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Diffusion-limited reactions in dynamic
heterogeneous media
Yann Lanoiselée1, Nicolas Moutal1 & Denis S. Grebenkov 1

Most biochemical reactions in living cells rely on diffusive search for target molecules or

regions in a heterogeneous overcrowded cytoplasmic medium. Rapid rearrangements of the

medium constantly change the effective diffusivity felt locally by a diffusing particle and thus

impact the distribution of the first-passage time to a reaction event. Here, we investigate the

effect of these dynamic spatiotemporal heterogeneities onto diffusion-limited reactions. We

describe a general mathematical framework to translate many results for ordinary homo-

geneous Brownian motion to heterogeneous diffusion. In particular, we derive the probability

density of the first-passage time to a reaction event and show how the dynamic disorder

broadens the distribution and increases the likelihood of both short and long trajectories to

reactive targets. While the disorder slows down reaction kinetics on average, its dynamic

character is beneficial for a faster search and realization of an individual reaction event

triggered by a single molecule.
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D iffusion is the central transport mechanism in living cells
and, more generally, in biological systems. Molecular
overcrowding, cytoskeleton polymer networks, and other

structural complexities of the intracellular medium lead to var-
ious anomalous features such as nonlinear scaling of the mean
square displacement (MSD), weak ergodicity breaking, non-
Gaussian distribution of increments, or divergent mean first-
passage times (FPT) to reactive targets1–10. These features are
often captured in theoretical models via long-range correlations
(e.g., fractional Brownian motion or generalized Langevin equa-
tion), long-time caging (continuous time random walks), or
hierarchical structure (diffusion on fractals)11–18. While the
impact of heterogeneity of the medium19–21, and of reactive
sites22,23 onto diffusion and the macroscopic reaction rate was
investigated, the diffusivity of a particle was usually considered as
constant. However, the structural organization of living cells and
other complex systems such as colloids, actin gels, granular
materials, and porous media suggests that the diffusivity can vary
both in space and time.

Several recent studies were devoted to such heterogeneous
diffusion models. At the macroscopic level, the dynamics and the
reaction kinetics can still be described by the Fokker–Planck
equation, but time and particularly space dependence of diffu-
sivity prevents from getting exact explicit solutions, except for
some very elementary cases. Moreover, in structurally disordered
media, variations of diffusivity are random, and the need for
averaging over random realizations of the disorder makes theo-
retical analysis particularly challenging. Two typical situations are
often investigated. If the disordered medium is immobile (or
changes over time scales much longer than that of the diffusion
process), the space-dependent diffusivity is considered as a static
field, in which diffusion takes place. Whether the diffusivity field
is deterministic or random, its spatial profile can significantly
impact the diffusive dynamics and, in particular, the distribution
of the first-passage time to a reaction event24–28. Note that the
situation with a random static diffusivity is referred to as
“quenched disorder” and enters into a family of models known as
“random walks in random environments”29–34.

In turn, when the medium changes faster than the diffusion
time scale, a particle returning to a previously visited point would
probe a different local environment that can be modeled by a new
realization of random diffusivity at that point. For instance, when
a large protein or a vesicle diffuses inside a living cell, other
macromolecules, actin filaments, and microtubules can move
substantially on comparable time scales, changing the local
environment10,35–37 (see Fig. 1). It is thus natural to consider the
diffusivity as a stochastic time-dependent process, Dt, referred to
as “annealed disorder”. The concept of “diffusing diffusivity” was
put forward by Chubynsky and Slater38, and then was further
developed by Jain and Sebastian39,40 and Chechkin et al.41 (note
that the impact of a stochastic volatility onto the distribution of
asset returns was investigated much earlier by Drãgulescu and
Yakovenko42). In ref. 43, we proposed to model the stochastic
diffusivity of a particle by a Feller process44, also known as the
square root process or the Cox–Ingersoll–Ross process45:

dDt ¼
1
τ

�D� Dtð Þdt þ σ
ffiffiffiffiffiffiffiffi
2Dt

p
dWt : ð1Þ

The diffusivity Dt randomly walks around its mean value �D due
to rapid fluctuations of the medium modeled by the standard
white noise dWt. The two other parameters of the model char-
acterize the strength of these fluctuations (σ) and the time scale of
medium rearrangements (τ). For a particle moving in the d-
dimensional space Rd free of reactive targets and inert obstacles,
we derived the full propagator P(x, D, t|x0, D0), i.e., the

probability density for a particle started at x0 with the initial
diffusivity D0 to be at x with the diffusivity D at a later time t.
When the control dimensionless parameter ν ¼ �D= τσ2ð Þ is
integer, the Feller process (1) is equivalent to the square of an ν-
dimensional Ornstein–Uhlenbeck process used for modeling the
stochastic diffusivity in ref. 39–41, and our model is thus reduced
to the former one. However, integer values of ν correspond to a
weak disorder. In fact, the parameter 1/ν characterizes the dis-
order strength, i.e., how broad is the distribution of random
variations of the diffusivity in a heterogeneous medium. This can
be seen by rescaling the diffusivity Dt by �D and the time t by τ in
Eq. (1), in which case the factor

ffiffiffiffiffiffiffiffi
1=ν

p
appears in front of the

fluctuation term (see Eq. 28 in the Method section). As a con-
sequence, our extension to any real positive ν and, in particular,
to the range 0 < ν < 1 that was inaccessible in former works,
brought additional features to the annealed model of hetero-
geneous diffusion.

The above works were devoted to the dynamics itself (MSD
scaling, weak ergodicity breaking, non-Gaussian behavior of the
propagator, etc.), with no chemical reaction involved. The notable
exception is the work by Jain and Sebastian46, in which the
survival probability in crowded rearranging spherical domains
was derived. While some first-passage time problems and related
reaction kinetics in static disordered media have been addres-
sed11,13,23,47–49, most former studies were focused on the mean
FPT and reaction rates.

In this letter, we couple heterogeneous diffusion to chemical
reactions in a medium containing perfectly reactive targets and
inert obstacles. We describe a general mathematical framework to
translate many results for ordinary homogeneous Brownian
motion to heterogeneous diffusion. In particular, we derive
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Fig. 1 Schematic illustration of the annealed disorder model. A dynamic
heterogeneous medium is formed by a rearranging polymer solution (red
thin tubes mimicking, e.g., actin filaments): (a, b) two snapshots of a
particle (small green ball) diffusing toward a reactive site (light blue bumpy
object mimicking, e.g., a protein); a random path (in green) of this particle is
added to guide eyes; along the path, the particle interacts with the local
environment rearranging on a time scale τ and thus experiences variable
effective diffusivities; (c) the environment-induced time-dependent
diffusivity Dt is modeled by the Feller process (1); (d) once the rearranging
environment is taken into account via Dt, one deals with the random path
from the initial position of the particle (green ball) to the target; the path is
explored with a time-dependent “speed” Dt, encoded by color as in (c)
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general spectral decompositions of the full and marginal propa-
gators, the survival probability, the probability density function of
the first-passage time to a reaction event, and the macroscopic
reaction rate of diffusion-limited reactions. We show how the
dynamic disorder broadens the probability density and increases
the likelihood of both short and long trajectories to reactive
targets. In other words, while the reaction process is slowed down
on average, some molecules can reach the reactive targets much
faster than via homogeneous diffusion. We discuss biological
implications of this counter-intuitive finding, further perspectives
and open problems.

Results
Heterogeneous diffusion toward reactive targets. Let us con-
sider a particle diffusing in a fixed volume Ω � R

d outside an
arbitrary configuration of immobile perfectly reactive targets and
inert obstacles. The stochastic diffusivity Dt, modeled by the Feller
process (1), represents the dynamic disorder due to rapid rear-
rangements of the medium. The particle reacts upon the first
encounter with any target and thus disappears, being chemically
transformed into another species. This is a standard scheme for
most catalytic reactions. In turn, inert obstacles or impenetrable
walls just hinder the motion of the particle or confine it in a
prescribed spatial region (e.g., inside a living cell). For any
bounded domain Ω (e.g., the cytoplasm confined by the plasma
membrane), we obtain the spectral decomposition for the full
propagator P(x, D, t|x0, D0) by solving the Fokker–Planck equa-
tion (see Eq. 14 in Method section). As the instantaneous diffu-
sivities D0 and D are hard to access from experiments, we focus
throughout this letter on the more common marginal propagator
P(x, t|x0), which is obtained by averaging P(x, D, t|x0, D0) over the
diffusivity D at time t and over the initial diffusivity D0 taken
from its stationary distribution. We show in the Method section
that the propagator P(x, t|x0) admits a general spectral decom-
position

P x; tjx0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þϒ t; λnð Þ; ð2Þ

where λn and un are the eigenvalues and the L2-normalized
eigenfunctions of the Laplace operator Δ in Ω � R

d , verifying
Δun+ λnun= 0, subject to absorbing (Dirichlet) and reflecting
(Neumann) boundary conditions on the surfaces of targets and
obstacles, respectively, and

ϒðt; λÞ ¼ 4ωe�ðω�1Þt=ð2τÞ

ðωþ 1Þ2 � ðω� 1Þ2e�ωt=τ

 !ν

; ð3Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2τ2λ

p
. Our setting and derivation are much

more general than that by Jain and Sebastian who obtained a
similar spectral decomposition for a disk with a perfectly reactive
boundary for diffusing diffusivity modeled by an ν-dimensional
Ornstein–Uhlenbeck process46. When either dynamic rearrange-
ments of the medium are too fast (τ → 0) or its fluctuations are too
small (σ → 0), the diffusivity is constant, Dt ¼ �D, Eq. (3) is
reduced to ϒhom ¼ exp ��Dtλð Þ, and one recovers the standard
spectral decomposition of the propagator for homogeneous
diffusion50. While the dynamic disorder is incorporated in Eq.
(2) via the explicitly known function ϒ(t;λ), the structure of the
confining domain and its reactive properties are fully “encoded”
by the Laplacian eigenmodes, λn and un51. The function ϒ(t;λn)
couples, via the expression for ω, the geometric length scales λ�1=2

n
of the reactive medium to στ, which can thus be understood as
the disorder length scale.

First-passage times to a reaction event. The propagator is the
essential ingredient for describing diffusion-limited reactions. In
particular, the integral of the propagator P(x, t|x0) over the arrival
point x yields the survival probability of a particle inside the
domain, from which the time derivative gives the probability
density function of the first-passage time to perfectly reactive
targets on the boundary ∂Ω:

ρ tjx0ð Þ ¼ �
X1
n¼1

un x0ð Þϒ′ t; λnð Þ
Z
Ω

dx unðxÞ; ð4Þ

where prime denotes the time derivative, ϒ′ðt; λÞ= ∂
∂tϒðt; λÞ,

which is known explicitly from Eq. (3):

ϒ′ðt; λÞ ¼ � ν

2τ
ω� 1þ

2ω ω�1
ωþ1

� �2
e�ωt=τ

1� ω�1
ωþ1

� �2
e�ωt=τ

0B@
1CAϒðt; λÞ: ð5Þ

The probability density ρ(t|x0) is the likelihood for the reaction
event to occur at a given time t. Setting appropriate
Dirichlet–Neumann boundary conditions, one can describe, for
instance, the distribution of the reaction time on catalytic germs
in a chemical reactor, or the distribution of the first exit time
from a confining domain through “holes” on the boundary (e.g.,
through water or ion channels on the plasma membrane of a
living cell). More generally, this formalism allows one to “trans-
late”many first-passage results known for homogeneous diffusion
to heterogeneous one and thus to investigate the impact of the
dynamic disorder onto heterogeneous catalysis, diffusive search
for multiple targets and escape problems18,52–56.

When the number of particles is large, multiple reaction events
occur at different times, and the overall chemical production can
be accurately characterized by the mean FPT or by the
macroscopic reaction rate J(t), i.e., the overall flux of diffusing
particles onto the reactive target at time t. As ρ(t|x0) can be
interpreted as the probability flux onto the target at time t for a
single particle started at x0 at time 0, the overall flux J(t) is
obtained by superimposing these contributions. If there are many
independent diffusing particles with a prescribed initial concen-
tration c0(x0), each contribution ρ(t|x0) is weighted by the
number of particles at x0 (i.e., by c0(x0)dx0) that yields

JðtÞ ¼ �
X1
n¼1

ϒ′ t; λnð Þ
Z
Ω

dx0 c0 x0ð Þun x0ð Þ
Z
Ω

dx unðxÞ: ð6Þ

However, many cellular processes are triggered by the arrival of
one or few molecules onto the target (e.g., a receptor), and the
number of such molecules inside the cell is small. In this case,
the mean FPT and the macroscopic rate J(t) are not representa-
tive, and the full distribution of the first-passage time is needed57.
Eq. (4) is thus the crucial step to understand the reaction kinetics
in rearranging heterogeneous media. In the following, we focus
on the probability density ρ(t|x0), bearing in mind straightfor-
ward extensions to the reaction rate (its behavior is illustrated in
the Method section).

Fast and slow arrivals to reactive targets. The probability density
ρ(t|x0) can span over many orders of magnitude in time so that
two reaction times in the same medium can be dramatically
different. In order to grasp such a broadness of reaction times, it
is instructive to look at reaction events that occur at short and
long times after the particle release.
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The long-time behavior of the probability density function is
determined by the smallest eigenvalue λ1 > 0:

ρ tjx0ð Þ / u1 x0ð Þ 4ω1

ðω1 þ 1Þ2

 !ν

exp � 2
1þ ω1

�Dtλ1

� �
; ð7Þ

with ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2τ2λ1

p
. This right tail of the probability

density characterizes long trajectories to reactive targets. A
diffusing particle fully explores the confining domain and thus
almost looses track of the starting point x0 that affects only a
prefactor via the eigenfunction u1(x0). The asymptotic behavior is
therefore mainly determined by the eigenvalue λ1 which in
general exhibits an intricate dependence on the geometry of the
confining domain and on the configuration of reactive
targets51,55. The exponential decay of the probability density
function resembles that for homogeneous diffusion with the mean
diffusivity �D, but the decay rate is decreased by the factor (1+
ω1)/2 ≥ 1. When the disorder length scale στ is much smaller than
the largest geometric scale λ�1=2

1 , then ω1 ≈ 1, and one recovers
the long-time behavior known for homogeneous diffusion. In this
limit, the particle has enough time to probe various diffusivities
and to average out the disorder. In the opposite limit of a long-
range disorder, στ � λ�1=2

1 , the decay rate in the exponential
function is greatly reduced by the factor στ

ffiffiffiffiffi
λ1

p
� 1, and thus

the right tail of the probability density is increased. In particular,
the mean FPT to a reactive target, which is essentially determined
by the exponential tail, is increased by the factor στ

ffiffiffiffiffi
λ1

p
. We

conclude that the dynamic disorder slows down, on average, the
reaction kinetics and search by a single particle.

The short-time behavior of the probability density function of
the first-passage time to a perfectly reactive region Γ of the
boundary is deduced from Eq. 41 of the Method section:

ρ tjx0ð Þ / t�1 δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν= �Dtð Þ

q� �ν

exp �δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν= �Dtð Þ

q� �
; ð8Þ

where δ is the distance between the starting point x0 and the
reactive region Γ. This relation, which is valid for
t � min τ; νδ2=�D

� �
, characterizes short, almost direct trajec-

tories to reactive targets, along which the diffusivity remained
almost constant. Looking at the argument of the exponential
function in Eq. (8), one can appreciate a dramatic effect of
heterogeneous diffusion at short times; in particular, the decay of
the probability density function for homogeneous diffusion is
much faster:

ρhom tjx0ð Þ / t�1 δ=
ffiffiffiffiffi
�Dt

p� �
exp �δ2= 4�Dtð Þ
	 


: ð9Þ

As a consequence, rapid arrivals of a particle to the reactive
region are much more probable for heterogeneous diffusion. In
other words, the dynamic character of the disorder allows for
larger diffusivities and is thus beneficial for a faster arrival to the
target by a single particle, in spite the longer mean FPT. The most
probable first-passage time, at which the probability density
function reaches its maximum, ∂ρ tjx0ð Þ=∂tð Þjtmp

¼ 0, can be

estimated from Eq. (8) as tmp � 1þ 5=ð2νÞð Þ�1δ2=�D. As

expected, the most probable FPT is proportional to δ2=�D as for
Brownian motion, but the prefactor is controlled by the disorder
strength 1/ν. In particular, the most probable FPT goes to 0 as the
disorder strength 1/ν increases. The distance to the target, δ, is the
only relevant geometric length in the short-time regime, which is
thus very sensitive to the starting point x0.

Respective roles of the disorder strength and scale. While the
above asymptotic relations are universal, the functional form of

the probability density ρ(t|x0) depends on the shape of the con-
fining domain and its reactive properties. In spite of intensive
studies over the past decades4,13–15,52,53,58–60, the strong impact
of the geometric complexity onto first-passage times and chemical
reactions is not fully understood even for homogeneous diffusion.
In order to decouple the geometric aspects from the dynamic
disorder, we consider as an illustrative example heterogeneous
diffusion in a simple yet emblematic domain—a ball. This is a
very common model of confinement that was in the scope of
many former theoretical studies. Since the radius R of the ball is
the only geometric scale of the domain, one can focus exclusively
on the impact of the dynamic disorder. The substitution of the
explicit form of Laplacian eigenmodes51,61 into Eq. (4) yields

ρ tjx0ð Þ ¼ 2
X1
n¼1

ð�1Þn sin πn x0k k=Rð Þ
πn x0k k=R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼1 if x0¼0

ϒ′ t; π2n2=R2
	 


;
ð10Þ

where x0k k is the radial coordinate of the starting point x0.
Moreover, we consider the first-passage time to the boundary of a
ball from its center, x0= 0, to fix the distance to the target: δ= R.
Given that the parameters R and R2=�D fix the length and time
scales for homogeneous diffusion, we investigate the impact of the
two other parameters of the dynamic disorder. The asymptotic
relations (7) and (8) suggest that the proper dimensionless
parameters of the model are the disorder scale μ= στ/R (which
compares the spatial extent of the disorder to the size of the
domain), and the disorder strength 1=ν ¼ τσ2=�D.
Figure 2 compares the exact solution (10) for heterogeneous

diffusion, with ϒ′(t;λ) from Eq. (5), and for homogeneous
diffusion with mean diffusivity �D and ϒ′

homðt; λÞ=
��Dλ exp ��Dtλð Þ. We explore the parameters space (μ, 1/ν) in
two complementary ways. In the top panels (a–c), we fix three
values of the disorder scale μ (10−1, 1, and 10) and range
“continuously” the disorder strength 1/ν from 10−1 to 101. When
the disorder scale is small (μ= 0.1), the particle travels enough
distance to the reactive boundary to average out stochastic
diffusivities. As a consequence, the long-time behavior of the
probability density (its right tail) is close to that of homogeneous
diffusion with the mean �D, regardless the disorder strength 1/ν in
the considered range. At larger disorder scales (μ= 1 and μ= 10),
deviations from homogeneous diffusion at long times become
progressively stronger. An increase of the disorder strength 1/ν
leads to progressive broadening of the distribution. In particular,
the short-time tail of the probability density function is shifted to
the left, increasing thus chances of reaching the target at short
times. In contrast, the short-time behavior remains almost
unaffected by the scale μ, when μ is not too small (compare
cases μ= 1 and μ= 10). This is more clearly seen in the bottom
panels (d–f), which show ρ(t|0) for three fixed values 1/ν (10−1, 1,
and 10) and numerous values of μ ranging from 10−1 to 101. The
left short-time tail is almost independent of μ and controlled by
1/ν, in agreement with the short-time asymptotic relation (8). In
turn, the right tail is affected by both μ and ν, see Eq. (7). As the
disorder weakens (1/ν → 0 with fixed μ), the probability density
ρ(t|0) approaches ρhom(t|0) for homogeneous diffusion. In turn,
the short-time tail of ρ(t|0) exhibits deviations from ρhom(t|0) in
the other limit μ → 0 (with fixed ν), as discussed around Eq. 48 of
the Method section.

Discussion
The discovered broadening of the distribution and increase of its
both short- and long-time tails by dynamic disorder are generic
and valid for bounded domains beyond balls. Moreover, our
study can be extended to unbounded domains, for which the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06610-6

4 NATURE COMMUNICATIONS |  (2018) 9:4398 | DOI: 10.1038/s41467-018-06610-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


analysis becomes more subtle because the spectrum of the Laplace
operator is not discrete anymore. In the Method sec-
tion "Unbounded domains", we provide the explicit representa-
tions of the propagator, the survival probability, the probability
density, and the macroscopic reaction rate for two unbounded
domains: a half-space with a perfectly reactive hyperplane and the
exterior of a perfectly reactive ball. In both cases, we show that the
long-time behavior of heterogeneous diffusion approaches that of
the homogeneous one: the particle has enough time to average
out the dynamic disorder, whatever its length scale στ (this is
equivalent to μ= 0). In particular, we retrieve the Smoluchowski
diffusion-limited reaction rate for a spherical target as time goes
to infinity62, while the approach to this stationary limit is mod-
erately affected by the dynamic disorder.

So far, we investigated the impact of the dynamic disorder onto
chemical reactions for the particular model (1) of diffusing dif-
fusivity. But, the derived spectral decompositions (2) and (4) turn
out to be much more general and can couple the geometric
structure of the reactive confining domain Ω to an arbitrary
model of the dynamic disorder represented via the function
ϒ(t;λ). In fact, there are two independent sources of randomness
in the annealed model of heterogeneous diffusion: thermal fluc-
tuations that result from local interactions of the medium with a
diffusing particle and drive its stochastic motion, and rapid
rearrangements of the medium that change the “amplitude” of
the local interactions via the stochastic diffusivity. The Laplacian
eigenmodes determine the statistics of all possible random paths
of a particle in a homogeneous medium due to thermal fluctua-
tions. In turn, the diffusing diffusivity Dt affects only the “speed”
at which the particle moves along a randomly chosen path

(Fig. 1). This is the idea of subordination when the integrated

diffusivity, Tt ¼
Rt
0
dt′Dt′, is considered as the “internal time” of a

homogeneous process41. If the propagator Phom(x, T|x0) of the
homogeneous process with a fixed internal time T is known, then
the propagator for the subordinated heterogeneous process, in
which T= Tt is a random variable, is obtained by averaging
Phom(x, Tt|x0) with the probability density function Q(t;T) of the
integrated diffusivity Tt:

P x; tjx0ð Þ ¼
Z1
0

dT Qðt;TÞPhom x;Tjx0ð Þ: ð11Þ

This relation naturally couples two sources of randomness:
thermal fluctuations (determining Phom(x, T|x0)) and the
dynamic disorder (determining Q(t;T)). For a homogeneous dif-
fusion in a bounded medium with reactive targets, Phom(x, T|x0)
admits the standard spectral decomposition50, from which Eq. (2)
follows, with

ϒðt; λÞ ¼
Z1
0

dT e�λTQðt;TÞ ð12Þ

being the Laplace transform of the probability density function
Q(t;T). In the same vein, the subordination form for the first-
passage time density ρ(t|x0) is reproduced from Eq. 103 of the
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Fig. 2 The impact of dynamic disorder onto the distribution of first-passage times. The probability density function ρ(t|0) of the first-passage time from the
center to the perfectly reactive boundary of a ball of radius R is shown by colored curves for various combinations of dimensionless parameters (μ, 1/ν)
characterizing the disorder scale and strength: μ= στ/R and 1=ν ¼ τσ2=�D. Thick black curve presents ρhom(t|0) for homogeneous diffusion with diffusivity
�D. a–c Three values of the disorder scale μ (0.1 (a); 1 (b); and 10 (c)) and 64 values of the disorder strength 1/ν in the logarithmic range between 10−1 and
101. d–f Three values of the disorder strength 1/ν (0.1 (d); 1 (e); and 10 (f)) and 64 values of the disorder scale μ in the logarithmic range between 10−1 and
101. Curves encoded by color, ranging from dark blue (10−1) to dark red (101), as shown by colorbar
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Method section:

ρ tjx0ð Þ ¼
Z1
0

dT qðt;TÞρhom Tjx0ð Þ; ð13Þ

where q(t;T) is the probability density function of the first-
crossing time of a prescribed barrier at T by the integrated dif-
fusivity Tt (the density q(t;T) is also directly related to Q(t;T) and
ϒ(t;λ), see Eqs. 102 and 104 of the Method section). This sub-
ordination concept is illustrated by Fig. 3.

In this light, the Feller process (1) for diffusivity Dt can
be replaced by another process to reproduce the desired features
of dynamic heterogeneous media. In the simplest case
when the time-dependent diffusivity Dt is deterministically
prescribed, Tt is not random, so that Q(t;T)= δ(T− Tt) and thus
ϒ(t;λ)= exp(−λTt). When the particle undergoes a
continuous-time random walk with long stalling periods
characterized by an anomalous waiting exponent 0 < α < 112, one
gets ϒ(t;λ)= Eα(−Dαtαλ), where Eα(z) is the Mittag–Leffler
function, and Dα is the (constant) generalized diffusion

coefficient63,64. One can also consider Lévy-noise-driven pro-
cesses to model diffusivity with heavy tails65, geometric Brownian
motion to get a nonstationary evolution, or a customized sto-
chastic process to produce the desired distribution of the sta-
tionary diffusivity66. Once the function ϒ(t;λ) is computed for the
chosen diffusivity model, the coupling to the spatial dynamics of
the particle, the related first-passage phenomena, and the con-
sequent reaction kinetics are immediately accessible via the
spectral decomposition (2). We stress, however, that the sub-
ordination does not provide the full propagator P(x, D, t|x0, D0),
but only the marginal propagator P(x, t|x0).

This letter was focused on diffusion-limited reactions because
the related first-passage statistics are essential for characterizing
the diffusive transport toward the targets. However, many (bio)
chemical reactions involve other “ingredients” such as active
transport by motor proteins, bulk reactivity, partially reactive
targets, reversible association-dissociation processes and re-
binding effects, collective search by multiple particles and the
associated (anti-)cooperativity effects, surface diffusion and
intermittence, to name but a few. These effects have been pro-
gressively incorporated into the theory of homogeneous
diffusion-controlled reactions during the past century since the
Smoluchowski’s seminal paper62. Some of these ingredients can
be immediately implemented into our formalism. For instance,
the Laplace operator governing passive diffusion can be replaced
by more general Fokker–Planck operators accounting for an
external potential or a drift, allowing one to model active trans-
port in dynamic heterogeneous media such as the cytoplasm of
living cells67. In turn, the inclusion of some other ingredients
remains challenging and requires future investigations. For
instance, the macroscopic description of homogeneous diffusion
in a medium with partially reactive targets employs the Robin
boundary condition that equates the diffusive flux density
�D0

∂
∂nP x; tjx0ð Þ toward the target to the reactive flux density

κP(x, t|x0) on the target, the reactivity κ characterizing the effi-
ciency of reaction (and ∂

∂n being the normal derivative). An
extension of this condition to heterogeneous diffusion with ran-
dom diffusivity Dt instead of D0 does not seem possible for the
marginal propagator P(x, t|x0), and requires considering the full
propagator P(x, D, t|x0, D0). The apparent simplicity of the
implementation of the dynamic disorder into the realm of
homogeneous diffusions via the function ϒ(t;λ) is thus deceptive,
and the implementation of partial reactivity and some other
mechanisms for heterogeneous diffusion raises open mathema-
tical questions.

Another important perspective consists in developing new
statistical tools, based on the proposed formalism, to distinguish
the impact of the dynamic disorder from other intracellular fea-
tures (such as visco-elasticity and overcrowding), to identify
proper models of diffusing diffusivity from experimental single-
particle trajectories, and to infer the parameters of that models. In
particular, molecular dynamics simulations could help identifying
such models from microscopic principles. In turn, Monte Carlo
and finite elements methods allow one to further investigate the
role of multiple geometric length scales onto the reaction kinetics
in complex geometric confinements.

In summary, we discussed the impact of spatiotemporal dis-
order of dynamic heterogeneous media onto diffusion-limited
reactions, bearing in mind applications to intracellular reactions.
A conventional way of tackling such problems would consist in
modeling the whole dynamically rearranging medium by means
of molecular dynamics simulations. However, a living cell is a
very complex system in which a vast number of particles, from
water, ions, proteins, actin filaments and microtubules to large
organelles such as vesicles and mitochondria, interact to each
other, all being confined between the nucleus and the plasma
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Fig. 3 Illustration of the subordination concept. The first-passage time to
the reactive target is understood as the moment of the first crossing of a
random barrier by the integrated diffusivity Tt. a The geometric structure
and reactive properties of the medium determine the probability density
function ρhom(T|x0) of the first-passage time T hom to the reactive target by
homogeneous diffusion. This FPT is the “duration” of a random Brownian
path to the reactive target that sets the barrier to the integrated diffusivity
Tt (horizontal blue arrow). The randomness of such Brownian paths results
from thermal fluctuations. b Rapid rearrangements of the medium lead to a
random realization of the “internal time” Tt, obtained by integrating the
stochastic diffusivity Dt shown in Fig. 1c; colors are reproduced from that
figure, ranging from dark blue (low diffusivity) to dark red (high diffusivity).
The random moment t (shown by vertical red arrow) when Tt crosses the
random barrier T hom is the first-passage time to the reactive target by
heterogeneous diffusion. c The probability density ρ(t|x0) of this FPT is
obtained by averaging the density q t; T homð Þ over the distribution of T hom

given by ρhom(T|x0). The broadening of ρ(t|x0) is caused by superimposing
two sources of randomness in heterogeneous diffusion: thermal
fluctuations (as in ρhom(T|x0)) and medium rearrangements. Arbitrary units
are used for this illustrative picture
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membrane. Even though molecular dynamics simulations of the
intracellular dynamics become more and more accurate and
large-scale35,36, understanding the respective impacts of different
cellular mechanisms and processes remains challenging. Theo-
retical approaches offer a complementary insight by focusing on a
particular feature of the intracellular dynamics and ignoring its
other aspects. For instance, generalized Langevin equations with
memory kernels were invoked to capture visco-elastic properties
of the cytoplasm and the related long-time corrections, whereas
continuous-time random walk can model molecular caging in an
overcrowded environment. Combining such individual mechan-
isms as elementary pieces, one aims at reconstructing, step by
step, the whole mosaic of a cell life. Here, we added a puzzle
element by investigating the effects related to dynamic rearran-
gements of the intracellular medium due to, e.g., actin waves or
microtubule movement68,69. We greatly simplified the problem
by modeling the impact of the medium onto the particle via
diffusing diffusivity and thus reducing irrelevant degrees of
freedom. The developed theoretical framework revealed that
dynamic heterogeneities can actually be beneficial for many
biochemical processes in living cells which are triggered by a
single molecule70,71. More generally, we provided a mathematical
ground to advance understanding and modeling of intracellular
dynamics to a new level, with potential biomedical and phar-
maceutical applications.

Method
Derivation of the propagator. The derivation of the propagator in R

d from ref. 43

can be generalized to an arbitrary bounded domain Ω � R
d , in which the eigen-

value problem for the Laplace operator is well defined50,51. The probability density
P(x, D, t|x0, D0) for a particle started from a point x0 with the initial diffusivity D0

to be at a point x with the diffusivity D at a later time t satisfies the forward
Fokker–Planck equation in the Itô convention:

∂P
∂t

¼ 1
τ

∂

∂D
ððD� �DÞPÞ þ DΔP þ σ2

∂2

∂2D
ðDPÞ; ð14Þ

subject to the initial condition P(x, D, t= 0|x0, D0)= δ(x− x0)δ(D−D0) and an
appropriate boundary condition on the boundary ∂Ω of the domain Ω. While the
Langevin Eq. (1) automatically ensures the positivity of the diffusivity Dt

44,45, the
Fokker–Planck equation needs an additional condition at the boundary D= 0 in
the phase space (x, D). As discussed in detail in ref. 43, two standard conditions are
often employed: the absorbing condition P(x, D= 0, t|x0, D0)= 0 and no flux
condition JD =� 1

τðD� �DÞ þ σ2 ∂
∂DDP

	 
��
D¼0

= 0. The former condition implies that
random trajectories in the phase space (x, D) stop after hitting the boundary D= 0:
once the diffusivity Dt reaches 0, it gets stuck in this state. As this situation is
unphysical, we choose the second condition that ensures the strict positivity of the
diffusivity43,72. We also impose the regularity condition P(x, D, t|x0, D0) → 0 as
D →∞.

We sketch the main steps of the derivation. First, one applies the Laplace
transform with respect to D ≥ 0:

~P x; s; tjx0;D0ð Þ ¼
Z1
0

dDe�sD P x;D; tjx0;D0ð Þ; ð15Þ

to transform Eq. (14) to

∂~P
∂t

þ σ2s2 þ s=τ þ Δ
	 
 ∂

∂s
~P ¼ �

�Ds
τ
~P; ð16Þ

where we used no flux condition at D= 0. We decompose ~P on the complete basis
of orthonormal Laplacian eigenfunctions, verifying Δun(x)+ λnun(x)= 0 in Ω,
with the desired boundary condition on ∂Ω, and λn being the eigenvalues
enumerated by n= 1, 2, … in an increasing order. Moreover, the orthogonality of
eigenfunctions allows one to search the propagator ~P in the form

~P x; s; tjx0;D0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þ~p λn; s; tjD0ð Þ: ð17Þ

Substitution of this form into Eq. (16) yields a first-order differential equation for
the unknown function ~p λ; s; tjD0ð Þ:

∂~p
∂t

þ σ2s2 þ s=τ � λ
	 
 ∂~p

∂s
¼ �

�Ds
τ
~p; ð18Þ

subject to the initial condition ~p λ; s; t ¼ 0jD0ð Þ ¼ e�sD0 . The above equation was
solved in ref. 43 by the method of characteristics:

~p λ; s; tjD0ð Þ ¼ F D0; sð Þe�νðω�1Þt=ð2τÞ

´ σ2τ
ω sþ 1þω

2σ2τ

	 

� sþ 1�ω

2σ2τ

	 

e�ωt=τ


 �	 
�ν
;

ð19Þ

where

F D0; sð Þ ¼ exp
D0

2σ2τ
1þ ω� 2ω

1� ξe�ωt=τ

� �� �
; ð20Þ

ξ ¼ 1� 2ω
1þ ωþ 2σ2τs

; ð21Þ

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2τ2λ

p
: ð22Þ

These relations provide the exact formula (17) for the propagator in the Laplace
domain with respect to the diffusivity D. The inverse Laplace transform is in
general needed to get the propagator P(x, D, t|x0, D0).

As the diffusivity D at time t is not relevant for most applications, one can focus
on the marginal distribution of the position x by integrating over D, which is
obtained by setting s= 0 in ~p q; s; tjD0ð Þ:

P x; tjx0;D0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þϒ t; λnjD0ð Þ; ð23Þ

where

ϒ t; λjD0ð Þ ¼ 2ωe�ðω�1Þt=ð2τÞ

ωþ1þðω�1Þe�ωt=τ

� �ν
´ exp D0ðωþ1Þ

2σ2τ 1� 2ω
ωþ1þðω�1Þe�ωt=τ

� �� �
:

ð24Þ

The marginal distribution (23) is fully explicit in terms of the time dependence.
When the medium is rapidly fluctuating, it is difficult to control the initial

diffusivity D0. Since the Feller process (1) for the stochastic diffusivity Dt is
stationary, a random “pickup” of the initial diffusivity D0 can be naturally realized
by using the stationary distribution of Dt, which is known to be the Gamma
distribution43,44

ΠðDÞ ¼ ννDν�1

ΓðνÞ�Dν
e�νD=�D; ð25Þ

characterized by the scale �D=ν (with the mean �D) and the shape parameter ν ¼
�D= τσ2ð Þ (with Γ(ν) being the Euler gamma function). We note that, from a
physical point of view, local diffusivities should be bounded by the diffusivity of the
particle in water, Dmax, which should thus provide a finite cut-off of the
distribution. However, the mean diffusivity �D in the cytoplasm is much smaller
than Dmax so that the probability of getting diffusivities larger than Dmax is
exponentially small. In other words, the exponential decay in Eq. (25) effectively
substitutes the finite cut-off.

The kth moment of the stationary diffusivity reads

Dk
� �

¼
ΓðνþkÞ
ΓðνÞνk

�Dk ðk>� νÞ;
1 ðk � �νÞ;

(
ð26Þ

which is valid even for non-integer and negative k. From this relation, one can
express the inverse of the shape parameter as

1
ν
¼ varfDg

meanfDg2
; ð27Þ

i.e., 1/ν characterizes the strength of diffusivity heterogeneity: larger 1/ν
corresponds to a broader distribution of stationary diffusivities and thus to stronger
disorder. More generally, the role of the parameter 1/ν can be seen by rescaling the
diffusivity Dt by its mean �D and the time t by τ in Eq. (1) that gives

d Dt=�Dð Þ ¼ 1� Dt=�Dð Þdðt=τÞ þ
ffiffiffiffiffiffiffiffi
1=ν

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt=�D

q
dWt=τ : ð28Þ

The factor
ffiffiffiffiffiffiffiffi
1=ν

p
controls the amplitude of the fluctuation term and thus the

strength of the dynamic disorder.
The average of the propagator P(x, t|x0, D0) over random realizations of the

initial diffusivity D0, drawn from the Gamma distribution (25), yields the marginal
propagator in a bounded domain:

P x; tjx0ð Þ ¼
Z1
0

dD0 Π D0ð ÞP x; tjx0;D0ð Þ: ð29Þ

Substitution of Eq. (23) into this relation implies the spectral decomposition (2),
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with

ϒðt; λÞ ¼
Z1
0

dD0 Π D0ð Þϒ t; λjD0ð Þ: ð30Þ

The computation of this integral yields Eq. (3).
The reactive properties of the boundary of the confining domain Ω and its

interaction with diffusing particles are introduced via boundary conditions in a
standard way50,52, and fully captured by the Laplacian eigenmodes. When the
boundary is a passive, impenetrable wall that constrains the particle inside a
bounded domain, Neumann boundary condition is imposed to ensure no
probability flux across the boundary: ∂P/∂n= 0, where ∂/∂n is the normal
derivative. In this case, the particle is always present in the domain, and the
normalization of the propagator is preserved in time:Z

Ω

dxP x; tjx0ð Þ ¼ 1: ð31Þ

However, when the boundary contains holes, traps or reactive regions that may kill,
adsorb, transfer or transform the particle or modify its state upon the first
encounter, Dirichlet boundary condition is imposed on these perfectly reactive
parts of the boundary. In this case, the propagator P(x, t|x0) should be interpreted
as the probability density for a particle started at x0 to be found at x at time t,
without being destroyed or modified on its way. As a consequence, the
normalization of the propagator is not preserved and gradually decreases with time.
The above integral yields thus the survival probability up to time t, S(t|x0), for
which Eq. (2) implies

S tjx0ð Þ ¼
X1
n¼1

un x0ð Þϒ t; λnð Þ
Z
Ω

dxunðxÞ: ð32Þ

This quantity can also be understood as one minus the cumulative distribution
function (cdf) of the random first-passage time T , at which the particle reaches the
target to be destroyed, chemically transformed or modified on the reactive region:
S tjx0ð Þ= 1� Px0

T <tf g. In other words, T is the first-passage time to a reaction
event, whatever its microscopic mechanism is. The time derivative of the cdf gives
the probability density function of this first-passage time:

ρ tjx0ð Þ ¼ �
X1
n¼1

un x0ð Þϒ′ t; λnð Þ
Z
Ω

dxunðxÞ; ð33Þ

where ϒ′(t;λ), given explicitly by Eq. (5), denotes the time derivative of ϒ(t;λ) from
Eq. (3). Finally, the mean FPT can be obtained by integrating tρ(t|x0) over t from 0
to ∞ that yields

Th ix0¼
X1
n¼1

un x0ð Þ
Z
Ω

dx unðxÞ
Z1
0

dtϒ t; λnð Þ: ð34Þ

Note that the last integral can be expressed in terms of the Gauss hypergeometric
function as R1

0
dtϒðt; λÞ ¼ 2τð4ωÞν

νðω�1Þðωþ1Þ2ν

´ 2F1
νð1�1=ωÞ

2 ; ν; νð1�1=ωÞ
2 þ 1; ðω�1Þ2

ðωþ1Þ2
� �

:

ð35Þ

It is worth noting that many peculiar properties of heterogeneous diffusion-
limited reactions and related first-passage phenomena originate from the average
over the initial diffusivity D0. For instance, for a given realization of D0, the short-
time behavior of the probability density ρ(t|x0) is determined by Eq. (9) for
homogeneous diffusion (with �D replaced by D0). This probability density function
is very sensitive to the chosen D0 and exhibits strong variations between random
realizations of D0, particularly at short times. This observation naturally raises the
question of a reliable interpretation of single-particle realizations and their
ensemble average. Moreover, an empirical average over a finite number of
realizations depends on that number, and thus may lead to transient regimes. This
is particularly clear within the superstatistical approximation (see the following
section for details) when the exponential function exp(−D0tλn) from the spectral
decomposition of the propagator for homogeneous diffusion is averaged over D0

drawn from the stationary Gamma distribution (25): while the exact average (over
infinitely many realizations) gives a power law 1þ �Dtλn=νð Þ�ν , an empirical
average over a finite number of realizations yields a linear combination of
exponential functions and thus, ultimately, decays exponentially. When the
number of realizations increases, this linear combination becomes closer and closer
to the power law at intermediate times, but this regime is still terminated by an
exponential cut-off. In other words, the ensemble average over the initial diffusivity
accurately describes the diffusion-reaction properties of a heterogeneous medium if
the number of realizations is large enough.

Superstatistical approximation. Although we have derived in the previous section
the exact form of the propagator and related quantities, their short-time behavior is
determined by infinitely many eigenmodes and thus remains challenging to access.
To overcome this difficulty, one can resort to a superstatistical approximation73,74,
a common simplified way for accounting for diffusivity heterogeneities. In a nut-
shell, the effect of disorder is approximately incorporated by assuming that a
particle diffuses with a constant but randomly chosen diffusivity D0, whereas the
resulting propagator and related quantities are obtained by averaging over the
distribution of the initial diffusivity D0. As discussed in ref. 41,43, the superstatistical
description accurately approximates the propagator in R at short times, t � τ,
when the stochastic diffusivity Dt does not evolve too far from its initial value D0,
but fails at long times. It is instructive to compare this approximation to our exact
solution. The propagator for homogeneous diffusion with a constant diffusivity D0

admits a spectral decomposition

Phom x; tjx0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þexp �D0tλnð Þ: ð36Þ

Since diffusivity heterogeneities in a stationary regime are described by the Gamma
distribution (25), the average of the propagator with this distribution yields

P0 x; tjx0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þ 1þ λn �Dt=νð Þ�ν
; ð37Þ

where the subscript 0 highlights the short-time range of validity of this super-
statistical approximation. One also approximates the probability density function
of the first-passage time as

ρ0 tjx0ð Þ ¼ �D
X1
n¼1

λn un x0ð Þ
1þ λn �Dt=νð Þνþ1

Z
Ω

dxunðxÞ: ð38Þ

In particular, the propagator and the probability density function exhibit a power-
law long-time decay that disagrees with the exponential decay discussed in the
Result section. Nevertheless, we will show below that these superstatistical
approximations are accurate at short times.

We focus on the short-time behavior of the probability density function ρ(t|x0)
of the first-passage time to a perfectly reactive region Γ on the boundary of the
confining domain Ω. For Brownian motion with diffusivity D0, the short-time
behavior of this density is well known:

ρhom tjx0ð Þ ’ δffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πD0t3

p exp �δ2= 4D0tð Þ
	 


; ð39Þ

where δ is the distance from the starting point x0 to the reactive region Γ. As a very
fast arrival to the reactive region is realized by a “direct trajectory”75 from x0 to the
closest points on Γ, the right-hand side of Eq. (39) is close to the exact probability
density function of the first-passage time to an absorbing point on the half-line52.
The average of Eq. (39) with the Gamma distribution (25) yields the short-time
behavior of the probability density function:

ρ tjx0ð Þ ’ 21=2�ν

ΓðνÞ
ffiffiffi
π

p
t
zνþ1=2
0 Kν�1=2 z0ð Þ; ð40Þ

where z0 ¼ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

p
, and Kν(z) is the modified Bessel function of the second

kind. As t → 0, one has z0 →∞, and the asymptotic behavior of Kν(z) yields

ρ tjx0ð Þ ’ t�1 2�ν

ΓðνÞ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

q� �ν

e�δ
ffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

p
: ð41Þ

We note that the numerical prefactor can be affected by the geometric structure of
the domain. For instance, if the domain is an interval and the particle starts from
the middle, then both absorbing endpoints are equally accessible that doubles
chances to reach the target at short times, and the asymptotic relation (41) should
be multiplied by 2. Ignoring the numerical prefactor, one gets Eq. (8).

The short-time asymptotic relation (41) is valid as soon as δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν= �Dtð Þ

p
� 1 and

t � τ that can be written as

t=τ � min 1; δ2= σ2τ2
	 
� �

: ð42Þ

When the distance to the target δ is greater than the disorder length scale στ, the
accuracy of the short-time relation is only limited by the time scale τ. In turn, when
δ < στ, the major limitation is t � νδ2=�D.

Figure 4 illustrates the quality of the superstatistical approximation of the
probability density ρ(t|0) of the first-passage time from the center to the perfectly
reactive boundary of a ball of radius R. In this case, the superstatistical
approximation (38) reads

ρ0ðtj0Þ ¼
2π2 �D
R2

X1
n¼1

n2ð�1Þn�1 1þ
�Dtπ2n2

νR2

� ��ν�1

: ð43Þ

Note that this superstatistical approximation does not depend on the disorder scale
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μ= στ/R. When the disorder scale μ is large, the diffusivity Dt does not change
much from its randomly chosen starting value D0, so that the superstatistical
approximation is accurate for a broad range of times (left upper corner of contour
plots in Fig. 4). In this regime, deviations appear only at relatively long times (right
upper corner). As the disorder scale μ decreases, the validity range of the
superstatistical approximation progressively shrinks toward very short times. This
is true for both weak (1/ν= 0.5) and strong (1/ν= 2) disorder, deviations being
higher in the latter case. We conclude that the superstatistical approximation and
the resulting short-time behavior are accurate when μ is not too small.

Limiting behavior of the probability density function. Figure 2 illustrated the
behavior of the probability density function ρ(t|x0) of the first-passage time to a
perfectly reactive surface of a ball of radius R. We explored the space (μ, 1/ν) of
parameters characterizing the scale and the strength of the dynamic disorder,
respectively:

μ ¼ στ=R; 1=ν ¼ τσ2=�D: ð44Þ

In particular, we studied the impact of these parameters onto the short-time and
long-time tails of the probability density. In this section, we investigate the beha-
vior of the probability density ρ(t|x0) in two limits: μ → 0 (with fixed 1/ν) and 1/ν →
0 (with fixed μ).

We first recall that the function ϒ(t;λ) from Eq. (3) converges to

ϒhomðt; λÞ ¼ exp ��Dtλð Þ ð45Þ

for homogeneous diffusion when either the amplitude σ of diffusivity fluctuations
vanishes (with fixed τ), or their time scale τ vanishes (with fixed σ). However, the
limiting behavior for μ → 0 or 1/ν → 0 is more intricate. Fixing R and �D, one can
express σ and τ from Eq. (44) as

σ ¼
�D
R

1
μν

; τ ¼ R2

�D
νμ2: ð46Þ

The limit μ → 0 (with fixed 1/ν) implies the double limit σ →∞ and τ → 0, i.e.,

fluctuations of diffusivity become giant but rapidly reverting to the mean. In turn,
the limit 1/ν → 0 (with fixed μ) implies the double limit σ → 0 and τ →∞, i.e.,
fluctuations of diffusivity are small but very slowly reverting to the mean. It is thus
not clear, a priori, whether a diffusing particle would manage to average out such
diffusivities to be described by homogeneous diffusion.

To clarify these points, we rewrite the function ϒ(t;λ) in terms of ν and μ as

ϒðt; λÞ ¼ 4ωe�ðω�1Þ̂t=ð2νμ2Þ

ðωþ 1Þ2 � ðω� 1Þ2e�ωt̂=ðνμ2Þ

 !ν

; ð47Þ

where t̂ ¼ �Dt=R2 is the rescaled time, and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2R2λ

p
.

In the limit 1/ν → 0 (with fixed μ), one can expand the exponential function
e�ωt̂=ðνμ2Þ in the denominator of Eq. (47) to get, for a fixed t,

ϒðt; λÞ ’ ϒhomðt; λÞ þ Oð1=νÞ:

As a consequence, the probability density ρ(t|x0) approaches that for homogeneous
diffusion as 1/ν is getting smaller. Since the time t stands in the small expansion
parameter, the functions ρ(t|x0) and ρhom(t|x0) are closer to each other for smaller t.

In the other limit μ → 0 (with 1/ν fixed), one uses the Taylor expansion ω≃ 1+
2μ2R2λ+O(μ4) for a fixed λ to show that

ϒðt; λÞ ’ ϒhomðt; λÞ þ O μ2
	 


: ð48Þ

One sees again that the function ϒ(t;λ) converges to that for homogeneous
diffusion in this limit. However, the probability density ρ(t|x0) remains different
from ρhom(t|x0) at short times. In fact, the expansion (48) holds for any fixed λ,
whereas the spectral decomposition (4) involves terms with Laplacian eigenvalues
λn that grow to infinity as n increases (here we assume that λn are enumerated in an
increasing order). Regardless of the smallness of the parameter μ > 0, there exists an
index n0 such that μ2R2λn � 1 for all n > n0 so that the above expansion is not
applicable. In other words, for any μ > 0, there remain infinitely many terms
ϒ′(t;λn) that significantly differ from ϒ′

hom t; λnð Þ. As these terms determine the
short-time asymptotic behavior of the probability density function, ρ(t|x0) exhibits
deviations from ρhom(t|x0) at (very) short times for any μ > 0.

Unbounded domains. The derivation of the propagator at the beginning of the
Methods section is applicable for any bounded domain Ω � R

d , for which the
eigenvalue problem for the Laplace operator is well defined, and the spectrum is
known to be discrete. An extension to unbounded domains should handle the
continuous spectrum of the Laplace operator, in particular, the absence of L2-
normalized eigenfunctions. For instance, the propagator for the whole line R

derived in ref. 43 admits a form similar to Eq. (2), in which the eigenvalues λn are
replaced by q2, the eigenfunctions un(x) and un(x0) are replaced by Fourier modes
eiqx and e�iqx0 , and the sum is turned into the integral over q:

P
R
x; tjx0ð Þ ¼

Z1
�1

dq
2π

eiqðx�x0Þϒ t; q2
	 


: ð49Þ

To illustrate the impact of dynamic disorder in the case of unbounded domains, we
focus on two important examples: the half-space and the exterior of a ball. For
these examples, one can use the known form of the propagator in R

d , and apply the
image method.

Half-space. The propagator in R
d was derived in ref. 43 in the form

P
R

d x; tjx0ð Þ ¼
Z
R

d

dq

ð2πÞd
eiqðx�x0Þϒ t; qj j2

	 

: ð50Þ

In contrast to the Gaussian propagator for homogeneous diffusion, the propagator
P
R

d x; tjx0ð Þ in d dimensions is not the product of d one-dimensional propagators
because ϒ is not an exponential function of qj j2. This is expected because the
motions along different directions are correlated via the stochastic diffusivity Dt.

The propagator in a half-space Rd
þ with a perfectly reactive hyperplane can be

obtained by the image method:

P
R

d
þ
x; tjx0ð Þ ¼ P

R
d x; tjx0ð Þ � P

R
d x; tjbx0ð Þ; ð51Þ

where bx0 is the mirror reflection of x0 with respect to the reactive hyperplane. The
survival probability in the half-space is deduced by integrating this propagator over
x 2 R

d
þ . Importantly, the statistics of the first-passage time to the reactive

hyperplane is not affected by the lateral motion (that is parallel to the reactive
hyperplane), as for homogeneous diffusion. In fact, the integral of the propagator
P
R

d x; tjx0ð Þ over all lateral coordinates yields the one-dimensional propagator in
the orthogonal direction (that we choose to be along x1 for clarity):Z

R
d�1

dx2 ¼ dxd PRd x; tjx0ð Þ ¼ P
R

x1; tjx0;1
� �

: ð52Þ
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Fig. 4 The quality of the superstatistical approximation. Illustration for the
probability density function of the first-passage time from the center to the
perfectly reactive boundary of a ball of radius R. The ratio between the
exact solution ρ(t|0) from Eq. (10) and its superstatistical approximation
ρ0(t|0) from Eq. (43) is encoded by color and shown by 16 filled contours,
for ν= 2 (a) and ν= 0.5 (b). The approximation is accurate when the ratio
is close to 1 (left upper corner). Here ν ¼ �D= τσ2

	 

and μ= στ/R
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In other words, the computation of the survival probability and the probability
density function of the first-passage time in the half-space is reduced to that for a
half-line with an absorbing endpoint. We focus thus on this one-dimensional
problem.

Using the image method, we deduce the propagator on the half-line (0, ∞) with
an absorbing endpoint at 0:

P x; tjx0ð Þ ¼ P
R
x; tjx0ð Þ � P

R
x; tj � x0ð Þ

¼ � i
π

R1
�1

dqeiqx sin qx0ð Þϒ t; q2ð Þ: ð53Þ

This is the probability density for a particle started at x0 > 0 to be at x ≥ 0 at time t,
without hitting the absorbing endpoint 0 on its way. Integrating the propagator
over the arrival point x, one gets the survival probability S(t|x0)

S tjx0ð Þ ¼
Z1
0

dxP x; tjx0ð Þ ¼ 2
π

Z1
0

dq
q
sin qx0ð Þϒ t; q2

	 

; ð54Þ

from which the probability density function of the first-passage time is

ρ tjx0ð Þ ¼ � ∂S tjx0ð Þ
∂t

¼ � 2
π

Z1
0

dq
q
sin qx0ð Þϒ′ t; q2

	 

; ð55Þ

where ϒ′(t;λ) is given by Eq. (5). For comparison, the probability density function
for homogeneous diffusion with diffusivity �D is

ρhom tjx0ð Þ ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffi
4π�Dt3

p exp � x20
4�Dt

� �
: ð56Þ

In the long-time limit, the terms e−ωt/τ in Eq. (5) vanish, yielding

ρ tjx0ð Þ ’
Z1
0

νdq
πτq

sin qx0ð Þðω� 1Þe�ν
2 ω�1ð Þtτ

4ω

ωþ 1ð Þ2

 !ν

; ð57Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2τ2q2

p
. Changing the integration variable and eliminating all

terms of order 1/t or higher, one gets the classic power-law behavior

ρ tjx0ð Þ ’ x0ffiffiffiffiffiffiffiffiffiffiffiffi
4π�Dt3

p ðt ! 1Þ; ð58Þ

that corresponds to Brownian motion (cf. Eq. (56)). In this limit, the particle has
enough time to average out the disorder in diffusivities and thus behaves as a
Brownian particle with the mean diffusivity �D. This conclusion contrasts with the
case of bounded domains, for which the long-time asymptotic behavior could be
significantly affected by the disorder (see Eq. (7) and the related discussion in the
Results section). The main difference for unbounded domains is the absence of the
largest geometric length scale (an analog of λ�1=2

1 ) as the Laplacian spectrum is
continuous and bounded by zero. From a practical point of view, the long-time
behavior is dominated by very long trajectories exploring the unbounded domain
so that diffusivity heterogeneities are averaged out independently of their length
scale στ. In particular, the mean FPT is infinite, as for homogeneous diffusion.

The short-time behavior can be obtained via the superstatistical approach by
averaging the Gaussian propagator for Brownian motion with the Gamma
distribution (25) for diffusivities and then applying the image method. First, one
gets the averaged propagator in R

P
R;0 x; tjx0ð Þ ¼

ffiffiffi
ν

pffiffiffiffiffi
�Dt

p Kν x � x0j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

q� �
; ð59Þ

where we defined

KνðzÞ ¼
21=2�ν

ΓðνÞ
ffiffiffi
π

p zν�1=2Kν�1
2
ðzÞ: ð60Þ

The image method yields the averaged propagator on the half-line, from which the
superstatistical approximation of the survival probability follows

S0 tjx0ð Þ ¼ 2
Zz0
0

dzKνðzÞ; ð61Þ

where z0 ¼ x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

p
. This integral can be expressed via Struve functions. In

turn, the superstatistical approximation of the probability density function is much
simpler:

ρ0 tjx0ð Þ ¼ z0Kν z0ð Þ
t

: ð62Þ

Naturally, we retrieved the right-hand side of Eq. (40), which was obtained as an

approximate asymptotic relation for bounded domains. As t → 0, this relation leads
to the asymptotic behavior (8). As expected, the short-time behavior does not
depend on the type of the confining domain. It is worth noting that for the half-
line, the superstatistical approach captures qualitatively even the long-time
asymptotic behavior for ν > 1/2:

ρ0 tjx0ð Þ ’ Γðν � 1=2Þ
ffiffiffi
ν

p

ΓðνÞ
x0ffiffiffiffiffiffiffiffiffiffiffiffi
4π�Dt3

p ðt ! 1Þ; ð63Þ

but overestimates the probability density by a numerical factor depending only on ν.
Figure 5 compares the exact probability density ρ(t|x0) from Eq. (55), its

superstatistical approximation (62), and the probability density (56) for
homogeneous diffusion. One can see that the superstatistical approximation turns
out to be very accurate not only at short times, but also at intermediate times. At
long times, this approximation provides the correct power law t−3/2 but
overestimates the prefactor (cf. Eq. (63)). In turn, the probability density function
for Brownian motion yields the correct long-time asymptotic behavior but
generally fails.

As discussed in the Results section, the macroscopic reaction rate J(t) (i.e., the
diffusive flux onto the reactive target) can be obtained by averaging the probability
density ρ(t|x0) with a prescribed initial concentration of particles c0(x0):

JðtÞ ¼
Z1
0

dx0 c0 x0ð Þρ tjx0ð Þ: ð64Þ

Setting a uniform initial concentration c0 and using the probability density function
in Eq. (55), we get

JðtÞ ¼ � 2c0
π

Z1
0

dx0

Z1
0

dq
sin qx0ð Þ

q
ϒ′ t; q2
	 


: ð65Þ

To evaluate the integral, we introduce an auxiliary integral

IsðtÞ ¼
R1
0
dx0 e

�sx0
R1
0
dq sinqx0

q ϒ′ t; q2ð Þ

¼
R1
0

dqϒ′ t;q2ð Þ
s2þq2

ð66Þ

and then get the macroscopic reaction rate

JðtÞ ¼ � 2c0
π

lim
s!0

IsðtÞ ¼ � 2c0
π

Z1
0

dqϒ′ t; q2ð Þ
q2

: ð67Þ

As expected for one-dimensional setting, the macroscopic reaction rate vanishes in
the long-time limit as all diffusing particles are progressively absorbed and finally
exhausted.

Exterior of a ball. We provide the exact solution to another important example of
an unbounded domain – the exterior of a ball of radius R with perfectly reactive
boundary. Since the seminal work by Smoluchowski62, this is an emblematic
problem of diffusion-limited reactions.
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Fig. 5 First-passage times on the half-line. Probability density function
ρ(t|x0) of the first-passage time to the absorbing endpoint 0 of the half-line
(0, ∞), with �D= 1, σ= 1, x0= 1, and τ= 2 (here arbitrary units are used).
The exact solution (55) (solid line) is compared to the superstatistical
approximation (62) (dashed line) and the probability density function (56)
for homogeneous diffusion (dash-dotted line)
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Survival probability. It is convenient to use the representation of the propagator
(50) in spherical coordinates derived in ref. 43:

P
R

d x; tjx0ð Þ ¼ δ1�d=2

ð2πÞd=2
Z1
0

dqqd=2 Jd
2�1ðqδÞϒ t; q2

	 

; ð68Þ

where δ ¼ x � x0k k is the distance between the points x and x0, and Jν(z) is the
Bessel function of the first kind.

In three dimensions (d= 3), representing the points x and x0 in spherical
coordinates with respect to a fixed center and averaging over the angular
coordinates, one can rewrite the above propagator as

P
R

3 r; tjr0ð Þ ¼
Z1
0

dq
cos q r � r0ð Þð Þ � cos q r þ r0ð Þð Þ

4π2rr0
ϒ t; q2
	 


ð69Þ

(here we oriented the spherical coordinates in the direction to the point x0 so that
x0= (r0, 0, 0) and used thus δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rr0cosθ þ r20

p
). Examining this particular

form, we realize that the propagator outside a ball of radius R with Dirichlet
boundary condition reads

P r; tjr0ð Þ ¼
Z1
0

dq
cos q r � r0ð Þð Þ � cos q r þ r0 � 2Rð Þð Þ

4π2rr0
ϒ t; q2
	 


: ð70Þ

In order to compute the integral over the volume, we first evaluate an auxiliary
integral

Is tjr0ð Þ ¼ 4π
R1
R
dr r e�sr P r; tjr0ð Þ

¼ 2e�sR

πr0

R1
0
dq qsin q r0�Rð Þð Þ

q2þs2 ϒ t; q2ð Þ
ð71Þ

The derivative of this expression with respect to s, evaluated at s= 0 and taken with
the sign minus, yields the integral of P(r, t|r0) over the volume and thus the survival
probability:

S tjr0ð Þ ¼ r0 � R
r0

þ 2R
πr0

Z1
0

dq
sin q r0 � Rð Þð Þ

q
ϒ t; q2
	 


: ð72Þ

Note that the first term, independent of the function ϒ, comes from an accurate
evaluation of the limit s → 0 of the integral term with s/(q2+ s2)2 in ∂Is(t|r0)/∂s. This
term is the probability of escaping to infinity. Note also that ϒ(t= 0;q2)= 1 implies
the correct initial condition S(t= 0|r0)= 1. The time derivative of Eq. (72) yields

ρ tjr0ð Þ ¼ � 2R
πr0

Z1
0

dq
sin q r0 � Rð Þð Þ

q
ϒ′ t; q2
	 


; ð73Þ

with ϒ′(t;λ) given by Eq. (5). As expected, this probability density function is not
normalized to 1 because the probability of escape to infinity is not zero.

The long-time asymptotic relation

ϒ t; q2
	 


’ 4ω

ðωþ 1Þ2

 !ν

exp � 2�Dtq2

1þ ω

� �
ð74Þ

implies that the dominant contribution to the integral in Eqs. (70) and (72) comes
from q ≈ 0, at which ω ≈ 1, and thus one gets ϒ t; q2ð Þ � exp ��Dtq2ð Þ. As a
consequence, the long-time asymptotic behavior of the propagator, of the survival
probability, and of the probability density function are close to that for Brownian
motion with the constant diffusivity D ¼ �D:

Phom r; tjr0ð Þ ¼
exp � r�r0ð Þ2

4Dt

� �
� exp � rþr0�2Rð Þ2

4Dt

� �
8πrr0

ffiffiffiffiffiffiffiffi
πDt

p ; ð75Þ

Shom tjr0ð Þ ¼ r0 � R
r0

þ R
r0
erf r0 � Rð Þ=

ffiffiffiffiffiffiffiffi
4Dt

p� �
; ð76Þ

and

ρhom tjr0ð Þ ¼ R
r0

r0 � Rð Þexp � r0�Rð Þ2
4Dt

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
4πDt3

p ; ð77Þ

where erf(z) is the error function. As for the half-line, the diffusing particle has
enough time to average out heterogeneities of diffusivities and thus to move
asymptotically as via homogeneous diffusion.

Applying the superstatistical description to the propagator in Eq. (75) with the
Gamma distribution (25) for D, one finds

P0 r; tjr0ð Þ ¼ 1
4πrr0

ffiffi
ν

pffiffiffiffi
�Dt

p Kν r � r0j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

p� �n
� Kν r þ r0 � 2Rj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν= �Dtð Þ

p� �o
;

ð78Þ

with KνðzÞ defined by Eq. (60). We get thus the superstatistical approximation of
the survival probability

S0 tjr0ð Þ ¼ 1� 2R
r0

Z1
z0

dzKνðzÞ; ð79Þ

with z0 ¼ r0 � Rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð�DtÞ

p
, and that of the probability density function:

ρ0 tjr0ð Þ ¼ R
r0

z0Kν z0ð Þ
t

: ð80Þ

This superstatistical expression provides the short-time asymptotic behavior of the
exact probability density function. As expected, this asymptotic relation is almost
identical to its one-dimensional counterpart in Eq. (40), apart from the additional
factor R/r0 accounting for the probability to reach the target.

Figure 6 illustrates the behavior of the probability density function ρ(t|r0). As
for Fig. 2, we explore various combinations of dimensionless parameters (μ, 1/ν)
characterizing the disorder scale and strength, in two complementary ways. In the
top panels (a–c), we fix three values of the scale μ and range “continuously” 1/ν
from 10−1 and 101. The short-time behavior of the density ρ(t|r0) (the left tail) is
almost not affected by the scale μ, as expected from the asymptotic relation (8) and
the superstatistical approximation (80). In turn, the long-time behavior is mostly
determined by μ but also weakly depends on ν. For the short-range disorder (μ=
0.1), the right tail almost coincides with Eq. (77) for homogeneous diffusion,
regardless the value of 1/ν in the considered range. As the scale μ increases, the
particle needs more time to homogenize stochastic diffusivities, and one observes
deviations from Eq. (77), which are larger for stronger disorder (larger 1/ν). In the
bottom panels (d,e,f), we fix three values of the disorder strength 1/ν and change
the scale μ “continuously”. One sees again that the left tail is almost independent of
μ, while the right tail exhibits such a dependence. We stress that variations of this
probability density function are in general lower than that shown in Fig. 2 for a
bounded domain. Once again, the exploration of an unbounded domain offers
more opportunities for a diffusing particle to homogenize stochastic diffusivities at
long times.

Macroscopic reaction rate. The macroscopic reaction rate J(t) is obtained by
averaging the probability density function in Eq. (73) with a uniform initial con-
centration c0

JðtÞ ¼ �8c0R
Z1
R

dr0 r0

Z1
0

dq
sin q r0 � Rð Þð Þ

q
ϒ′ t; q2
	 


: ð81Þ

Using again the auxiliary integral (66), we get

JðtÞ ¼ �8c0R lim
s!1

Z1
0

dqϒ′ t; q2ð Þ
s2 þ q2

Rþ 2s
s2 þ q2

� �
: ð82Þ

Given that ϒ′ t; q2ð Þ ’ ��Dq2 þ O q4ð Þ as q → 0, the limit of the first term is obtained
by setting s= 0. For the second term, one can extend the integration to −∞ by
symmetry and integrate by parts to get

JðtÞ ¼ �8c0R R
R1
0

dqϒ′ t;q2ð Þ
q2

�
þ lim

s!0

1
2

R1
0

dq s
s2þq2

∂
∂q

ϒ′ t;q2ð Þ
q

� ��
:

As s → 0, the ratio s/(s2+ q2) converges to πδ(q) allowing one to evaluate the
integral explicitly and yielding

JðtÞ ¼ 4πc0R�D 1� 2R
π�D

Z1
0

dq
ϒ′ t; q2ð Þ

q2

0@ 1A: ð83Þ

For instance, one has ϒ′
hom t; q2ð Þ ¼ ��Dq2e��Dtq2 for Brownian motion with diffu-

sivity �D, and thus retrieves the classic Smoluchowski reaction rate62:

JhomðtÞ ¼ 4πc0R�D 1þ Rffiffiffiffiffiffiffiffi
π�Dt

p
� �

: ð84Þ

In the long-time limit, the second term in both Eqs. (83) and (84) vanishes, and one
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recovers the Smoluchowski steady-state reaction rate:

JS ¼ 4πc0 �DR: ð85Þ

In turn, the approach to the steady-state solution differs for homogeneous and
heterogeneous cases.

Using the relation (104), one can rewrite the integral in Eq. (83) asZ1
0

dq
ϒ′ t; q2ð Þ

q2
¼ �

ffiffiffi
π

p

2

Z1
0

dT
qðt;TÞffiffiffiffi

T
p ; ð86Þ

where q(t;T) is the probability density function of the first moment t when the
integrated diffusivity Tt crosses the level T (see the last section). In the short-time
limit, one can resort again to the superstatistical approximation by setting Tt≃Dt,
with D randomly drawn from the Gamma distribution (25). In other words, we
approximate q(t;T) as qðt;TÞ � δðt � T=DÞh i, where the average is over all
random realizations of D. This gives the following short-time approximation:

qðt;TÞ � 1
ΓðνÞt

νT
�Dt

� �ν

exp � νT
�Dt

� �
: ð87Þ

Substitution of this approximation into Eq. (86) results in the short-time
asymptotic behavior of the rate:

JðtÞ ’ 4πc0R�D 1þ Γðν þ 1=2Þffiffiffi
ν

p
ΓðνÞ

Rffiffiffiffiffiffiffiffi
π�Dt

p
� �

ðt ! 0Þ: ð88Þ

This relation is close to Eq. (84) for Brownian motion with mean diffusivity �D, in
which the divergent t−1/2 term is multiplied by the explicit prefactor Γðνþ1=2Þffiffi

ν
p

ΓðνÞ
depending only on ν. This prefactor monotonously grows from 0 to 1 as ν increases
from 0 to infinity (the limit ν →∞ corresponding to Brownian motion). As a
consequence, the dynamic disorder tends to diminish the macroscopic reaction
rate, in agreement with our statement about an increase of the mean FPT in
bounded domains. In turn, the impact of disorder for unbounded domains is rather
weak, for instance, the prefactor is 0.8 for ν= 1/2. The approximate asymptotic

relation (88) does not depend on the disorder scale μ. According to the
superstatistical approximation, this relation is actually the lower bound for the flux
J(t) corresponding to the limit τ → 0 or, equivalently, μ →∞. In turn, the exact
expression (84) for Brownian motion corresponds to the limit μ → 0 and thus is
close to the upper bound for J(t). Although the flux is not necessarily a
monotonous function of μ, this qualitative analysis accurately describes the
behavior of the flux J(t). Figure 7 shows the macroscopic reaction rate J(t) from Eq.
(83) normalized by its steady-state value JS. For both weak (1/ν= 0.5) and strong
(1/ν= 2) disorder, a substantial increase of the disorder scale μ= στ/R from 10−1

to 101 has only a minor effect, and all curves are close to both the classic flux
Jhom(t) from Eq. (84) and the asymptotic relation (88).

We stress that the total flux J(t) was computed by integrating the probability
fluxes ρ(t|x0). In turn, the common way of obtaining the total flux consists in
finding the concentration profile c(x, t) and then integrating the diffusive flux
density, −D∂c(x, t)/∂n, over the target surface ∂Ω, where ∂/∂n is the normal
derivative oriented outward the confining domain. However, the diffusivity D is
random in the annealed model of heterogeneous diffusion that prohibits using the
above form of the diffusive flux density. If the random D is replaced by the mean
diffusivity �D, the total flux could then be approximated as

JappðtÞ ¼
R
∂Ω

ds: ��D ∂c0S tjx0ð Þ
∂n

� ����
x0¼s

¼ 4πRc0 �D 1þ 2R
π

R1
0
dqϒ t; q2ð Þ

� �
:

ð89Þ

While the long-time limit of the flux (the first term) is the same as in the exact
solution (83), the approach to this limit, given by the second term, is different. The
formulas (83) and (89) are identical only for homogeneous diffusion. This
computation illustrates some pitfalls of applying conventional tools of
homogeneous diffusion to heterogeneous one.

For comparison, we also compute the macroscopic reaction rate for
heterogeneous diffusion inside a ball of radius R. From Eq. (6), one gets

JðtÞ ¼ � 8c0R
3

π

X1
n¼1

ϒ′ t; π2n2=R2ð Þ
n2

; ð90Þ
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where c0 is the uniform initial concentration. Figure 8 shows the behavior of this
rate, normalized for convenience by the Smoluchowski steady-state rate JS from Eq.
(85). As this confining domain is bounded, the reaction rate vanishes at long times,
as all particles will finally react. This is an evident difference from Fig. 7, in which
the reaction rate reaches a nonzero limit JS. For a fixed disorder strength 1/ν, the
curves exhibit a much stronger dependence on the disorder scale μ for interior
diffusion than for exterior one. This observation re-confirms that the dynamic
disorder is averaged more efficiently in unbounded domains. In turn, one observes
in both Figs. 7, 8 a broader dispersion of curves for stronger disorder. Finally, one
sees that the dynamic disorder leads to a higher reaction rate at long times, in
agreement with our conclusion that the reaction kinetics is slowed down on
average and thus more particles remain present in the confining domain.

Collective search by multiple independent particles. The description of a single
particle opens a way to investigate some basic multiparticle effects. For instance,
when N independent particles simultaneously search for a target, the distribution of
the first arrival is still determined by the survival probability for a single parti-
cle76,77. If the starting points of these particles are uniformly distributed in a region
Ω= x 2 R

3 : R< xk k<Rmax

� �
around the spherical target of radius R, one gets

SN ðtÞ ¼ P min T 1; ¼ ; T Nf g>tf g ¼
Z
Ω

dx0
V

S tjx0ð Þ

0@ 1AN

; ð91Þ

where V is the volume of Ω, and T 1; ¼ ; T N are independent first-passage times
for N particles. In the thermodynamic limit, when both N and V (or Rmax) tend to

infinity but the density c0=N/V remains fixed, one finds

�ln S1ðtÞð Þ ¼ c0

Z
x0k k>R

dx0 1� S tjx0ð Þð Þ: ð92Þ

The right-hand side is the number of particles that reacted up to time t which can
also be obtained by integrating the flux J(t) from Eq. (83):

S1ðtÞ ¼ exp �
Rt
0
dt′ Jðt′Þ

� �
¼ exp �4πc0R�D t þ 2R

π�D

R1
0
dq 1�ϒ t;q2ð Þ

q2

� �� �
:

ð93Þ

Once again, this quantity is fully determined by ϒ(t;λ). In particular, one can
use the above asymptotic relations to study the behavior of S∞(t) at short and long
times.

We note, however, that the validity of the assumption of independent particles
is debatable in the context of dynamically rearranging media. In fact, when two
particles come close to each other, they probe the same local environment and thus
should have similar diffusivities. As a consequence, the stochastic diffusivities of
these particles become correlated (locally in time). The impact of this intricate
correlation mechanism onto diffusion-controlled reactions remains an open
challenging problem for future investigations. We also note that the same issue
concerns the macroscopic reaction rate J(t) in Eq. (6), which is obtained by
superimposing probability fluxes ρ(t|x0) from independent particles with a
prescribed initial concentration c0(x0).

Subordination approach. The subordination approach consists in treating time-
dependent diffusivity as changing the “internal time” of the process41. When the
diffusivity Dt is deterministic, the diffusion equation for the propagator, ∂P/∂t=
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DtΔP, can be reduced to the “canonical” form, ∂Phom/∂Tt= ΔPhom with unit dif-
fusivity, where a new “internal time” variable is

Tt ¼
Zt
0

dt′Dt′ ð94Þ

(we call Tt “internal time”, in spite of its units m2; to get usual time units, one can
divide it by �D or another diffusivity). In other words, time-dependent diffusion can
be understood as traveling along a random path generated by ordinary Brownian
motion, but with a variable, time-dependent “speed” dTt/dt=Dt.

The same argument holds for stochastic diffusivity Dt, in which case the internal
time Tt is a stochastic process. The conventional spectral decomposition of the
propagator in the internal time Tt,

Phom x;Tt jx0ð Þ ¼
X1
n¼1

unðxÞun x0ð Þe�λnTt ; ð95Þ

should be averaged with the probability density function Q(t;T) of the integrated
diffusivity Tt:

P x; tjx0ð Þ ¼ Phom x;Tt jx0ð Þh iTt

¼
R1
0
dTQðt;TÞPhom x;Tjx0ð Þ

¼
P1
n¼1

unðxÞun x0ð Þ
Z1
0

dTQðt;TÞe�λnT

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ϒ t;λnð Þ

:

ð96Þ

One gets therefore the natural interpretation (12) of ϒ(t;λ) as the Laplace transform
of the probability density function Q(t;T) of the integrated diffusivity Tt. The
related first-passage times for the Feller process were investigated78. The
probability density function Q(t;T) “translates” the internal time T into the physical
time t. If Dt is deterministic, then Q(t;T)= δ(T− Tt) and thus ϒ(t;λ)= exp(−λTt),
as expected. Note that here we considered the internal time Tt averaged over the
initial diffusivity D0 drawn from the stationary Gamma distribution (25). In turn, if
D0 is fixed, the function ϒ(t;λ) is replaced by ϒ(t;λ|D0) from Eq. (24), which is the
Laplace transform of the corresponding probability density function Q(t;T|D0).

The numerical computation of the probability density function Q(t;T) would
require the inversion of the Laplace transform. In turn, the moments of the
integrated diffusivity Tt can be easily obtained via Eq. (12):

Ttð Þk
D E

¼ ð�1Þk lim
λ!0

∂kϒðt; λÞ
∂λk

: ð97Þ

In particular, the mean and the variance are

Tth i ¼ �Dt; var Ttf g ¼ 2τ2 �D2

ν
t=τ � 1þ e�t=τ
� �

: ð98Þ

As expected, the mean integrated diffusivities for heterogeneous and homogeneous
diffusions are identical and grow linearly with time. The variance grows
quadratically at small times (t � τ) and linearly at large times (t � τ). As a
consequence, the squared coefficient of variation,

var Ttf g
Tth i2

¼ 2τ
νt

1� τ

t
1� e�t=τ
� �� �

; ð99Þ

monotonously decreases from 1/ν at t= 0 to zero as t→∞. The shape parameter ν
thus controls the broadness of the distribution of Tt at short times, given that the
initial diffusivity D0 is randomly picked up from the Gamma distribution (25), see Eq.
(27). Note also that the right-hand side of Eq. (99) coincides with the non-Gaussian
parameter for the one-dimensional heterogeneous diffusion in the free space R43.

In the same vein, the first-passage time T to a reactive target can be related to
the first-crossing time of a random barrier by the stochastic process Tt (Fig. 3). In
fact, one can first generate a random path to the target by ordinary Brownian
motion with unit diffusivity and then consider a particle traveling along this path
with a time-dependent “speed”. The target is reached when the whole path is
passed through, i.e., when the internal time Tt attains the duration T hom of the
Brownian path, which is random and determined by the conventional probability
density function of the first-passage time for Brownian motion with unit diffusivity

ρhom Tjx0ð Þ ¼ Px0
T hom2ðT;TþdTÞf g

dT

¼
P1
n¼1

un x0ð Þλne�λnT
R
Ω
dxunðxÞ:

ð100Þ

Let δT= inf{t > 0:Tt > T} be the random time when the process Tt crosses a fixed

level T. Since Tt monotonously increases, one has

P δT>tf g ¼ P Tt<Tf g ¼
ZT
0

dT′Qðt;T′Þ: ð101Þ

In particular, the probability density function of the random time δT reads

qðt;TÞ ¼ � ∂P δT>tf g
∂t

¼ �
ZT
0

dT′
∂Qðt;T′Þ

∂t
: ð102Þ

If now the level T is the random duration of the Brownian path, T ¼ T hom, the
random time T ¼ δT hom

is the first-passage time to the reactive target, and its
probability density function is obtained by averaging qðt; T homÞ over the
distribution of T hom:

ρ tjx0ð Þ ¼
Z1
0

dT qðt;TÞρhom Tjx0ð Þ: ð103Þ

Substitution of Eq. (100) into this relation allows one to retrieve Eq. (4).
Multiplying Eq. (102) by e−λT and integrating over T from 0 to infinity, one can
express the Laplace transform of the density q(t;T) asZ1

0

dT e�λT qðt;TÞ ¼ �ϒ′ðt; λÞ
λ

; ð104Þ

where Eq. (12) was used. One can see that the function ϒ(t;λ) and its time
derivative ϒ′(t;λ), explicitly known from Eqs. (3) and (5), fully determine the
densities Q(t;T) and q(t;T) via Laplace transforms.

In summary, Eqs. (96) and (103) couple the spatial aspects of the problem (such
as the geometric structure of the medium, the shape, location and reactivity of the
targets, and the starting point) to the dynamic disorder represented by the
stochastic diffusivity. The spatial features do not depend on diffusivity and are
determined by homogeneous diffusion (ordinary Brownian motion). In turn, the
disorder aspects are captured via the distribution of the integrated diffusivity Tt.
Although we focused on the stochastic diffusivity modeled by the Feller process (1),
one can explore other models such as, e.g., reflected Brownian motion38, Lévy-
driven stochastic diffusivity65, or geometric Brownian motion.

On the other hand, the subordination approach is limited to the marginal
propagator P(x, t|x0) and related quantities (such as the probability density function ρ
(t|x0)) and does not yield the full propagator P(x, D, t|x0, D0) that we obtained in the
first part of Method section by solving the Fokker–Planck equation. We also stress
that the subordination does not resolve the problem of partially reactive targets with
Robin boundary condition, as discussed in the Discussion section. In fact, even
though the conventional spectral decomposition (95) is valid for partially reactive
boundary condition, its formal extension to heterogeneous diffusion via the
subordination (96) remains debatable as it would correspond to a modified model of
stochastic diffusivity Dt, in which Dt should take a fixed prescribed value when the
particle is on the target. A proper description of heterogeneous diffusion toward
partially reactive targets remains an open mathematical problem.

Code availability. All figures have been prepared by means of Matlab software.
The plotted quantities have been computed by explicit formulas provided in the
letter by using custom routines for Matlab software. While the explicit form makes
these numerical computations straightforward, custom routines are available from
the corresponding author upon request.
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