ad libitum. The animals were treated according to ethical guide-
lines described by Faculty of Veterinary Medicine, Suez Canal
University, Ismailia, Egypt.

2.2. Monitoring estrous cycle and breeding

The estrous cycle of the rats was checked daily by cytological ex-
amination of vaginal smear to determine the females with regular cy-
cles. Vaginal smears were obtained, processed and evaluated according
to Ebeid et al. [31]. A mature male was presented with three proestrus
females and mating was confirmed by the presence of spermatozoa in
the vaginal smears or the occurrence of vaginal plug and this was
considered the pregnancy Day zero [32].

2.3. Isoflavones analysis and administration

Isoflavones were extracted, detected and quantified from the diet
using high performance liquid chromatography (HPLC) according to
Thiagarajan et al. [33]. Briefly, soy isoflavones were extracted from the
experimental diet by mixing 1 g of diet with 20mL of solution of
0.1 mol/L HCL and 80mL of methanol, and then sonication of mixture
was performed for 20min and left at room temperature for 2 h. Fil-
tration using Whatman filter paper (Clifton, New Jersey) was per-
formed. The obtained filtrate was subjected to centrifugation at
10,000 rpm. The obtained supernatants were quantified for isoflavones
contents. Isoflavones were quantified by comparison with genistein
(Applichem GmbH Co., Germany) and daidzein, (Fullcco Co., Japan)
with HPLC standards.

The female rats at Day zero of pregnancy were allocated to three
groups. The first group (n=12) were fed a control diet (soy isoflavones
free). The second group (n= 12) were fed low dose of soy isoflavones
(6.5%). The third group (n= 12) were fed high dose of soy isoflavones
(26%). All diets were formulated to fulfill all the nutritional require-
ments of pregnant rats [34]. The percentages of soy isoflavones in both
treated groups covered the level of 20–50 g of daily soy as a source of
phytoestrogens that consumed by Asian population [35]. Experimental

diets were offered from Day zero of pregnancy to the Day of birth to the
dams. After parturition, male offspring were selected and were given
control diet up to Day 50 after birth which was defined as post natal day
50 (PND 50).

2.4. Cell mediated immune response in male offspring

Offspring’s cell mediated immune response was carried out by in-
jection of 0.1 mL of 10% PHA (Sigma L 9017, St. Louis, MO, USA) in left
foot pad of each male in all experimental groups at PND 49. The right
foot pad of the same rat was injected with 0.1mL of PBS as a control.
After 24 h (PND 50), thickness of dorso-ventral and lateral aspects of
left footpad at point of injection was measured by using a manual mi-
crometer [36]. The injections and measurements were made by the
same person to reduce the error.

2.5. Determination of intumesce index

The ankle circumference was calculated according to= 2π [sqrt
(a2+ b2/2)], where [a] is the dorso-lateral diameter and [b] is the
dorso ventral diameter [37,38]. This was followed by calculation of
intumesce index [39]. Intumesce Index= (measured ankle size – pri-
mary ankle size)/primary ankle size.

2.6. Determination of serum IL-12, IFN-γ and TNF-α

Blood samples were collected at the end of experimental period
(PND 50). Serum was separated and kept at −20 °C until analysis.
Serum IL-12 was measured using rat IL-12/P70 sandwich ELISA kit
(CUSABIO, China). Serum IFN-γ was measured using rat IFN-γ sand-
wich ELISA kit (R&D systems, China). Serum TNF-α was measured
using rat TNF-α enzyme linked immunosorbent assay sandwich ELISA
kit (IBL Co., Japan) according to manufacturer instructions.

2.7. Spleen and thymus relative weights

At PND 50, male offspring were scarified and the relative weight of
spleen and thymus was calculated in relation to body weight [40,41].

2.8. Histopathology

PHA stimulated foot pads, spleen and thymus of males were fixed in
10% formalin buffer saline. They were gradually dehydrated then em-
bedded in paraffin wax. Several 5-μm sections were cut then stained
with hematoxylin and eosin (H&E) for histopathological examination
[42].

2.9. Statistical analysis

The results were presented as the mean ± standard error of mean
(SEM). Statistically significant differences between groups were calcu-
lated using one way analysis of variance (ANOVA) followed by
Duncan’s post hoc multiple comparison test (SPSS software, version
16.0; SPSS Inc., Chicago, IL, USA). Dose-response to soy supplementa-
tion on the immune parameters was evaluated and soy-supplemented
groups were compared with the control group for linear and quadratic
contrasts using the generalized linear models procedure of SAS 9.3 (SAS
Institute Inc., Cary, North Carolina, USA). The criterion for significance
was set at P < 0.05.

3. Results

3.1. The number of male offspring

The number of male pups/dam was 3.0 ± 0.6 in control group,
while, it was 3.2 ± 0.7 and 2.8 ± 0.4 in dams received low and high
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soy isoflavones diet, respectively.

3.2. Soy isoflavones level in the diet

HPLC analysis for the experimental diet showed that control diet
had zero level of genistein and daidzein, while low soy isoflavones diet
contained 400 μg/g genistein and 195 μg/g daidzein. High soy iso-
flavones diet contained 1500 μg/g genistein and 800 μg/g daidzein.

3.3. Effect of soy isoflavones on intumesce index

Prenatal exposure to dietary soy isoflavones significantly
(P < 0.05) reduced the intumesce index in male offspring born to dams
received low and high soy isoflavones compared to those born to dams
in control group. However, there was no significant differences in

intumesce index between male offspring born to dams exposed to low
and high soy dietary soy isoflavones (Table 1).

3.4. Effect of soy isoflavones on IL-12, IFN-γ and TNF-α

IL-12 and IFN-γ were significantly (P < 0.05) decreased in off-
spring born to dams received high and low dietary soy isoflavones
groups compared to that in control group. Moreover, offspring born to
dams exposed prenatally to high dietary soy isoflavones group showed
a significant (P < 0.05) decrease in IL-12 levels compared to that in
low dietary soy isoflavones. In contrary, TNF-α was significantly
(P < 0.05) increased in offspring born to dams received high dietary
soy isoflavones group compared to that in low soy isoflavones and
control groups (Table 1).

3.5. Effect of dietary soy isoflavones on relative weights of spleen and
thymus

The relative weights of spleen and thymus were significantly
(P < 0.05) decreased in rats born to dams exposed to high and low
dietary soy isoflavones compared to that in control groups (Table 1).

3.6. Dose-response of soy supplementation on the immune parameters

In male offspring, IL-12, IFN-γ (linear, P < 0.0001) and relative
spleen (linear, P= 0.0008) and thymus weights (linear, P= 0.0007)
were decreased whereas intumesce index tended to decrease (linear,
P= 0.067) with the increase in dietary soy isoflavones in the diets of
pregnant rats. However, TNF-α concentration was increased (linear,
P < 0.0001) with the increasing of dietary soy isoflavones in the diets
of pregnant rats (Table 1).

3.7. Histopathology

Mild lymphocytic infiltration was observed in foot pads of offspring
born to dams exposed to low dietary soy isoflavones supplemented diet.
However, no lymphocytic infiltration was observed in foot pads of
offspring born to dams received high dietary soy isoflavones (Fig. 1).
The spleen of rats born to dams received low dietary soy isoflavones
showed lymphocyte depletion in white pulp, while coagulative necrosis
was seen in white pulp of rats born to dams received high dose of
dietary soy isoflavones (Fig. 2). The thymus of rats born to dams re-
ceived a low dietary soy isoflavones displayed tingible body macro-
phages with intracytoplasmic apoptotic bodies, while the thymus of rats
born to dams administrated high dietary soy isoflavones showed ad-
vanced atrophy and severe lymphocyte depletion and vacuolation
(Fig. 3).

4. Discussion

Although knowledge on the effects of soy isoflavones has increased
recently, due to the consumption of soy isoflavones via soy supplements

Table 1
Effect of prenatal exposure to dietary soy isoflavones on intumesce index, IL-12, IFN-γ, TNF-α levels and relative organ weights of male offspring after 24 h of PHA injection.

Parameters Control Low soy isoflavones (6.5%) High soy isoflavones (26%) P value

Linear Quadratic

Intumesce index 0.08 ± 0.004a 0.04 ± 0.005b 0.03 ± 0.006b 0.067 0.0001
IL-12 (pg/ml) 14.8 ± 0.5a 10.8 ± 0.6b 8.7 ± 0.3c 0.0001 0.0001
IFN-γ (pg/ml) 666.6 ± 2.4a 612.4 ± 2.5b 432.5 ± 5.5c 0.0001 0.0001
TNF-α (pg/ml) 19.1 ± 0.5a 22.3 ± 0.4a 32.6 ± 2.0c 0.0001 0.0001
Relative spleen weight (g/100 g) 0.5 ± 0.04a 0.3 ± 0.01b 0.3 ± 0.01b 0.0029 0.0008
Relative thymus weight (g/100 g) 0.3 ± 0.02a 0.2 ± 0.01b 0.2 ± 0.02b 0.0048 0.0007

Different superscripts within the same row indicated significant differences at P < 0.05.

Fig. 1. Left foot pad of male offspring after 24 h of PHA injection. Male rats born to
control dams (A) showing severe lymphocytic infiltration (arrow). Male rats born to dams
exposed to low dietary soy isoflavones (B), mild lymphocytic infiltration was observed
(head arrow). Male rats born to dams received high dietary soy isoflavones (C), no
lymphocytic infiltration was detected (H&E; 200X).
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and food products in adult and infant diets, there have been only scarce
studies concerning the prenatal exposure to soy isoflavones and its ef-
fect on cellular immune response in offspring of male rats.

Male offspring born to dams received low and high dietary soy
isoflavones showed reduction in intumesce index after 24 h of PHA
injection. This might be attributed to the effect of prenatal exposure to
estrogenic chemicals that could produce weaker inflammatory re-
sponses to PHA as compared with control individuals [43], suggesting
that prenatal exposure to dietary soy isoflavones had an im-
munosuppressive effect. Furthermore, in vivo immunosuppressive effect
of high soy diet or genistein was also reported by O’Connor et al. [44]
who indicated that they could delay the rejection of rat cardiac allo-
grafts.

The present study demonstrated that prenatal exposure to high and
low dietary soy isoflavones resulted in a significant reduction in IL-12
and IFN-γ levels in male offspring. The remarkable decrease of serum
IFN-γ concentrations might delay the IL-12 production due to the im-
munosuppressive effects of soy isofalvones. These cytokines are

responsible for chemotaxis of leukocytes [45,46] to the site of in-
flammation induced by PHA injection. The decrease in IFN-γ con-
centrations and IL-12 production was consistent with marked depletion
in cell populations of thymus and spleen. The decrease in these cell
populations may imply for the lower concentrations of both IFN-γ and
IL-12 [47,48]. IL-12 is a critical cytokine that drives the differentiation
of IFN-γ producing Th1 cells [49]; the decrement in IL-12 might be due
to decrease of IFN-γ. NF-κB has been shown to interact with ERs and
also can regulate IFN-γ transcription [50]. In addition, the direct role of
ERα in regulation of IFN-γ production during inflammation was pre-
viously proven by Curran et al. [51]. Furthermore, these results could
be attributed to inhibitory effect of dietary soy genestein on NF-κB
production or prevention of NF-κB binding to DNA [52], leading to
decrease IFN-γ levels in male offspring.

Interestingly, TNF-α was markedly elevated in males born to dams
received high soy isoflavones, that contradicted the lower levels of IFN-
γ and IL-12 after PHA injection. This result was in agreement with
Vasiadi et al. [53]. In attempt to explain these phenomena, Castro et al.
[54] declared that there were no relation between increment of IL-12

Fig. 2. Spleen of male offspring after 24 h of PHA injection. Normal spleen of a control
group (A) showing white pulp (WP) area, red pulp (RP) area, marginal zone (MZ),
germinal center (GC) and periarteriolar lymphoid sheath (PALS). Male rats born to dams
exposed to low dietary soy isoflavones (B), spleen showed mild depletion in WP cellu-
larity. Male rats born to dams received high dietary soy isoflavones (C), showed coagu-
lative necrosis in WP (arrow) (H&E; 200X). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Thymus in male offspring after 24 h of PHA injection. Normal thymus of control
group (A) with cortex (CO) and medulla (MD), cortex has uniformly dense population of
lymphocyte. Thymus of male offspring born to dams exposed to low dietary soy iso-
flavones (B), showing tangible body macrophages with intracytoplasmic apoptotic bodies
(head arrows). Thymus of offspring born to dams exposed to high dietary soy isoflavones
(C), showing severe lymphocyte depletion and vacuolation (arrows) and absence of dis-
tinct cortico-medullary junction (*). (H&E; 200X).
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and TNF-α when exposed to lipophilic genestein derivatives in vitro
which enable to induce IL-12 inhibition but fail to inhibit TNF-α. A
similar effect on IL-12 and TNF-α was reported in a study using lipo-
polysaccharides-stimulated dendritic cells (DCs) treated with aspirin as
an anti-inflammatory drug [55]. However, in an in vitro study, bone
marrow-derived DCs treated with the catechin polyphenol epigalloca-
techin gallate produced less IL-12, in contrast with increased TNF-α
[56].

The isoflavones especially genistein could be able to bind to es-
trogen receptor (ERα) that induces numerous cellular alterations
[57,58]. Among these changes, the reduced T-cell abundance and re-
duced cell-mediated immune function [2,59] which manifested in the
current experiment by lower relative weights of spleen and thymus
beside the depletion in the lymphoid cells. The decrease in relative
spleen weight associated with the down regulating effect of genestein
on relative percentages of spleen T cells [60]. It is not surprising that
exposure to dietary isoflavones mimics estrogen's hormone action as it
acts as estradiol and the estrogen treatment was reported to induce
thymus atrophy and immune suppression in developed rodents [61,62].
Other mechanism could involve the effects of isoflavones on protein
tyrosine kinases and/or topoisomerase II, which have been shown to be
inhibited in thymocytes and other cell types by high genestein con-
centrations in vitro [63,64].

Few lymphocytes infiltration was detected in foot pad of male off-
spring born to dams fed low soy isoflavones, however, no infiltration
was seen in footpad of offspring born to dams fed high soy isoflavones,
when compared with perivascular accumulation of lymphocytes mi-
gration in the dermis layer in offspring born to dams of control group.
In attempt to explain these phenomena, Halloran et al. [37] and Ken-
nedy and Nager [65] reported a rapid recruitment ⁄ proliferation of
WBCs at the PHA injection site. Neutrophils, eosinophils and macro-
phages were rapidly increased at the PHA site of injection, peaking
within 12 h. Eosinophil and neutrophil numbers subsequently declined
but macrophage continued to increase for a further 12 h. On the other
hand, lymphocytes did not present in large numbers at the injection site
until 24 h post-injection. This pattern suggested an immediate innate
response by neutrophils, eosinophils and macrophages, followed by a
secondary response consisting largely of lymphocytes which is slower in
progression. Although lymphocytes are expected to be produced in
large number by the specific mitogenic effect of PHA on T cells, lym-
phocytes appearing at the injection site after 24 h [66].

5. Conclusion

Dietary soy isoflavones at prenatal period might have im-
munosuppressive effect on cell mediated immunity of male offspring
after PHA stimulation. This effect might possibly mediated by reduction
of IL-12 and IFN-γ production, depletion in thymus and spleen lym-
phoid tissue and poor inflammatory and immune response to PHA sti-
mulation in foot pad. A dose-response in the immune system of the
offspring due to increasing soy concentrations in the diet of their dams
was confirmed.
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