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ABSTRACT Klebsiella pneumoniae is a human commensal and opportunistic patho-
gen that has become a leading causative agent of hospital-based infections over the
past few decades. The emergence and global expansion of hypervirulent and multidrug-
resistant (MDR) clones of K. pneumoniae have been increasingly reported in community-
acquired and nosocomial infections. Despite this, the population genomics and epi-
demiology of MDR K. pneumoniae at the national level are still poorly understood.
To obtain insights into these, we analyzed a systematic large-scale collection of inva-
sive MDR K. pneumoniae isolates from hospitals across the United Kingdom and Ire-
land. Using whole-genome phylogenetic analysis, we placed these in the context of
previously sequenced K. pneumoniae populations from geographically diverse coun-
tries and identified their virulence and drug resistance determinants. Our results
demonstrate that United Kingdom and Ireland MDR isolates are a highly diverse
population drawn from across the global phylogenetic tree of K. pneumoniae and
represent multiple recent international introductions that are mainly from Europe but in
some cases from more distant countries. In addition, we identified novel genetic deter-
minants underlying resistance to beta-lactams, gentamicin, ciprofloxacin, and tetracy-
clines, indicating that both increased virulence and resistance have emerged inde-
pendently multiple times throughout the population. Our data show that MDR
K. pneumoniae isolates in the United Kingdom and Ireland have multiple distinct origins
and appear to be part of a globally circulating K. pneumoniae population.

IMPORTANCE Klebsiella pneumoniae is a major human pathogen that has been impli-
cated in infections in healthcare settings over the past few decades. Antimicrobial treat-
ment of K. pneumoniae infections has become increasingly difficult as a consequence of
the emergence and spread of strains that are resistant to multiple antimicrobials. To bet-
ter understand the spread of resistant K. pneumoniae, we studied the genomes of a
large-scale population of extensively antimicrobial-resistant K. pneumoniae in the United
Kingdom and Ireland by utilizing the fine resolution that whole-genome sequencing of
pathogen genomes provides. Our results indicate that the K. pneumoniae population is
highly diverse and that, in some cases, resistant strains appear to have spread across the
country over a few years. In addition, we found evidence that some strains have ac-
quired antimicrobial resistance genes independently, presumably in response to antimi-
crobial treatment.

Klebsiella pneumoniae is a common environmental human- and animal-associated
Gram-negative bacterium that has become a major cause of nosocomial infections

worldwide (1–4). Commonly found as a commensal bacterium, K. pneumoniae has the
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potential to cause a wide range of infections, including soft tissue, wound, and
respiratory tract infections, in particular in patients with a compromised immune
system (3). In addition to numerous reports of nosocomial infections, K. pneumoniae has
been observed to cause community-acquired infections (1, 3). K. pneumoniae infections
are frequently detected as outbreaks in health care settings, in particular in neonatal
units (5). K. pneumoniae can be transferred through medical equipment and blood
products (6, 7) and can be carried within the intestinal tracts of patients and on the skin
surface of hospital personnel (3, 8, 9). K. pneumoniae can also cause invasive disease in
various animal species (10, 11), and animal and food sources have been proposed to
serve as potential reservoirs for K. pneumoniae (12).

In keeping with the high microbial diversity of the niches that K. pneumoniae
occupies, recent studies have shown that this species has a flexible and diverse
pangenome containing numerous accessory genes that enable the bacterium to adapt
to various habitats and respond to environmental stresses such antibiotic treatment (4).
Holt et al. (4) generated a global phylogeny of K. pneumoniae isolates from environ-
mental and hospital sources and demonstrated that in the light of detailed phyloge-
netic evidence, the K. pneumoniae species complex may be split into three distinct
species referred to as K. pneumoniae (KpI), K. quasipneumoniae (KpII), and K. variicola
(KpIII), all of which are known to cause infections in humans (13, 14) and each of which
contains a high level of diversity. Since then, the number of clinical genomic studies of
K. pneumoniae has increased. While some of these studies have reported the rapid
spread of particular strains of K. pneumoniae across a region/country (15–17), others have
focused on outbreaks in single hospitals (18, 19). In either case, the investigations com-
monly identify multidrug-resistant (MDR) strains, in particular, carbapenem-resistant strains.

The treatment of K. pneumoniae infections has become more difficult as a result of
the emergence of these MDR lineages of K. pneumoniae. These lineages carry a wide
range of antimicrobial resistance genes that restrict the available options to effectively
treat K. pneumoniae infections. Known mechanisms of resistance include the produc-
tion of �-lactamases such as extended-spectrum �-lactamases (ESBLs), cephalospori-
nases, and carbapenemases (20–24). The spread of resistance is linked to mobile
genetic elements that may also carry virulence determinants that enhance the ability of
the bacterium to colonize and establish infection within the host (3, 25). These factors
include the capsule, various adhesins required for adherence of the bacterium to host
tissues, and siderophores for iron absorption (26, 27).

Because of the growing importance of MDR K. pneumoniae, it is important to
understand its population structure and the relationship between this and the genetic
diversity of antibiotic resistance. However, while we now have a better understanding
of the global diversity of this species and outbreaks in single hospitals, the origin and
national transmission of MDR K. pneumoniae involved in hospital infections remain
largely unknown. To address this, we used genomics and phylogenetic analysis to
investigate a systematic collection of MDR K. pneumoniae isolates obtained from
hospitals across the United Kingdom and Ireland over the past decade. In particular, we
analyzed the structure of this population in the context of a recently published major
collection of K. pneumoniae to elucidate the position and recent emergence of United
Kingdom and Ireland MDR isolates from within the global population. In addition, we
systematically identified the distribution of known genes encoding virulence factors
and antibiotic resistance determinants within the population.

RESULTS

We first placed the MDR K. pneumoniae isolates from the United Kingdom and
Ireland collection in the context of the global population structure. The resulting
combined phylogenetic tree revealed that the United Kingdom and Ireland MDR
isolates reside on multiple branches of the global tree but some clades are composed
mainly of United Kingdom samples (Fig. 1A). It is also evident that the United Kingdom
and Ireland MDR K. pneumoniae population is as diverse as the global population,
indicating that lineages found within the United Kingdom and Ireland collection may
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have multiple sources outside the United Kingdom. As shown previously for the global
collection of Holt et al. (4), the MDR United Kingdom collection contains deep
divisions between the major species of K. pneumoniae. The KpI, KpIIA, KpnIIB, and
KpIII species are all represented in the United Kingdom and Ireland collection, with
the KpI species predominating (Fig. 1A). In line with Holt et al. (4), we also identified
distinct peaks, representing two distinct time scales of phylogenetic divergence, in
the pairwise single-nucleotide polymorphism (SNP) distance distribution (Fig. 1B). The
peaks of �50,000 SNPs with the yellow background in Fig. 1B correspond to the
divergence between the KpI, KpIIA, KpIIB, and KpIII species. In contrast, the other peaks,
shown with a blue background in Fig. 1B, correspond to distinct groups of long and
short branches primarily within the KpI species and in some cases within the KpII and
KpIII species.

The distribution of pairwise SNP distances for isolates of the same or different
sequence types (STs) indicated that the resolution of multilocus sequence typing
(MLST) is largely limited to SNP distances of �10,000 SNPs (see Fig. S1A in the
supplemental material). Mapping of the STs of United Kingdom and Ireland MDR
K. pneumoniae isolates onto the phylogenetic tree revealed a high level of concordance
between MLST and the whole-genome sequence-based phylogeny, demonstrating the
discriminatory power of MLST in detecting major clades (Fig. S1B). MLST analysis of
the United Kingdom and Ireland isolates demonstrated a variety of STs, with ST15 being

FIG 1 (A) A neighbor-joining tree based on 1,000,726 SNPs and constructed for the combined United Kingdom and global collections with their STs and years
of isolation. Only STs that were represented by at least 10 isolates in the population are shown. The United Kingdom (BSAC) isolates are the United Kingdom
and Ireland MDR isolates. (B) The distribution of pairwise SNP differences in the United Kingdom samples and the global collection. The blue and yellow
backgrounds correspond to the different levels of divergence discussed in the text.
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the most common (Fig. S1C). Some of the STs present in our collection, such as ST15
and ST147, are known to be linked with multidrug resistance worldwide (28, 29) and in
particular in Europe (30).

To identify potential introductions to, and subsequent spread of lineages within, the
United Kingdom and Ireland MDR isolate collection, we next focused on divergences
between isolates of the same ST, i.e., isolates that were �10,000 SNPs apart, within the
MDR United Kingdom and Ireland isolates and between the MDR United Kingdom and
Ireland isolates and the global isolates (Fig. 2A). (Note that we did not remove
recombined regions at this stage, so this value includes SNPs due to point mutations,
as well as those introduced by recombination.) To this end, we redrew the tree by
including all of the United Kingdom and Ireland isolates and any isolates from both
collections that were �10,000 SNPs distant from a United Kingdom and Ireland isolate.
The resulting tree showed that a majority of the isolates belonging to the United
Kingdom and Ireland collection clustered in closely related clades, with isolates from
the global collection often basal to, but sometimes interspersed within, these clades
(Fig. 2A). Using the detailed information about the infectious source of K. pneumoniae
for the Holt et al. (4) isolates, we found that isolates of nosocomial origin seem to be
overrepresented (i.e., appear more frequently to be related to the United Kingdom and
Ireland isolates than would be expected from their frequencies in the Holt et al. (4)
collection [Fig. 2B]) in comparison with community-acquired K. pneumoniae. Moreover,
we found some isolates of nonhuman (monkey, bovine, and mouse) origins and
nonhuman clinical isolates spread across this tree. This suggests that animals and the
environment may serve as hidden reservoirs of clinical MDR K. pneumoniae, as has been
proposed for food animals and retail meat (12).

In order to further analyze the relationship between the United Kingdom and Ireland

FIG 2 (A) A neighbor-joining phylogenetic tree for the KpI lineage depicting the linkages between
isolates in the United Kingdom and Ireland collection and those in the global collection with �10,000
SNPs divergence from them (equivalent to membership in the same ST). The outer circular band shows
STs that were represented by at least 10 isolates, and the next band inward shows the country of origin
according to the key in Fig. 1. The clades in red are the major STs that contained at least 10 United
Kingdom and Ireland MDR isolates. (B) The relative frequencies of global isolates in the phylogenetic tree
in panel A based on the source of acquisition of infection for those isolates in the global study of Holt
et al. (4). The error bars denote 95% confidence intervals obtained from the binary distribution. (C) The
origin of the closest non-United-Kingdom relatives of United Kingdom and Ireland isolates in the global
population shown at increasing SNP cutoffs from left to right. The total column represents the proportion
of isolates in the combined tree. United Kingdom and Ireland MDR K. pneumoniae isolates are not shown.
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MDR isolates and the global collection, we constructed multiple trees consisting of the
United Kingdom and Ireland isolates and any isolate from the global collection that was
within a specified SNP distance of a United Kingdom isolate for a range of SNP
distances. We then calculated the proportion and origin of global isolates that ap-
peared in the trees at each SNP distance cutoff. The results demonstrated that trees
limited to the most closely related isolates consisted entirely of United Kingdom and
Ireland isolates, while global isolates from Nepal, the Netherlands, Italy, and Spain
appeared sequentially as the cutoffs were widened (Fig. 2D). Although this may be
driven to some extent by the biases in the collection, we note that the most frequently
sampled sites are not necessarily those that appear closest to the United Kingdom and
Ireland isolates. These connections demonstrate frequent direct or indirect transmis-
sions between the United Kingdom and Ireland and mainly European but also geo-
graphically very distant countries, indicating that United Kingdom and Ireland MDR
K. pneumoniae isolates are part of globally circulating lineages.

The phylogenetic tree in Fig. 2A consists of few major STs that were more frequent
in the population than other STs. We identified the clades that correspond to ST15,
ST16, ST147, ST101, and ST874, which contained at least 10 United Kingdom and
Ireland MDR K. pneumoniae isolates and exhibited various degrees of geographic
heterogeneity. Except for the ST874 clade, which contained one ST103 isolate, the other
clades were homogeneous and comprised only a single ST. We used Bayesian dated
phylogenetic analysis in BEAST to compute the substitution rate of the genomes and
estimate the dates of the most recent common ancestor (MRCA) of the United Kingdom
and Ireland MDR isolates and their closest non-United-Kingdom isolates in each clade
(Fig. 3A to C). The substitution rate showed some variation across the clades, but the
average was ~3.8 SNPs per genome per year (6.34 � 10�7 SNPs per site per year)
(Fig. 3B). The dated phylogenetic trees revealed that a majority of the clades were
formed within the past few decades (Fig. 3A and C). The ST101 and ST874 clades
consisted entirely of United Kingdom isolates but formed �100 years ago and 20 years
ago, respectively. While ST101 isolates originated from various hospitals in the United
Kingdom and Ireland, the ST874 clade included two linked putative outbreaks in two
different hospitals (Fig. 3A). The ST16 clade with an MRCA of 25 years predominantly
comprises an outbreak in the United Kingdom and isolates from sporadic infections of
blaOXA-48 carbapenemase-producing isolates in two hospitals in Spain (15) and two
isolates from Italy (because of the unavailability of exact isolation years, the Spanish
isolates were not included in the Bayesian tree of ST16 in Fig. 3A). The ST147 and ST15
clades were more geographically diverse and had MRCAs of 39 and 48 years, respec-
tively. The ST147 clade included four MDR isolates from two hospitals in Italy (16) and
some isolates from Vietnam, Laos, and Nepal that are linked with a putative outbreak
caused by the United Kingdom and Ireland MDR isolates. The ST15 clade is highly
diverse, consisting of linked outbreaks caused by the United Kingdom and Ireland MDR
isolate collection and previously reported ones in Nepal and the Netherlands (18, 19,
31), which diverged from the United Kingdom and Ireland MDR isolates 13 and 15 years
ago, respectively (Fig. 3A). Altogether our results demonstrate that the United Kingdom
and Ireland MDR K. pneumoniae isolates in these major STs are connected to global
isolates, which are sometimes from outbreaks of carbapenemase-encoding and MDR
strains. Since our collection is extensively susceptible to imipenem, the connection to
these outbreaks suggests a potential risk of the rise of carbapenem-resistant strains
within hospitals in the United Kingdom in the near future. To generalize the findings
from the major STs, we first excluded isolates of major STs from the population and
then used the average substitution rate to obtain the origins of the apparent trans-
missions from the global collection to the United Kingdom and Ireland that occurred
within the last ~20 years, i.e., since the formation of the ST874 clade as the most recent
clade. The results showed that apparent recent divergences on this time scale involved
isolates from several countries (Fig. 3D). In particular, several isolates of ST307 from Italy
and Nepal showed recent divergences from a single MDR United Kingdom and Ireland
isolate. Furthermore, two MDR United Kingdom and Ireland isolates appeared to be
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from the ST11 clade, which is composed of isolates from the recent spread of a
carbapenem-resistant lineage across Spain, further underlining the risk of the spread of
carbapenem-resistant strains to United Kingdom hospitals.

The genomic diversity of the MDR United Kingdom K. pneumoniae collection was
also evident in the size of the accessory genome. The number of genes in the core
genome, i.e., the number of genes shared by �99% of the isolates, was 2,958, which is
higher than the 1,743 reported for the global collection (4), probably a reflection of the
higher diversity in that collection. The soft-core genome (genes shared by �95% and
�99% of the isolates) had an additional 543 genes. The noncore genome (genes shared
by �0% and �95% of the isolates) was very large, consisting of 25,044 genes. This large
dispensable genome was also partly due to the presence of multiple plasmids in the
isolates. The isolates predominantly harbored plasmids with Kpn3, FIIK, PKP91, and Col
replicons (Fig. S2). Of these, FIIk, FIBk, and Kpn3 have been reported to carry multiple
beta-lactamases, particularly cephalosporinases, and are often shared by members of
the family Enterobacteriaceae (32, 33).

FIG 3 (A) Dated Bayesian phylogenies for the United Kingdom and Ireland STs that contain at least 10 United Kingdom and Ireland MDR K. pneumoniae isolates.
The bars on the nodes show 95% confidence intervals. The values on the nodes denote divergence times in years. The colored bars in the columns next to
each clade show putative outbreaks in the same hospitals. The most recent collection years of isolates in the ST15, ST147, ST874, ST101, and ST16 clades were
2013, 2012, 2009, 2010, and 2013, respectively. (B) Substitution rates estimated for the clades in panel A. The error bars denote the 95% confidence interval.
(C) The age of the MRCA of the clades in panel A. The error bars denote 95% confidence intervals. (D) Dates of the MRCA of United Kingdom and Ireland isolates
and global isolates for the isolates not present in the major ST clades shown in panel A. The estimated age of divergence between United Kingdom and global
isolates for linkages within a cutoff of 80 SNPs corresponds to ~20 years. This age and the upper and lower values of the error bar (95% confidence interval)
were obtained by dividing the pairwise SNP distances by the mean substitution rate and also the upper and lower 95% confidence interval bounds for the
substitution values in panel B.
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Infection by K. pneumoniae involves a number of host interaction or virulence
factors, including capsule production proteins, fimbriae, lipopolysaccharides, sidero-
phores, and efflux pumps (26). Our data show that the capsule gene (wzi), the
aerobactin siderophore receptor gene (iutA), and the fimbrial gene (mrk) were fre-
quently present in every isolate (Fig. S3). In contrast, the yersiniabactin gene (ybt), iron
transporter permease genes (kfuB and kfuC), and iron regulatory protein genes (irp1 and
irp2), all involved in iron metabolism, were present in only a proportion of the isolates
contained in certain clades (Fig. S3A), showing that isolates in these clades are
developing various iron uptake mechanisms and may have the potential to turn into
novel hypervirulent K. pneumoniae strains (Fig. S3A). The higher diversity of sidero-
phores has been suggested to make bacteria more capable of taking up environmental
iron by evading larger numbers of non-siderophore-producing cheater bacteria (34).
The higher efficiency of iron uptake may result in phenotypic changes such as higher
capsule production, involved in the formation of hypervirulent phenotypes (27, 35, 36).
Furthermore, the number of virulence genes varies across major STs and appeared to
be relatively higher in ST101, ST336, and ST29, which provides genomic evidence of
differential virulence characteristics (Fig. S3B).

The availability of quantitative MICs, rather than qualitative resistant/susceptible
classifications, allowed us to directly identify genetic determinants that cause increased
antibiotic resistance in MDR K. pneumoniae (Fig. S4). As expected, we found a high
correlation between MICs of antibiotics with similar mechanisms of action, such as
minocycline and its derivative tigecycline and cefuroxime/cefotaxime (Fig. S5A). The
phenotypic results indicated that the population was broadly resistant, i.e., �50% of
the population, to the penicillins amoxicillin (susceptible [S], 0; intermediate [I], 0;
resistant [R], 250), amoxicillin-clavulanate (S, 78; I, 0; R, 172), and piperacillin-tazobactam
(S, 58; I, 72; R, 120); the cephalosporins ceftazidime (S, 78; I, 11; R, 161), cefotaxime (S,
77; I, 1; R, 147), and cefuroxime (S, 15; I, 0; R, 235); ciprofloxacin (S, 62; I, 24; R, 164); and
the aminoglycoside gentamicin (S, 116; I, 0; R, 134). In contrast, the collection was less
resistant to imipenem, the carbapenem antibiotic used in this study (S, 248; I, 2; R, 0),
as well as tigecycline (S, 120; I, 72; R, 51) (Fig. S5B). We found that increased resistance
to most antibiotics has emerged throughout the tree, suggesting that the ongoing
evolution of MDR K. pneumoniae clades is driven by antibiotic treatment (Fig. S5C).
Among the major STs identified here, ST101 and ST147 were more resistant to
tetracycline and ST101 and ST340 were more resistant to cefotaxime and ciprofloxacin,
as shown by the distribution of MICs across the major STs (Fig. S5D).

K. pneumoniae resistance to beta-lactam drugs is attributed primarily to the pres-
ence of ESBLs (3). The MICs of amoxicillin-clavulanate, ceftazidime, and cefuroxime for
the ESBL-producing isolates in our collection were higher than those for the non-ESBL-
producing isolates (Fig. S5E), and these isolates appeared to produce various beta-
lactamases, some of which are known to lead to the ESBL-producing phenotype. Most
notably, the blaCTX-M-15 gene, which has been reported to be prevalent across Europe
(37), and blaSHV variants SHV-12, SHV-39, SHV-100, and SHV-40 were gained by isolates
across the tree (Fig. S6A). These genes, along with rare putative ESBL-encoding genes
such as blaCTX-M-26, blaSHV-27, and blaSHV-5, account for 95% of the ESBL phenotype, and
some of these were strongly associated with elevated levels of resistance to beta-
lactams (Fig. S6B). These variant beta-lactamase-encoding genes were acquired multi-
ple times throughout the tree as accessory genes and were associated with increased
resistance to amoxicillin, ceftazidime, and cefuroxime in isolates with elevated MICs
(Fig. S6C). Besides ESBLs, resistance to cephalosporins and cephamycins may be
mediated by AmpC beta-lactamases in members of the family Enterobacteriaceae.
Although K. pneumoniae is known to lack the chromosomally located ampC gene, eight
variants of ampC in the accessory genome seem to have been sporadically acquired by
isolates across the phylogenetic tree. An extra copy of the ampC gene is exclusively
present in one isolate, i.e., 12045_7#42, with a read coverage of 40� across the whole
gene, which has the highest MIC of cefoxitin, as the only cephamycin studied here. The
gene appears to be linked with phage proteins and occurred in the context of some
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K. pneumoniae plasmids. The variance in the MICs of cefoxitin for other isolates might
be attributable to other resistance mechanisms, such as differential beta-lactamase
expression levels. Despite several reports of outbreaks of carbapenemase-producing
K. pneumoniae, carbapenem resistance is relatively uncommon in Western Europe (38),
and this holds true for our collection. In a single isolate that exhibited a high MIC of
imipenem (8 �g/ml), the blaNDM1 gene, which encodes a dominant Enterobacteriaceae
carbapenemase first detected in India and Pakistan, was present (39).

The expression of tetracycline efflux pumps is a known resistance mechanism across
a wide range of species (40). In our isolates, in addition to the chromosomally located
tetA and tetD tetracycline efflux protein-encoding genes, which were found in the core
genome, additional copies of tetA and tetD had been acquired by multiple isolates, and
these appeared to be associated with increased MICs (Fig. S6D and E).

Three classes of aminoglycoside-modifying enzymes (adenylyltransferases, phos-
photransferases, and acetyltransferases) generally confer gentamicin resistance on
members of the family Enterobacteriaceae. A number of isolates spread throughout
the tree appeared to have independently acquired different gentamicin resistance-
encoding genes, which included mainly aminoglycoside acetyltransferase [aac(6=) in
125 isolates and aac(3)-II in 97 isolates]-, adenylyltransferase (aadA in 93 isolates)-, and
phosphotransferase (strA and strB genes in 83 isolates and aph(3=)-I in 46 isolates)-
encoding genes. Similar to gentamicin, ciprofloxacin is reported to still be an effective
treatment for K. pneumoniae infections, although the rate of ciprofloxacin resistance in
K. pneumoniae has been rising recently (41, 42). Ciprofloxacin resistance is generally
mediated through mutations in the gyrB and gyrA (gyrase) genes and the parC
(topoisomerase IV) gene. In our collection, the gyrB E468D nonsynonymous mutation,
previously reported to increase the MIC by 8-fold, had arisen as the result of two
different point mutations in four and six isolates and was strongly associated with
elevated ciprofloxacin MICs (P � 0.0001 [Student’s t test]) (43).

DISCUSSION

We used genomic and phylogenetic approaches to analyze a collection of MDR
K. pneumoniae isolates systematically obtained from bloodstream infections in hospitals
across the United Kingdom and Ireland. In particular, we studied the population
structure and variation of this collection in the phylogenetic context of other global
K. pneumoniae collections to uncover the specific relationships between United King-
dom and Ireland isolates and global isolates. In addition, the availability of drug
susceptibility (MIC) data allowed us to identify genetic determinants associated with
antibiotic resistance.

Our findings indicate that the United Kingdom and Ireland K. pneumoniae popula-
tion is highly diverse, encompassing isolates from the major lineages of K. pneumoniae
and various STs, some of which have been associated with the global dissemination of
K. pneumoniae (28). In particular, we found that several clones of MDR K. pneumoniae
have emerged recently and spread across the country and in some cases have given
rise to outbreaks. Furthermore, there were apparent links between United Kingdom
and Ireland isolates and outbreaks in mainly European hospitals. We noted that the
closest relatives of United Kingdom and Ireland MDR K. pneumoniae were more likely
to be isolates from nosocomial rather than community-acquired infections. This high-
lights the importance of identifying putative reservoirs of K. pneumoniae that may be
involved in the transmission of K. pneumoniae between distant hospitals and thus lead
to the global circulation of K. pneumoniae. As a commensal opportunistic pathogen,
K. pneumoniae has the potential to spread rapidly between hospitals via carriage in
patients transferred between countries, medical tourists, or blood products (44). Further
tracing of patients involved in intercountry transmissions could help to find any missing
intermediates in the transmission chain and, by doing so, determine the extent of direct
versus indirect hospital transmission.

We found that genetic determinants that increased the resistance level (MIC) have
emerged across the population. This finding, along with the observation that United
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Kingdom and Ireland MDR isolates were nested within the global collection, demon-
strates that even already MDR lineages can become more resistant and can disseminate
rapidly. The introduction of ESBL-producing K. pneumoniae into Europe, and on some
occasions into the United Kingdom, has been ascribed to the transfer of patients from
countries where MDR K. pneumoniae is endemic (38, 45). This is particularly concerning
for the introduction of carbapenem resistance from outside the United Kingdom, as this
is one of the few remaining antibiotic classes that are effective against K. pneumoniae
infections. Our study provides further evidence of the independent emergence of
resistant lineages due to the acquisition of determinants of resistance to currently
effective antibiotics (39).

The high resolution of whole-genome sequencing enabled us to elucidate the fine
structure of the United Kingdom and Ireland MDR K. pneumoniae population in this
study. Using a geographically broader collection of clinical drug-sensitive, as well as
resistant, K. pneumoniae would allow an understanding of the extent of the global
network of interhospital transmissions and also identify previously unrecognized
sources and reservoirs of this pathogen. This will be essential for designing effective
means to bring the dissemination of this infection under control.

MATERIALS AND METHODS
Isolates and antibiotic susceptibility testing. This study was approved by the National Research

Ethics Service (reference no. 12/EE/0439) of the United Kingdom and the Cambridge University Hospitals
Research and Development Department. Two hundred fifty K. pneumoniae isolates were collected by the
British Society for Antimicrobial Chemotherapy (BSAC). The collection was composed of isolates that
were submitted to a systematic bacteremia surveillance program between 2001 and 2011 by 28 hospitals
across the United Kingdom and Ireland. The K. pneumoniae collection was derived from a large-scale
systematic collection of Gram-negative MDR pathogens from a selection of hospitals across the United
Kingdom and Ireland chosen to maximize geographic diversity. In order to maximize temporal diversity,
isolates were taken from each of the 10 years of sampling. This yielded a temporally and geographically
diverse collection of MDR isolates. We then analyzed all of the K. pneumoniae isolates in this collection,
which were spread across the majority of the hospitals over 10 years. A list of isolates in the collection
is provided in Table S1.

We defined multidrug resistance as nonsusceptibility to three or more classes of antimicrobials, as
described in reference 46. Isolates were collected if they were resistant to at least one antibiotic in three
of the following classes: penicillins, carbapenems, cephalosporins, tetracyclines, aminoglycosides, and
fluoroquinolones.

To contextualize our isolates, we used sequence data from a previously published global collection
that contains genomes of isolates from animals and humans with both environmental and nosocomial
infection sources, mainly from five countries across the world (4). To maximize the diversity of the
contextual population, we included a further nine published clinical collections of K. pneumoniae
recovered mainly from Europe but also from Asia and America in our analysis (15, 16, 18, 19, 31, 47–50).
The collection includes any previously published data sets with more than 10 assemblies submitted to
the NCBI and two further data sets from Nepal. The accession and study numbers of each, as well as the
country of origin, are shown in Table 1.

The agar dilution method was employed to obtain the MIC of each antibiotic for each isolate. The
antibiotics included penicillins (amoxicillin, amoxicillin-clavulanic acid, and piperacillin-tazobactam),
cephalosporins (cefuroxime, cefotaxime, and ceftazidime), a cephamycin (cefoxitin), an aminoglycoside
(gentamicin), a fluoroquinolone (ciprofloxacin), tetracyclines (minocycline and tetracycline), and a gly-
cylcycline (tigecycline) (46). The distribution of MICs for our samples was compared with the distributions

TABLE 1 K. pneumoniae isolates used in this study to contextualize the United Kingdom
and Ireland MDR K. pneumoniae collection

Study no. PubMed ID no. Country

ERP000165 26100894 Multiple
PRJEB1272 26769896 Spain
PRJNA252925 26864946, 26617589 Netherlands
PRJEB1800 25712531 Nepal
PRJEB7967 26199326 Multiple
PRJEB6543 25367909 Italy
PRJNA267549 26230489 United States
PRJEB7661 26135860 Italy
PRJEB10561 26817488 Greece
PRJNA253300 25267672 Nepal
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from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). The clinical resistance
breakpoints were downloaded from the EUCAST website (http://www.eucast.org) on 15 March 2016.

Sequencing and pangenome analysis. DNA extraction was performed with the QIAxtractor
(Qiagen) instrument according to the manufacturer’s instructions. Illumina sequencing libraries with a
450-bp insert size were prepared according to the manufacturer’s protocols and sequenced on an
Illumina HiSeq2000 with paired-end reads with a length of 100 bp. Ninety-six samples were multiplexed
per lane to give an average depth of coverage of ~90-fold. We assembled paired-end sequence reads by
employing an assembly and improvement pipeline (51) that is based on Velvet (52) and subsequently
annotated the de novo assemblies with Prokka (53). To perform the pangenome analysis, we took the
output from Prokka and analyzed it with Roary (54).

Phylogenetic analysis and substitution rate calculation. We mapped the short reads against the
reference genome of K. pneumoniae Ecl8 (GenBank accession no. HF536482 and CANH01000000) with
SMALT v 0.7.4 (https://www.sanger.ac.uk/resources/software/smalt/). We employed a conservative min-
imum score of 30 for mapping and then annotated SNPs with a combination of SAMtools mpileup (55)
and BCFtools. We removed the SNPs at sites with heterogeneous mapping in which the SNP was present
in less than 75% of the reads at that site, similar to reference 56.

The multiple alignment was used to obtain the global tree. To estimate the substitution rate within
each major clade, i.e., ST15, ST101, ST147, ST16, and ST874 (see Results for more details), we first selected
the isolate with the best contig statistics (i.e., with the largest N50 value and lowest contig number) from
that clade in our collection. We then joined the contigs and used the resulting pseudogenome as a local
reference genome and mapped the reads from each clade to this. We obtained multiple alignments of
SNP sites for each clade by the method described above. Subsequently, we eliminated high-density SNP
regions that had undergone recent recombination by using Gubbins, which detects recombination by
using SNP density (57). The recombinations occurred primarily in hot spots that included phage and
transposon genes and occasionally genes coding for membrane and capsular proteins, such as the wzi
gene. The ST15, ST101, ST147, ST16, and ST874 clades contained 2, 3, 5, 2, and 2 phage regions,
respectively. The SNPs that occurred in these regions appeared to account for the majority (between 90
and 95%) of the SNPs that accumulated in the major clades. The ST15, ST101, ST147, ST16, and ST874
clades had 21,316, 9,436, 27,626, 4,480, and 2,315 variant sites before the removal of hypervariable sites,
respectively. Gubbins reduced these to 2,302, 588, 1,150, 358, and 279 variants, respectively.

We then used the multiple alignments to obtain phylogenetic trees and used the trees to plot the
root-to-tip distance versus the time of isolation for each clone. To assess the significance of the temporal
signal, i.e., the clock-like accumulation of mutations over time, we conducted 10,000 bootstraps with
randomized years to obtain a distribution for R-squared values. We then compared the real R-squared
values with the distribution. We found a strong temporal signal at �99% confidence for the ST147 clade
and �85% for the ST15 and ST874 clades. The temporal signals were weaker (�60%) for the ST16 and
ST101 clades. To estimate the substitution rate, we used BEAST v 1.7 (58). We examined various models,
including a strict molecular clock and a lognormal model with a constant population size. We used the
results of the lognormal model, as it was favored by the maximum-likelihood test (with 500 bootstraps)
conducted with the Tracer software of the BEAST package.

We ran three independent chains of BEAST for 50 million generations with sampling every 10
generations. Convergence was tested by using effective sample sizes that had to be �200 for key
parameters to confirm convergence. Ten million states were excluded as the burn-in phase, and the
output trees were then merged to attain a dated tree with the TreeAnnotator software from the BEAST
package. We used in-house tools, FigTree (tree.bio.ed.ac.uk/software/figtree), and iTOL (59) to visualize
the results of phylogenetic analysis.

In silico MLST analysis and identification of antimicrobial resistance determinants, virulence
factors, and plasmids. We used the srst2 package (60), with a 90% coverage cutoff, to map the short
reads to antibiotic resistance genes, virulence genes, and plasmid replicons. The resistance gene and
plasmid replicon databases were obtained from the srst2 package. For virulence genes, we used the
database of the Pasteur Institute (http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html). The results were
visualized on the phylogenetic tree with an in-house tool. The STs were determined with an in silico MLST
pipeline that takes assemblies and compares them against allele data derived from the public MLST
database at http://www.pubmlst.org/kpneumoniae. We identified ESBLs as defined in the Lahey Hospital
and Medical Centre database of beta-lactamases and ESBLs, which is available at http://www.lahey.org/
Studies.

Regression analysis and identification of antibiotic resistance determinants. In addition to
screening the database of known resistance genes, we developed a genome-wide statistical approach to
identify genes/SNPs that are strongly associated with elevated MICs as quantitative values rather than
categorical resistant/susceptible values. In doing so, we utilized the higher variance in MICs than in
categorical resistance status to identify genetic determinants that underlie the increase in the MICs of
specific antibiotics. This approach is particularly useful for understanding mechanisms of resistance to
antibiotics like tetracycline, for which no clinical breakpoint is available.

To this end, we first developed a multiple regression model in the form of MIC ~ Gene(0/1) � ST,
where MIC is a continuous dependent variable that corresponds to the MIC of each antibiotic and
Gene(0/1) denotes the presence and absence of the individual accessory genes (the output of Roary).
(Note that, to preform the linear regression model, we made the approximation assumption that MICs
are continuous.) To account for the population structure, we also included the ST information, given the
high level of concordance between ST clusters and major phylogenetic clades, as a categorical predictor
variable. We then identified the genes that generated a significantly positive slope coefficient (95%
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confidence interval) for the Gene(0/1) variable. Subsequently, we filtered the genes with P values of �10�4

(Student’s t test) for the t statistic of association for the Gene(0/1) variable, which measures the
significance that the slope coefficient was greater than 0. In addition, we set a P � 0.05 filter for the F test,
which tests the overall significance of the whole regression test. Finally, we ranked the hits on the basis
of the P values and the R-adjusted value; for a list of hits with their association values, see Table S2, and
for the results, see Fig. S7A. These values are depicted in Fig. S10 for the different antibiotics we studied
here.

In the second regression model, we first identified annotated SNPs in the core genome after mapping
the reads to the reference genome of K. pneumoniae Ecl8 and removing SNP sites where �5% of the
reads had an N at that site. As above, we developed a regression model in the form of MIC ~ SNP(0/1) �
ST, where the MIC and ST variables are defined as mentioned above. The SNP(0/1) variable is the predictor
variable and represented the presence or absence of individual SNPs. Similar filter values were used to
identify SNPs, the presence of which was strongly associated with MICs, and the hit list and statistical
parameters are detailed in Table S3 and Fig. S7B. This model was particularly used to study ciprofloxacin
resistance, which is often conferred by chromosomal mutations.

Data availability. To allow the retrieval of sequences of genes in the accessory genome, we have
deposited these sequences, as well as the full list of genes in the pangenome, in a public repository
(https://data.mendeley.com/datasets/xfw8n3wzs5/1).
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