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Orthosiphon stamineus Benth. (OSB) is a well-known herbal medicine exerting various
pharmacological effects and medicinal potentials. Owing to its complex of phytochemical
constituents, as well as the ambiguous relationship between phytochemical constituents
and varied bioactivities, it is a great challenge to explore which constituents make a core
contribution to the efficacy of OSB, making it difficult to determine the efficacy makers
underlying the varied efficacies of OSB. In our work, a new strategy was exploited and
applied for investigating efficacy markers of OSB consisting of phytochemical analysis, in
vivo absorption analysis, bioactive compound screening, and bioactive compound
quantification. Using liquid chromatography coupled with mass spectrometry, a total of
34 phytochemical components were detected in the OSB extract. Subsequently, based
on in vivo absorption analysis, 14 phytochemical constituents in the form of prototypes
were retained as potential bioactive compounds. Ten diseases were selected as the
potential indications of OSB based on previous reports, and then the overall interaction
between compounds, action targets, action pathways, and diseases was revealed based
on bioinformatic analysis. After refining key pathways and targets, the interaction reversing
from pathways, targets to constituents was deduced, and the core constituents, including
tanshinone IIA, sinensetin, salvianolic acid B, rosmarinic acid, and salvigenin, were
screened out as the efficacy markers of OSB. Finally, the contents of these five
constituents were quantified in three different batches of OSB extracts. Among them,
the content of salvianolic acid Bwas the highest while the content of tanshinone IIA was the
lowest. Our work could provide a promising direction for future research on the quality
control and pharmacological mechanism of OSB.
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INTRODUCTION

The usage of herbal products as drugs for disease treatment,
cosmetics, and health supplements is truly universal as can be
seen in different regions of the world. Moreover, herbs,
commonly containing various primary and secondary
metabolites, have been exploited as a valuable source of
leading compounds, and many of the approved drugs have
been directly or indirectly derived from them (Bauer et al.,
2014). Orthosiphon stamineus Benth. (syn: Orthosiphon
aristatus (Blume) Miq.) (OSB) is a medicinal plant from the
Lamiaceae family which is widely distributed in southern China
and Southeast Asia. In China, the dried whole plant of OSB is also
named “Shen Cha,” which is a popular folk medicine of Dai
nationality (Chen et al., 2009). As a traditional medicinal herb,
OSB has been widely used for the treatment of kidney stones and
other urinary tract diseases on empiricism (Arafat et al., 2008). In
past decades, many studies have explored the pharmacological
effects and medicinal potentials of OSB. The reported therapeutic
effects of OSB included a diuretic effect for treating urinary
diseases (Adam et al., 2009), glucose-lowering ability for
treating type 2 diabetes mellitus (T2DM) (Lokman et al.,
2019), anti-inflammatory activities for managing arthritis
(Tabana et al., 2016), hepatoprotective effect for alleviating
liver injury (Yam et al., 2007), and neuroprotective ability for
improving Alzheimer’s disease (AD) (Retinasamy et al.,
2020), etc.

Many constituents have been identified in this herb and the
major compounds included phenolic acids, polymethoxylated
flavonoids, terpenoids, hexoses, and saponins (Malterud et al.,
1989; Tezuka et al., 2000; Nguyen et al., 2004; Hossain et al., 2013;
Guo et al., 2019b). In previous studies, the water-soluble
constituents, such as protocatechuic acid, caffeic acid, and
danshensu, were regarded as the key bioactive constituents,
since they were found to possess anti-oxidant and anti-
inflammatory properties (Nuengchamnong et al., 2011;
Alshawsh et al., 2012). Meanwhile, the alcohol-soluble
constituents including sinensetin, eupatorin, and 3′-hydroxy-
5,6,7,4′-tetramethoxyflavone (TMF), were also reported to
exert various pharmacological activities, thus the efficacy of
OSB has also been attributed to them in several studies (Yam
et al., 2008; Yam et al., 2009; Chan et al., 2017). However, there are
dozens of constituents in OSB, so many of them have been
reported to exhibit bioactivities. Furthermore, the multiple
constituents could synergistically act on targets to yield a
holistic therapeutic effect. Consequently, it is a great challenge
to explore which constituents make a core contribution to the
efficacy of OSB. Likewise, these issues also make it difficult to
elucidate the relationship between the phytochemicals and the
holistic efficacy.

In the most recent decade, bioinformatics, represented by
network pharmacology, have become efficient tools for
revealing the scientific basis and systematic features of herbal
medicines. These approaches provide a holistic insight into the
relationship between compounds, targets, and signaling pathways
behind drug efficacy (Hopkins, 2008; Chen et al., 2016).
Interestingly, recent studies have utilized network analysis to

screen bioactive constituents as efficacy markers for quality
control of herbal medicines (Liao et al., 2018; Xiang et al.,
2018; Luo L. et al., 2020). However, challenges are still
hanging over many of those related studies. For instance, the
predicted phytochemicals from databases could show significant
deviation from the realistic constituents of herbs. Moreover, the
latest analytical techniques might provide more and newer
phytochemicals which go beyond the content of databases.
The predicted oral bioavailability (OB) is often used in
preliminary screening of phytochemicals, whereas, the
screened constituents might differ from the constituents
actually absorbed in blood. In addition, one herb could have
medicinal potentials for the treatment of different diseases.
Nevertheless, often, many studies only focus on one
indication, thus resulting in biased conclusions of bioactive
constituents to one specific disease. Consequently, these
constituents fail to account for the overall efficacy of the herb,
which results in the fragile reliability of determining them as
efficacy markers.

In this work, a new strategy, consisting of phytochemical
analysis, in vivo absorption analysis, bioactive compound
screening, and bioactive compound quantification, was
exploited for investigating efficacy markers underlying the
medicinal potentials of OSB. Using liquid chromatography
coupled with quadrupole time-of-flight mass spectrometry
(LC-Q/TOF-MS), the constituents in OSB extract were
comprehensively characterized. Then, the blood-absorbed
constituents were identified in plasma samples from rats after
oral administration of OSB extract, which were retained as
potential bioactive compounds. After selecting the potential
indications of OSB, bioinformatic analysis was used to reveal
the interaction between compounds, action targets, action
pathways, and different diseases, and the core bioactive
constituents were screened out as the efficacy markers of OSB.
Finally, the quantitative analysis of efficacy markers was carried
out by an established LC-MS/MS method.

MATERIALS AND METHODS

Reagents and Materials
Raw materials of OSB were purchased from Yunnan Jianping
Biotechnology Co., Ltd. (Origin: Xishuangbanna, Yunnan,
China). Analytical grade ethanol and chloroform were
obtained from Anaqua Global International Inc. Limited
(Cleveland, OH, United States). LC-MS-grade acetonitrile was
supplied from J. T. Baker (Phillipsburg, NJ, United States of
America). LC-MS-grade formic acid was obtained from Fisher
Scientific (Fair Lawn, NJ, United States). Ultra-pure water
produced from a Milli-Q Gradient Water System (Millipore
Corp Bedford, United States) was used throughout the study.
Chromatographic column Sepax GP-C18 (2.1 × 150 mm, 1.8 µm)
was purchased from Sepax Technologies (Newark, DE,
United States). Reference substances of protocatechuic acid
and cichoric acid were obtained from National Institutes for
Food and Drug Control (Beijing, China); danshensu, rosmarinic
acid, salvianolic acid A, salvianolic acid B, and sinensetin were
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purchased from Macklin Biochemical Co., Ltd. (Shanghai,
China); eupatorin, salvigenin, and TMF were provided by
Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai, China).
All reference substances possessed high purities up to 97%.

Preparation of OSB Extract Samples
The dried herb of OSB was smashed to powder. A total of 10 g
powder was extracted twice with 100 ml of ethanol-water (80:20,
v/v) in an ultrasonic bath for 30 min. Themixture was filtered and
the filtrate was combined. The obtained solution was evaporated
to a concrete under reduced pressure at 55°C. Then it was
dissolved in methanol to remove starch and polysaccharides.
After standing at room temperature for 24 h, the solution was
centrifuged to remove the precipitate (12,000×g, 15 min). The
obtained filtrate was evaporated under reduced pressure at 40°C
until dry to yield the OSB extract. For qualitative analysis, OSB
extract (3.0 mg) was dissolved in 10.0 mL of methanol, followed
by filtration through a 0.22 µm nylon membrane filter before LC-
MS analysis. Respective standard stock solutions of eight
reference substances were prepared in methanol, and stored at
−20°C before use.

Preparation of OSB Plasma Samples
Male Sprague-Dawley rats (200 ± 20 g, n � 3) were provided by
Guangdong Medical Laboratory Animal Center (Guangzhou,
China), and fed at the Experimental Animal Center of Macau
University of Science and Technology (Macau, China). Rats were
kept at an ambient temperature of 22–25°C and a relative
humidity of 55 ± 5% with 12 h light/dark cycles. They were
fed with free access to water and food, and fasted with free access
to water for 12 h before drug administration. The experimental
protocol was approved by the Ethics Review Committee for
Animal Experimentation of Macau University of Science and
Technology. All procedures were in accordance with the Guide
for the Care and Use of Laboratory Animals (National Institutes
of Health). OSB extract was dissolved in 0.5% carboxymethyl
cellulose sodium aqueous solution to give an apparent
concentration of 0.2 g/mL for oral administration. Then the
OSB extract was administered to rats orally with a single dose
of 1.0 g/kg. Blood samples were then collected from the tail vein at
1 h after administration and centrifuged to separate plasma. A
total of 100 μL of plasma was mixed with methanol/acetonitrile
(1:2; v:v) solution (300 μL), followed by vortex for 1 min. After
centrifugation, the collected supernatant was evaporated until dry
under nitrogen gas. The residue was re-dissolved in 200 μL of
methanol and then centrifuged to separate the supernatant for
LC-MS analysis.

Qualitative Analysis of Phytochemical
Constituents in OSB Samples
Qualitative analysis was carried out on an Agilent 6550 ultra-
performance liquid chromatography coupled with a quadrupole
time-of-flight mass spectrometry (UPLC-Q/TOF-MS) system.
Chromatographic separation was achieved on a Sepax GP-C18
column with an ambient temperature of 35°C. The mobile phase
was composed of 0.1% formic acid aqueous solution (A) and

acetonitrile (B), and delivered at a flow rate of 0.25 mL/min using
the following gradient program: 0–5 min, 25–35% B; 5–10 min,
35–50% B; 10–15 min, 50–53% B; 15–20 min, 53–56% B;
20–25 min, 56–80% B; 25–30 min, 80–85% B; 30–35 min,
85–90% B; 35–40 min, 90–95% B; 40–45 min, 95–25% B. The
autosampler was set at 4°C and the injection volume was 5 μL.
The MS equipped with an electrospray ionization (ESI) source
was carried out in both positive and negative modes using the
following optimized parameters: ion spray voltage, 3500 V for
positive mode and 3000 V for negative mode; vaporizer
temperature, 280°C; sheath gas pressure, 50 psi; capillary
temperature, 320°C; and auxiliary gas pressure, 15 psi. The full
scan data were acquired from 100 to 1,000 Da, and MS/MS
fragmentation was carried out with different collision energy.
Identification of the phytochemical compounds was achieved by
matching their retention times (RT), molecular ions, and product
ions obtained from LC-MS and LC-MS/MS analysis with
corresponding reference substances and literature data.

Constituent Screening and Target
Collection
For constituents detected in OSB extract, the OB parameters were
extracted from the TCMSP database (http://tcmspw.com/index.
php), and OB ≥ 30% was selected as a threshold for screening
potential bioactive constituents. For constituents detected in
plasma samples, all of them were considered as potential
bioactive constituents. Based on comparison, the potential
active constituents were determined. Then, the TCMSP (http://
tcmspw.com/index.php) and STITCH (http://stitch.embl.de/)
databases were used to predict potential action targets of OSB.
Moreover, a text mining of PubMed (2016–2021) with each
constituent as a search term was carried out to manually
extract potential targets for updates and supplementation.

Based on the reported efficacies of OSB, ten diseases were
chose as its potential clinical indications, including AD, arthritis,
chronic glomerulonephritis, chronic renal failure, gout, hepatic
cirrhosis, hepatic fibrosis, hyperlipidemia, nephrolithiasis, and
T2DM. The targets of these diseases were extracted from the
human gene database GeneCards (http://www.genecards.org/).
The items “Symbol” and “Score” of genes were reserved, in which
the “Score” represents the relevance degree between disease and
target. The intersection targets between OSB and each disease
were generated through target mapping. The contribution of each
constituent to the intersection targets was analyzed.

Bioinformatic Analysis of Compounds,
Targets, Enriched Pathways, and Their
Interaction
Since different constituents in OSB had the same targets, the
repetitive targets were merged and the repetition quantity of each
target was counted as n, followed by normalization with the
maximum normalized to 1. For each disease, the “Score” values of
their targets were also normalized by being divided by the
maximum. Subsequently, the quantitative datasets of OSB
targets and disease targets were combined to build a data
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matrix of OSB-disease targets. Then it was imported into software
SIMCA-P (Ver.12.0) and Heml (Ver.1.0.3) for multivariate data
analysis to investigate the relevance degree between OSB target
profile and disease target profile.

The target data of each OSB-disease pair were combined to
generate a whole dataset. After it was imported into Cytoscape
(Ver.3.7), the network visualizing the relationship of OSB-
compound-target-disease was constructed. For each OSB-
disease pair, the top 7 constituents and top 20 targets were
extracted according to their degree values. For each OSB-
disease pair, the intersection targets were imported into
STRING (http://www.string-db.org/) to predict the protein-
protein interaction (PPI). Subsequently, the top 20 targets
from each PPI network were extracted and combined. These
targets were used to generate a new PPI network, and the key
regulatory targets were predicted. KEGG pathway enrichment
was performed, and a p value was given along with each enriched
pathway. Based on p values, the top 20 pathways were extracted
for each OSB-disease pair, respectively. Then these top pathways
were combined, and among them the shared pathways by all
OSB-disease pairs were retained. Meanwhile, the embedded
targets and signaling pathways were also labeled.

Screening the Efficacy Markers of OSB
Through Reversing Bioinformatics Analysis
Based on the enriched pathways, the raw data of key KEGG
pathways consisting of embedded signaling pathways and targets
were retrieved. After PPI analysis, the raw data of the key target-
target interaction were retrieved. From the compound-target
network, the raw data of the compound-target interaction
were retrieved. Subsequently, the retrieved datasets were
combined to generate a new whole dataset. After it was
imported into Cytoscape (Ver.3.7), a comprehensive network,
that strung together pathway-target pairs, target-target pairs, and
target-compound pairs, was finally constructed. Based on
topological analysis, the core signaling pathways were firstly
deduced then the core targets, and finally the core constituents
were screened out as the efficacy markers of OSB.

Quantitative Analysis of the Efficacy
Markers in OSB
Liquid chromatography coupled with triple-quadrupole mass
spectrometry (LC-QQQ-MS/MS) was used for simultaneous
quantitation of efficacy markers in OSB. A Waters ACQUITY
BEH C18 column (3.0 × 100 mm, 2.5 µm) was used for
chromatographic separation. The column temperature was
maintained at 35°C. Mobile phase consisted of 0.1% formic
acid solution (A) and acetonitrile (B). To obtain a short run
time and good chromatographic behaviors, the LC conditions
were optimized. The flow rate was set at 0.3 mL/min using the
following gradient program: 0–5 min, 5–35% B; 5–7 min, 35–60%
B; 7–8 min, 65–70% B; 8–9 min, 70–90% B; 9–10 min, 90–5% B.
ESI-MS/MS was carried out in both positive and negative modes.
The ESI parameters were as follows: ESI temperature was 500°C;
ion spray voltage was 5500 V and 4500 V in the negative and

positive modes, respectively; curtain gas was 20 psi. Meanwhile,
the MS/MS parameters for analyte determination in multiple
reaction monitoring (MRM) mode were optimized. The
calibration curves were created by running mixed standards of
efficacy markers at a series of concentrations. The contents of
each efficacy marker in three batches of OSB extracts were
determined based on the calibration curve created on the
same day.

RESULTS

Constituent Identification and Screening
in OSB
The identification of phytochemical constituents in OSB extract
was performed by LC-Q/TOF-MS analysis. As shown in
chromatograms, a larger peak number was generated in the
negative mode (Figure 1A) while a stronger MS response was
obtained in the positive mode (Figure 1B). The detailed
fragment information of parent ions was obtained from MS/
MS fragmentation. For these detected peaks, they were deduced
and identified based on the retention time, exact mass, and
fragment information through matching with reference
substances or related data reported in the literature
(Malterud et al., 1989; Awale et al., 2001; Akowuah et al.,
2004; Guo et al., 2019a; Guo et al., 2019b). As represented
in Table 1 and Figure 1, a total of 34 peaks with significant
responses were detected. For peaks 1, 3, 8, 10, 12, 14, 18, 22, 24,
and 28, these compounds were unambiguously identified by
comparison with their reference substances. The identified
constituents were categorized as 12 phenylpropenoic acids, 2
benzoic acids, 1 flavonoid glycoside, 12 polymethoxylated
flavones, 6 diterpenes, and 1 triterpenoid. Among them,
phenylpropenoic acids and polymethoxylated flavones were
the top two categories in the OSB extract. Most
phenylpropenoic acids displayed the same fragment ion at
m/z 179 which was the precursor ion of caffeic acid, and
these compounds were regarded as its derivatives. For
polymethoxylated flavones, most of them presented same
fragment ions at m/z 313 and 298 that were produced by
continuous loss of OCH3. For diterpenoids, some
compounds presenting the same fragment ion at m/z 121
due to the presence of the benzoyl group belonged to the
orthosiphol class, and some compounds giving the same
fragment ion at m/z 249 belonged to the tanshinone class.
In a word, a total of 34 main phytochemical constituents were
identified in the OSB extract.

The developed method was then applied to investigate the
blood-absorbed phytochemicals in rats after oral administration
of OSB extract. Figures 2A,B showed the representative
chromatograms of plasma samples generated in negative and
positive modes, respectively. A total of 17 phytochemical
constituents of OSB were identified in rat plasma samples.
These constituents including danshensu, caffeic acid,
protocatechuic acid, orthosiphoic acid A, cichoric acid,
rosmarinic acid, salvianolic acid A, salvianolic acid B,
rhamnazin, TMF, sinensetin, eupatorin,
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tetramethylscutellarein, pillion, salvigenin, orthosiphol A, and
tanshinone IIA. Consistent with the above phytcochemical
characterization, phenylpropenoic acids and polymethoxylated
flavones were also the top two categories that could be absorbed
in the circulatory system.

Based on the OB parameter, a total of 20 constituents were
screened out from 34 constituents. Several constituents with
large OB, such as trimethylapigenin (OB 39.83%), however,
were not detected in rat plasma. By contrast, several
constituents with small OB, such as rosmarinic acid (OB
1.38%), however, were detected in rat plasma. Nevertheless,
these screened constituents still showed a lot of overlapping
with the phytochemicals detected in plasma samples. For the
constituents detected in plasma samples, preliminary
collection of their targets was carried out. Finally, the
constituents with reported targets were screened out as
potential bioactive constituents, including protocatechuic
acid, danshensu, caffeic acid, orthosiphoic acid A, cichoric

acid, rosmarinic acid, salvianolic acid A, salvianolic acid B,
TMF, sinensetin, eupatorin, salvigenin, orthosiphol A, and
tanshinone IIA. The chemical structures of these
phytochemicals were provided in Figures 2A,B.

Bioinformatic Analysis of the Interaction
From Compounds to Targets and Pathways
OSB constituents generated a total of 488 potential targets. After
overlapping, OSB shared 410, 383, 208, 421, 164, 339, 392, 210,
137, and 439 targets with AD, arthritis, chronic
glomerulonephritis, chronic renal failure, gout, hepatic
cirrhosis, hepatic fibrosis, hyperlipidemia, nephrolithiasis, and
T2DM, respectively (Figure 3A). As detailed in each
phytochemical constituent, the contribution to targets varied
from constituent to constituent. Salvianolic acid A,
protocatechuic acid, and tanshinone IIA were the top three in
terms of counting their contribution to the total targets of OSB

FIGURE 1 | Extracted ion chromatograms (EIC) of OSB samples obtained from LC-Q/TOF-MS analysis. EIC of OSB extract samples in negative mode (A) and
positive mode (B). LC-Q/TOF-MS, liquid chromatography coupled with quadrupole time-of-flight mass spectrometry; OSB, Orthosiphon stamineus Benth.
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(Figure 3B). By comparison, there was a remarkable variation in
the overall profile of target contribution after intersection with
disease targets (Figure 3B). Rosmarinic acid, sinensetin,
salvigenin danshensu, cichoric acid, and orthosiphoic acid A
were the representatives, in which the first four constituents
showed increased contribution after intersection while the last
two showed decreased contribution after intersection.
Tanshinone IIA, rosmarinic acid, and sinensetin were the top
three constituents in contribution percentage after intersection,
in contrast, rosmarinic acid and sinensetin showed a very low
contribution percentage before intersection. These results
suggested that, for constituents, the effective targets they

possessed for diseases were more meaningful than the amount
of total targets.

Based on multivariate data analysis employing principal
component analysis (PCA) and hierarchical cluster analysis
(HCA) models, the relevance degree between OSB target
profile and disease target profile was investigated. A 3D score
plot was generated in SIMCA using the PCA model, and it
visualized the relevance of overall targets between groups
(Figure 3C). The OSB group showed clear separation from the
disease groups, and most disease groups were located in the same
dimension. Interestingly, only the AD group was located in the
same dimension as the OSB group, and was the nearest to the

TABLE 1 | Constituents identified in the extract of Orthosiphon stamineus Benth.

Peak
No

Precursor
ion

Measured
mass
(m/z)

Calculated
mass
(m/z)

Error
(ppm)

Formula Fragments
(m/z)

Identification Categories

1 [M–H]− 197.0432 197.0449 8.5 C9H10O5 197, 179, 135, 109 Danshensu Phenylpropenoic acids
2 [M–H]− 179.0335 179.0343 4.6 C9H8O4 179, 135 Caffeic acid Phenylpropenoic acids
3 [M–H]− 153.0173 153.0187 8.9 C7H6O4 153, 109 Protocatechuic acid Benzoic acids
4 [M–H]− 167.0349 167.0343 −3.5 C8H8O4 167, 138, 109 Protocatechuic acid methyl ester Benzoic acids
5 [M–H]− 179.0329 179.0343 7.9 C9H8O4 179, 170, 154, 134 Caffeic acid isomer Phenylpropenoic acids
6 [M–H]− 207.0641 207.0656 7.3 C11H12O4 207, 179, 135 Caffeic acid ethyl ester Phenylpropenoic acids
7 [M–H]− 521.1098 521.1083 −2.9 C27H22O11 521, 323, 197, 161 Orthosiphoic acid A Phenylpropenoic acids
8 [M–H]− 473.0738 473.0725 −2.7 C22H18O12 473, 179, 149 Cichoric acid Phenylpropenoic acids
9 [M–H]− 717.1436 717.1454 2.6 C36H30O16 717, 519, 537 Salvianolic acid E Phenylpropenoic acids
10 [M–H]− 359.0751 359.0766 4.1 C18H16O8 359, 197, 179 Rosmarinic acid Phenylpropenoic acids
11 [M–H]− 537.1049 537.1032 −3.2 C27H22O12 537, 493, 356 Lithospermic acid Phenylpropenoic acids
12 [M–H]− 493.1152 493.1134 −3.7 C26H22O10 493, 295, 267 Salvianolic acid A Phenylpropenoic acids
13 [M–H]− 491.0961 491.0977 3.3 C26H20O10 491, 293 Salvianolic acid C Phenylpropenoic acids
14 [M–H]− 717.1473 717.1454 −2.6 C36H30O16 717, 519, 321, 295 Salvianolic acid B Phenylpropenoic acids
15 [M–H]− 463.0857 463.0875 4.0 C21H20O12 463, 300271 Isoquercitrin Flavonoid glycosides
16 [M–H]− 329.0675 329.0660 −4.5 C17H14O7 329, 245, 151 Rhamnazin Polymethoxylated

flavones
17 [M + H]+ 313.1090 313.1077 −4.1 C18H16O5 313, 298, 283 Trimethylapigenin Polymethoxylated

flavones
18 [M–H]− 357.0956 357.0973 4.8 C19H18O7 357, 345, 296, 269 3′-Hydroxy-5,6,7,4′-

tetramethoxyflavone
Polymethoxylated
flavones

19 [M–H]− 313.0724 313.0711 −4.2 C17H14O6 313, 299, 285 Ermanin Polymethoxylated
flavones

20 [M + H]+ 343.1171 343.1183 3.5 C19H18O6 343, 329, 315 Tetramethoxyluteolin Polymethoxylated
flavones

21 [M–H]− 313.0720 313.0711 −2.9 C17H14O6 313, 298, 283 Cirsimaritin Polymethoxylated
flavones

22 [M + H]+ 373.1270 373.1288 4.9 C20H20O7 373, 358, 343, 315 Sinensetin Polymethoxylated
flavones

23 [M–H]− 569.2360 569.2386 4.5 C31H38O10 569, 121 Orthosiphol I Diterpenoids
24 [M–H]− 343.0833 343.0817 −4.8 C18H16O7 343, 328, 313, 285 Eupatorin Polymethoxylated

flavones
25 [M + H]+ 343.1173 343.1183 2.9 C19H18O6 343, 328, 313, 285 Tetramethylscutellarein Polymethoxylated

flavones
26 [M–H]− 313.0723 313.0711 −3.8 C17H14O6 313, 298, 83, 255 Pilloin Polymethoxylated

flavones
27 [M–H]− 327.0881 327.0867 −4.1 C18H16O6 327, 313, 298 5-Hydroxy-3′,4′,7-trimethoxyflavone Polymethoxylated

flavones
28 [M + H]+ 329.1038 329.1026 −3.6 C18H16O6 329, 314, 296 Salvigenin Polymethoxylated

flavones
29 [M–H]− 631.2527 631.2542 2.4 C36H40O10 631, 121 Orthosiphol N Diterpenoids
30 [M–H]− 675.2828 675.2804 −3.5 C38H44O11 675, 637, 589, 505 Orthosiphol A Diterpenoids
31 [M–H]− 677.2573 677.2597 3.5 C37H42O12 677, 631, 121 Norstaminol A Diterpenoids
32 [M–H]− 455.3540 455.3524 −3.5 C30H48O3 455 Oleanolic acid Triterpenoids
33 [M + H]+ 277.0877 277.0866 −4.0 C18H12O3 277, 249, 231 Tanshinone A Diterpenoids
34 [M + H]+ 295.1346 295.1335 −3.6 C19H18O3 295, 277, 249 Tanshinone IIA Diterpenoids
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OSB group, followed by the arthritis and chronic
glomerulonephritis groups (Figure 3C). Consistently, the
heatmap generated in Heml using the HCA model showed
similar results, which visualized the relevance of both
individual and overall targets between groups (Figure 3D).
Based on integrative comparison, AD, arthritis, and chronic
glomerulonephritis had a strong affinity with OSB in terms of
target profile.

The interaction of OSB-compound-target-disease was
visualized in a network which integrated all OSB-disease pairs
(Figure 4). In this network, the top 7 constituents and top 20
targets were magnified into a sub-network for each OSB-disease
pair. Among these top constituents, up to six constituents were
shared by all OSB-disease pairs as follows: protocatechuic acid,
rosmarinic acid, salvianolic acid B, salvigenin, sinensetin, and
tanshinone IIA. Among these top targets, up to six targets were
shared by all OSB-disease pairs as follows: IL1B, IL6, MMP2,
MMP9, NOS2, and TNF. For each OSB-disease pair, the top 20
targets were respectively extracted from the PPI network. Then a
refined PPI network was then constructed through integrating
these top targets (Supplementary Figure S1). Based on the

topological properties, the key regulatory targets were screened
out as follows: AKT1, JAK2, JUN, MAPK1, MAPK8, PIK3CA,
PIK3R1, RELA, STAT3, TNF, and TP53. After pathway
enrichment, the top 20 pathways for each OSB-disease pair
were combined. After merging duplicates, only 37 non-
repetitive pathways were retained, suggesting extensive
overlapping among the top pathways from each OSB-disease
pair (Figure 5). After analysis, a total of eight KEGG pathways
shared by all OSB-disease pairs were screened out. The detailed
information of these pathways is provided in Supplementary
Table S1. One representative pathway is shown in Figure 5 in
which OSB-disease intersection targets were labeled with color.

Screening of the Efficacy Markers of OSB
Through Reversing Bioinformatics Analysis
Based on extraction, 8 key KEGG pathways generated 17 different
signaling pathways. As shown in Figure 6, a KEGG pathway
contained several signaling pathways, while a signaling pathway
was also embedded in several KEGG pathways. These signaling
pathways contained 209 OSB-disease intersection targets after

FIGURE 2 | Extracted ion chromatograms (EIC) of plasma samples from rats after administration of OSB extract in negative mode (A) and positive mode (B). OSB
Orthosiphon stamineus Benth.
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merging duplicates. As expected, there was a great overlap of
these targets among different signaling pathways. Pathway-target
connection was firstly established, and then target-target connection.
Based on topological properties, two signaling pathways: PI3K-AKT
signaling pathway andMAPK signaling pathway,were screened out as
the core action pathways. After integrating target-compound
interaction, a full-scale network was constructed which reversely
deduced the interaction from KEGG pathways to signaling
pathways, then targets, and finally compounds. The topological
profile of targets was significantly different from that in the
original network as shown in Figure 4. Meanwhile, the core
targets were screened out as follows: PIK3CA, PIK3R1, MAPK1,
MAPK3, AKT1, PIK3CB, HSP90AA1, IKBKB, MAPK8, and RELA,
which also showed a significant difference from the results in Figure 3.
Based on topological analysis, the core compounds were finally
screened out as follows: tanshinone IIA, sinensetin, salvianolic acid
B, rosmarinic acid, and salvigenin. These constituents showed the
interaction with all of core targets, and were finally selected as the
efficacy markers underlying the various medicinal potentials of OSB.

Quantitative Analysis of the Efficacy
Markers in OSB
The optimized MS/MS parameters in MRM mode for the
determination of five efficacy markers were provided in

Table 2, including ion transitions, declustering potential (DP),
and collision energy (CE). Calibration curve for each analyte was
created with a series of concentrations of standard solution.
Acceptable linear correlation was confirmed by the correlation
coefficient (r, 0.9990–0.9999). The detailed information regarding
calibration curves and linear ranges are shown in Table 3. The
proposed method was applied in the quantification of five efficacy
markers in three different batches of OSB extracts. All
compounds were quantified with the content of more than
2.50 mg/g (Table 3). Among them, the content of salvianolic
acid B was the highest with the average content of 220.86 mg/g
while the content of tanshinone IIA was the lowest with
2.78 mg/g.

DISCUSSION

As a traditional herbal medicine, OSB has been empirically used
for the treatment of urinary tract diseases. Recent studies
demonstrated its various medicinal potentials owing to
different pharmacological effects, such as anti-oxidation
(Nuengchamnong et al., 2011), anti-inflammation (Yam et al.,
2010), diuretic (Adam et al., 2009), anti-diabetic (Mohamed et al.,
2013), and hepatoprotection (Yam et al., 2007). The
phytochemicals in OSB represent the material basis of its

FIGURE 3 | Analysis of the intersection targets between OSB and different diseases. (A) Sketch profile of intersection targets between OSB and different diseases; (B)
Contribution of each constituent to the intersection targets of all OSB-disease pairs; (C) 3D score plot generated in SIMCA software using the PCA model for visualizing the
overall relevance of targets between groups; (D) Heatmap integrating the HCAmodel for visualizing the relevance of both individual and overall targets between groups. AD,
Alzheimer’s disease; HCA, hierarchical cluster analysis; OSB, Orthosiphon stamineus Benth.; PCA, principal component analysis; T2DM, type 2 diabetes mellitus.
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pharmacological effects. Taking advantage of modern analytical
techniques, it was reported that OSB contained dozens of
phytochemical constituents (Malterud et al., 1989; Tezuka
et al., 2000; Nguyen et al., 2004; Hossain et al., 2013; Guo
et al., 2019b). The constituents in OSB extract could vary with
the polarities of extract solvents, which thus has a considerable
effect on the bioactivities. Several studies suggested that the
aqueous extract fraction of OSB could show weaker
bioactivities than the extract fraction with strong polarity
(Abdelwahab et al., 2011; Choo et al., 2018). Therefore, large

percentage ethanol solution was used as the extract solvent in this
study. As a result, a total of 34 constituents were detected in OSB
extract. Among them, phenylpropenoic acids, polymethoxylated
flavones, and terpenoids represented the predominant structural
classes.

The identification of blood-absorbed phytochemicals could be
regarded as a preliminary screening of bioactive constituents
from oral herbs. Several studies have reported the quantitative
analysis of several specified constituents of OSB in rat plasma
(Loon et al., 2005; Guo et al., 2019a). However, there is a lack of

FIGURE 4 |Network visualizing the overall interaction of constituents and targets, with integrated sub-network visualizing the top constituents and targets for each
OSB-disease pair. AD, Alzheimer’s disease; OSB, Orthosiphon stamineus Benth.; T2DM, type 2 diabetes mellitus. TMF, 3′-Hydroxy-5, 6, 7, 4′-tetramethoxyflavone.
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FIGURE 5 | The terms of 37 non-repetitive KEGG pathways retained from the pool of top KEGG pathways for each OSB-disease pair. Among them, eight KEGG
pathways were shared by all OSB-disease pairs and a representative KEGG pathway was shown in which OSB-disease intersection targets were labeled with color.
hsa05417: lipid and atherosclerosis; hsa05161: hepatitis B; hsa05205: proteoglycans in cancer; hsa05167: kaposi sarcoma-associated herpesvirus infection;
hsa04066: HIF-1 signaling pathway, hsa05418: fluid shear stress and atherosclerosis; hsa04933: AGE-RAGE signaling pathway in diabetic complications,
hsa01522: endocrine resistance. OSB Orthosiphon stamineus Benth.

FIGURE 6 | Screening of the efficacy markers underlying the varied medicinal potentials of OSB through reversing bioinformatics analysis which deduced the
interaction from key KEGG pathways to signaling pathways, followed by targets, and finally compounds. OSBOrthosiphon stamineus Benth.; TMF, 3′-Hydroxy-5, 6, 7,
4′-tetramethoxyflavone.
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characterization of the phytochemicals absorbed in the
circulatory system. In the present work, a total of 17
phytochemicals were identified in plasma samples from rats
after oral administration of OSB extract. On the other hand,
the predicted OB parameter, representing the fraction of the
orally-administered drug that reaches systemic circulation
unchanged, is widely used for preliminary screening of
active constituents (Xu et al., 2012). Based on OB, a total of
20 constituents were screened out from 34 constituents that
were detected in OSB extract. Interestingly, despite extensive
overlapping, a remarkable difference was still found between
the two pools of constituents respectively generated by plasma
detection and OB screening. Some constituents detected in
plasma had small OB, while some constituents with large OB
were not actually detected in plasma. These findings suggested
that virtual screening using OB resulted in constituent
distortion compared with practical detection. In worse
cases, this distortion might lead to a cascade of deviation in
deduced bioactive constituents and mechanism. Therefore,
practical detection of realistic samples could be a more
reliable approach.

In following bioinformatic analysis, the key constituents
were screened out for each OSB-disease pair based on the
degree from topological analysis. This is a well-accepted
paradigm for identifying key bioactive constituents in many
related studies (Liao et al., 2018; Wang et al., 2019a; Wang
et al., 2019b). However, the intersection targets between OSB
and diseases varied with paired diseases, thus the screened key
constituents could also vary. Furthermore, different targets
had varied relevance to diseases as indicated by different
“Score” values. However, the targets with weak relevance
were treated equally with the targets with strong relevance
due to the unbiased strategy. Consequently, a mass of targets
with weak relevance, however, might play a prominent part in
the screening of key constituents. In our work, the active
compounds were screened through reversing bioinformatics

analysis. It began with disassembling the enriched key
pathways to extract the embedded key targets, thus
excluding many targets with weak relevance. After re-
constructing the interaction between pathways, targets, and
compounds, a new network was generated which was
significantly different from the original target-compound
network. The core targets in the new network were mainly
involved in the PI3K-AKT signaling pathway and MAPK
signaling pathway. There was considerable overlapping
between the two signaling pathways regarding the contained
targets, and the NF-κB signaling pathway was one of the
important intersections between them. Now there is no
clear clue to the relationship between deduced action
mechanisms (PI3K-AKT signaling pathway/MAPK signaling
pathways) and traditional therapeutic effects of OSB owing to
the limited modern pharmacological studies regarding OSB.
However, the NF-κB signaling pathway was reported as the
action pathway of OSB accounting for its traditional
pharmacological activities in several studies (Li et al., 2016;
Retinasamy et al., 2020). Undoubtedly, more effort should be
put into the investigation of the precise therapeutic
mechanism of OSB. Moreover, the core targets showed
minor overlapping with that in the original network. These
results suggested that the unbiased strategy for all targets
might lead to significant distortion of screened core targets.
The core constituents in the new network showed large
overlapping with that in the original network, although a
slight deviation was still found especially in terms of
compound sorting. These results demonstrated the
robustness of the core bioactive constituents of OSB for the
treatment of different diseases, which were extremely
appropriate as the efficacy markers of OSB.

Bioactive constituents including tanshinone IIA, sinensetin,
salvianolic acid B, rosmarinic acid, and salvigenin, were
selected as the efficacy markers accounting for the varied
efficacies of OSB. Surprisingly, in previous OSB-related

TABLE 2 | MS/MS parameters for analyte determination in MRM mode.

Analytes Precursor-product ion pairs
(m/z)

DP (V) CE (V) ESI mode

Tanshinone IIA 295.3 → 277.3 70 28 Positive
Sinensetin 373.1 → 343.0 130 38 Positive
Salvigenin 329.1 → 296.1 110 36 Positive
Rosmarinic acid 359.1 → 161.1 69 20 Negative
Salvianolic acid B 717.1 → 519.1 116 24 Negative

TABLE 3 | Calibration curves, linear ranges and determined contents of five efficacy markers in OSB extracts.

Compounds Calibration curves Linear range (ng/mL) Contents (mg/g)

Tanshinone IIA y � 0.001x + 0.0861 (r � 0.9995) 20–1,000 2.78 ± 0.25
Sinensetin y � 0.0137x − 0.048 (r � 0.9999) 20–1,000 7.18 ± 0.63
Salvianolic acid B y � 0.0000498x + 0.0109 (r � 0.9996) 200–10,000 220.86 ± 20.92
Rosmarinic acid y � 0.000551x + 0.0871(r � 0.9990) 100–10,000 129.98 ± 16.49
Salvigenin y � 0.00373x − 0.0014 (r � 0.9997) 20–1,000 3.01 ± 0.34
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studies, there were few points of focus on tanshinone IIA. The
major interest was fastened on rosmarinic acid and flavonoids
(Yuliana et al., 2009; Shafaei et al., 2016; Cai et al., 2018). Only
recently, one study that aimed at qualitative and quantitative
analysis of phytochemicals in OSB characterized tanshinone
IIA in OSB extract (Guo et al., 2019b). In contrast to its
nonentity in previous OSB-related studies, tanshinone IIA
has been reported to exert various therapeutic activities,
such as improving renal function (Zhang et al., 2020),
relieving myocardial ischemia reperfusion injury (Li Q.
et al., 2016), alleviating neuroinflammation (Maione et al.,
2018), and exerting an antifibrotic effect (Shi et al., 2020). The
action mechanism was suggested to be mainly involved in
activating the PI3K-AKT signaling pathway and/or
suppressing the MAPK and NF-κB signaling pathways. This
evidence underlined the reliability for selecting tanshinone IIA
as an efficacy marker of OSB. In previous studies, the
constituents selected as efficacy contributors of OSB, varied
with studied diseases. Even caffeic acid and protocatechuic
acid, which widely exist in a variety of herbs and lack
specificity, were also regarded as the core bioactive
constituents and included in the quality control of OSB
(Guo et al., 2019a; Guo et al., 2019b). Nevertheless, in most
studies, rosmarinic acid, salvianolic acid B, and methoxy
flavonoids were widely accepted as the bioactive
constituents of OSB (Loon et al., 2005; Nuengchamnong
et al., 2011; Cai et al., 2018; Yam et al., 2018), which was
consistent with our results. Indeed, these phytochemical
monomers have been reported with definite
pharmacological effects for the treatment of various diseases
(Mohamed et al., 2012; Tongqiang et al., 2016; Serino et al.,
2021; Yamamoto et al., 2021). Rosmarinic acid is contained
mainly in the family Lamiaceae, and numerous studies have
demonstrated its health benefits, especially in management of
inflammatory diseases via inhibition of oxidative stress,
apoptosis, and inflammation (Joardar et al., 2019; Luo et al.,
2020). Salvianolic acid B was remarkably abundant in OSB,
and several studies indicated that it had strong anti-
inflammatory and anti-fibrotic effects through targeting the
MAPK and NF-κB pathways (Li et al., 2019; Wu et al., 2019).
Polymethoxylated flavonoids, such as sinensetin, have been
widely reported with anti-inflammatory, anti-oxidant, anti-
dementia, and vasorelaxant activities and the action
mechanisms could be involved in the regulation of different
targets and signaling pathways including AKT and NF-κB
signaling pathways (Lee et al., 2020). In sum, these reported
evidence strengthened the reliability of selecting these
phytochemicals as efficacy makers of OSB.

CONCLUSION

In this work, a new strategy was exploited to investigate the
efficacy markers underlying the varied pharmacological effects
of OSB. By LC-MS analysis, a total of 34 phytochemical
constituents were characterized in OSB, and 14 blood-
absorbed phytochemicals were retained as potential active

compounds. The results from bioinformatic analysis revealed
the overall interaction between compounds, action targets, action
pathways, and diseases. Through refining key pathways and
targets, the interaction reversing from signaling pathways,
targets to constituents was deduced, and then the core
signaling pathways, targets, and compounds were screened
out. Five constituents, including tanshinone IIA, sinensetin,
salvianolic acid B, rosmarinic acid, and salvigenin, were finally
selected as the efficacy markers accounting for the efficacies of
OSB against different diseases. The corresponding action
mechanism was suggested to closely relate with the PI3K-AKT
signaling pathway and/or MAPK signaling pathway, but further
experimental studies are necessary to validate the deduced
mechanism. Finally, the contents of the five efficacy markers
in OSB extracts were quantified, and the content of salvianolic
acid B was the highest while the content of tanshinone IIA was the
lowest. It is believed that our findings could provide promising
directions for future research on the quality control and
pharmacological mechanism of OSB.
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