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Population migration is a critical component of large-scale spatiotemporal models of in-
fectious disease transmission. Identifying the most influential spreaders in networks is
vital to controlling and understanding the spreading process of infectious diseases. We
used Baidu Migration data for the whole year of 2021 to build mobility networks. The
nodes of the network represent cities, and the edges represent the population flow be-
tween cities. By applying the k-shell decomposition and the Louvain algorithm, we could
get the k-shell values for each city and community partition. Then, we identified the most
efficient nodes or pathways in a complex network by generating random networks.
Furthermore, we analyzed the eigenvalue of the migration matrix to find the nodes that
have the most impact on the network. We also found the consistency between k-shell
value and eigenvalue through Kendall's t test. The main result is that in Spring Festival and
National Day, the network is at higher risk of an infectious disease outbreak and the
Yangtze River Delta is at the highest risk of an epidemic all year around. Shanghai is the
most significant node in both k-shell value and eigenvalue analysis. The spatiotemporal
property of the network should be taken into account to model the transmission of in-
fectious diseases more accurately.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the beginning of the 21st century, humans have experienced the Severe Acute Respiratory
Syndrome (SARS) outbreak in 2003(Shaw, 2006), the H1N1 Influenza outbreak in 2009(Louie et al., 2010), the outbreak of

the Ebola virus in western Africa from 2014 to 2016(Henao-Restrepo et al., 2016), the explosion of Middle East Respiratory
Syndrome (MERS) in 2015(Müller et al., 2015), and the pandemic of Corona Virus Disease 2019 (COVID-19) from the end of
2019 to the present(Velavan&Meyer, 2020; Wu et al., 2020) and so on. As of November 4, 2022, there have been 628,694,934
confirmed cases of COVID-19, including 6,576,088 deaths, reported to WHO. The outbreak of these infectious diseases has
seriously disrupted people's regular life, endangered people's lives and property, and at the same time has had a serious
impact on the country's economic development(Zhang et al., 2022).
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The main transmission routes of infectious diseases such as COVID-19 are respiratory droplets and contact transmission.
The spread of the virus across the country and even the world is mainly due to the long-distance migration of its hosts. For
example, the global spread of SARS in 2003(Colizza et al., 2006). When the virus follows the host from one place to another,
the newly infected area may become another source and contaminate other areas. Research pointed out that the epidemic of
SARS in Hong Kong, China began to be controlled in early April 2003, mainly because people took various measures to
effectively reduce the chance of contact between infected and healthy people(Dye & Gay, 2003). It can also be found that
similar to the global spread of SARS, the migration behavior of individuals also plays a crucial role in the influenza A (H1N1)
epidemic(Khan et al., 2009; Mukherjee et al., 2010). These facts inspire us to consider the mobility of individuals to reflect the
real world more accurately when we simulate the spread of infectious diseases.

In the study of the spatiotemporal spread of infectious diseases, a city can be regarded as a node, and population flow can
be viewed as a connection. This way, we can construct the complex network of the spatiotemporal spread of infectious
diseases based on real-world population flow data. As a mature scientific research method, complex network analysis can be
used to explore the inherent characteristics and propagationmechanism of spatiotemporal diffusion. Vespignani's group used
global airline data to build an airline transportation network. They tried to predict pandemics and simulate the risk of
spreading infectious diseases from a single city to other cities worldwide (Colizza et al., 2006). Xin Lu's group used mobile
phone signalling data to simulate the migration patterns of people in different periods in China. Using the Louvain algorithm,
cities were divided into ten communities, and the relevant results could be applied to the prevention and control of the
diffusion of infectious diseases(Tan et al., 2021). Olha Buchel's group applied the Louvain method to the networks built based
on individuals' movements and found that restricting commutes between low and high-risk patches could control the spread
of coronavirus across various areas(Buchel et al., 2021).

The centrality of nodes is of great significance in the analysis of disease spread. Many studies adopted nodal centrality
analysis to predict(Bucur & Holme, 2020) and control the spread of disease(Chaharborj et al., 2022; Christley et al., 2005) as
well as target immunization strategies(Clusella et al., 2016; Wei et al., 2022). The most common metrics used to describe the
importance of nodes in complex network analysis are degree centrality, betweenness centrality(Freeman, 1977), and close-
ness centrality(Krackhardt, 1990). Besides, several algorithms have been introduced, including the collective influence (CI),
the algorithms based on random walk, belief propagation-guided decimation (BPD) algorithm(Zhao et al., 2020). Many
studies have shown that k-shell value is more suitable for portraying node importance(Kitsak et al., 2010). The k-shell value
has the greatest impact on information spreading(Zhu & Zhang, 2019) and is the most correlated to epidemic spreading(de
Arruda et al., 2014). In this work, we analyzed the spatiotemporal features of the population mobility network to provide
parameters for simulating the spread of infectious diseases. We used Baidu Migration data for the whole year of 2021 to build
mobility networks. By applying the k-shell decomposition and Louvain algorithm, we could get k-shell values for every city
and community partition. Then, we identified the most efficient nodes or pathways in a complex network by generating
random networks. Furthermore, we analyzed the eigenvalue of the migration matrix to find significant nodes that have the
greatest nationwide impact on the propagation of infectious disease. It's shown that k-shell value is consistent with the
eigenvalue through Kendall test. The more central the node's position is, the greater effect it will have on the network.
2. Material and methods

2.1. Data

2.1.1. Baidu Migration data
The datawas obtained from the BaiduMigrationwebsite (http://qianxi.baidu.com/). BaiduMigration analyzes the location

information collected by the BaiduMap LBS open platform to obtain population flow trajectories, updates the population flow
between 366 cities, and displays the percentage of the population moving from one city to another. Percentage xij represents
the proportion of the outflow population from city i to city j to the total outflow population of city i.

We collected population flow between all 366 cities for the whole year of 2021. Compared with 2020 and 2022, the data of
2021 could generally represent population mobility because there was no influential lockdown in China this year. Findings
have shown that there was a 30.1% mobility reduction due to lockdowns(Joshi & Musalem, 2021). The nationwide lockdown
in 2020 and the lockdown in Shanghai in 2022 might significantly impact human mobility.

The data was divided into four periods according to the official: Spring Festival (January 28-March 8), National Day
(October 1-7), weekends, andworkdays.With the percentage of the populationmoving from one city to another, we could get
a migration matrix for each day. Then, get the mean migration matrix averaged from the everyday migration matrix for each
period. In order to avoid the interference of extremely low edges, we eliminated edgeswith percentages lower than 1 percent.
Finally, we have got more than 4,000 edges in each period.

2.1.2. Real epidemic data
We collected origin cities that had reported new COVID-19 cases from March 1, 2022, to March
31, 2022. We have found out the number of cities that were affected (news or reports saying that the confirmed case in the

affected city was from the origin city) within 14 days of the first confirmed case in the origin city. Jilin (first case confirmed on
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March 2, 2022) could spread to 7 cities within 14 days. Lanzhou (first case confirmed on March 6, 2022) could spread to 4
cities, while Shanghai (first case confirmed onMarch 1, 2022) could spread to 11 cities, and Quanzhou (first case confirmed on
March 14, 2022) could spread to 8 cities.
2.2. Methods

With a migration matrix, we could construct a mobility network, 366 nodes representing cities and weight of edge
representing the percentage of the population moving from one city to another. As for the parts of k-shell decomposition and
generating random networks, we constructed an unweighted, undirected network for each period based on the mean
migration matrix. While in the Louvain algorithm and eigenvalue analysis, we constructed a weighted directed network.

2.2.1. K-shell decomposition
K-shell decomposition(Kitsak et al., 2010) is based on degree centrality and can divide nodes in the network into different

layers according to their importance. First, find all nodeswith degree k¼ 1 in the network. From the point of degree centrality,
these nodes are the least important in the network. Remove all these nodes and their connected edges. At this point, some
new nodes with a degree k¼ 1may appear. Continue to remove these new nodes until there are no nodes with a degree k¼ 1
in the network. All these removed nodes form the 1-shell, the outermost layer of the network. The degree of the remaining
nodes is at least 2, and the nodes with a degree k ¼ 2 are also removed until no new nodes with a degree value less than or
equal to 2 appear. These removed nodes form the 2-shell. Continue to remove higher shells until all nodes are removed.

2.2.2. Generating random networks
Generate random networks according to the degree sequence of the nodes in the real network, that is, there is no change

in the degree of each node. It's a permutation of edges. For each period, generate 1000 randomnetworks and proceedwith the
k-shell decomposition. Every node has 1000 k-shell values generated from random networks. Then we can get a significant
node whose k-shell value in the real network is higher than all 1000 k-shell values of random networks, with 0.001 as the test
level.

2.2.3. Louvain algorithm
Louvain algorithm(Blondel et al., 2008) is amodularity-based approach that works well for large networks and is relatively

fast. A relatively good division means that the similarity between nodes within the community is high and outside the
community is low. Modularity is an indicator used to measure the quality of community division. Modularity is defined as:

M¼ð1 =2mÞ
X
ij
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Aij �

�
kikj

�
2m

��
d
�
gi; gj

�
(1)

m represents the total number of links in the network, Aij is the link weight between nodes i and j, ki and kj are the sum of
links to and from nodes i and j, dðgi; gjÞ is equal to 1 if there is a link between nodes i and j. Otherwise, it is 0.

The Louvain algorithm can divide all nodes in the network into different communities based on modularity. In the first
stage, consider each node as a single community. Calculate themodularity increment after each node and its neighbour nodes
are merged into a new community. Find the largest modularity increment, and move the node to the corresponding com-
munity. Keep doing this until the maximum modularity increment is not positive. In the second stage, for each obtained
community, all nodes are compressed into one node, repeating the first stage. Iterate step by step until the network reaches
maximum modularity and the algorithm is stable.

2.2.4. Eigenvalue analysis
The migration matrix's eigenvalue indicates the network's ability to spread infectious diseases (Brauer et al., 2019). Once a

node is deleted, the eigenvaluewill inevitably decrease. Therefore, if there is a large decrease in the eigenvalue of the network
after deleting a node, the deleted node is of great significance in the network in terms of disease transmission. In our work, we
applied the method to every node in the network. First, calculate the eigenvalue of the whole network. Then, delete the node
and its related edges, and calculate the eigenvalue of the remaining network. This way, we can get the reduction in eigenvalue
from the eigenvalue of the whole network. Lastly, after repeating 366 times, we can get decreases in eigenvalue for all nodes.
By comparing the decrease in eigenvalue, we can obtain the importance of each node.

2.2.5. Kendall's t test
We applied Kendall's t test to the k-shell value and eigenvalue decrease to find the consistency between the two pa-

rameters. Calculate the mean k-shell value and decrease of eigenvalue for each node using the above k-shell value and
decrease of eigenvalue result of four periods. Compare the list of cities ranked by the mean k-shell value and the list ordered
according to themean decrease of eigenvalue with the indicator Kendall’ t. It allows a quantitative analysis of the correlations
between two rankings of n objects and is given by:
1119
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t¼ nc � nd
nðn� 1Þ=2 (2)

nc is the number of pairs whose order does not change in the two different lists and nd is the number of pairs whose order is
inverted. This quantity is normalized between �1 and 1: t ¼ 1 corresponds to an identical ranking, while t ¼ �1 is a perfect
anticorrelation, and t ¼ 0 means the two rankings are uncorrelated.

3. Results

3.1. Nationwide k-shell values and significant nodes in four periods

Through the k-shell decomposition of the population mobility network, the k-shell value of each node is obtained,
indicating the node's importance. The larger the k-shell value is, the more influential the node is for the transmission of
infectious diseases in the network. Corresponding to the characteristics of the population mobility network that the east is
dense and the west is sparse, the k-shell value is higher in the east region and lower in the west (Fig. 1AeD). The nodes with
the highest k-shell values are listed (Table S1 Supplementary Material). As for the k-shell values for four periods, National Day
has the highest nationwide mean k-shell value than the other three periods (Fig. 1E). The mean k-shell value for National Day
Fig. 1. K-shell values for the four periods. A-D are the nationwide k-shell values of National Day, Spring Festival, weekends, and workdays. K-shell value is higher
in the east region and lower in the west. F-I are the corresponding significant nodes. The numbers of significant nodes for National Day, Spring Festival, workdays,
and weekends are 122, 107, 64, and 118. The significant nodes are those with higher k-shell values. E is the violin plot for nationwide k-shell values in four periods.
National Day has the highest nationwide mean k-shell value than the other three periods. J shows the k-shell values for significant nodes in four periods. The
mean k-shell value of significant nodes on National Day is also the highest.

1120



W. Li, Y. Yao Infectious Disease Modelling 8 (2023) 1117e1126
is 11.10, while the k-shell values for Spring Festival, workdays, and weekends are 9.94, 9.53, and 9.52. The difference is
statistically significant with p < 0.05.

After generating random networks according to the degree sequence of the nodes in the real network and proceeding with
k-shell decomposition, we got the significant nodes for each period. The numbers of significant nodes for National Day, Spring
Festival, workdays, and weekends are 122, 107, 64, and 118 (Fig. 1FeI). The significant nodes are those with higher k-shell
values. It's worth noting that Beijing is not significant onworkdays and weekends (Fig. 1H and I), which is related to Beijing's
strict entry-admission policy.

As shown in all four periods, city clusters are not only close in geographical location but also with almost the same k-shell
values. And the k-shell values of the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei city clusters are
significantly larger than those of other regions. Thus, it's necessary to specify these clusters.
3.2. Community detection and k-shell value analysis of important regions

The results of community detection in different periods are not the same, but they are roughly divided intomore or less 14
communities (Fig. 2AeD). The provinces or cities for each community are listed (Table S2 Supplementary Material). Doctor Lu
Xin's group constructed a population flow network based on China's Mobile communication data(Tan et al., 2021). The
Fig. 2. Community detection for the four periods. A-D are the results of the Louvain algorithm on National Day, Spring Festival, weekends, and workdays. All 366
cities are roughly divided into more or less 14 communities. It reflects that the structure of urban agglomerations is relatively stable and does not change with the
fluctuation of population flow. E shows the mean k-shell values of the three regions in four periods. Yangtze River Delta has the highest k-shell value. F is the
boxplot of k-shell values for Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta in four periods. The k-shell value of the Yangtze River Delta is always
higher than the other regions with p < 0.05.
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national urban agglomeration pattern detected by the Louvain algorithm is similar to the results in our study, but the number
of communities is smaller. It reflects that the structure of urban agglomerations is relatively stable and does not change with
the fluctuation of population flow.

It is shown in 3.1. there exist communities centered in Beijing, Shanghai, and Guangzhou. According to the result of the
Louvain algorithm, the communities are specified as Beijing-Hebei-Tianjin-Shandong (short for Beijing-Tianjin-Hebei in the
following statement), Shanghai- Jiangsu-Zhejiang-Anhui-Jiangxi (Yangtze River Delta) and Guangdong-Guangxi-Hunan
(Pearl River Delta), different from the official city clusters.

The k-shell values of the three communities are significantly different; for each community, the k-shell value varies with
periods (Fig. 2E and F). For all periods, the k-shell value of the Yangtze River Delta is always higher than Beijing-Tianjin-Hebei
and Pearl River Delta, p < 0.05. The k-shell value of Pearl River Delta is always higher than Beijing-Tianjin-Hebei except for
National Day, p < 0.05. As for Beijing-Tianjin-Hebei and Yangtze River Delta, the k-shell value of National Day is the highest
among all periods, p < 0.05, and the differences range from 1.60 to 2.55. As for Pearl River Delta, the k-shell value of National
Day and Spring Festival is higher than that of workdays andweekends, and there is no significant difference between National
Day and Spring Festival or workdays andweekends. The difference between National Day andweekends in Pearl River Delta is
1.63 (95%CI: 1.08e2.18).

3.3. Decrease in the eigenvalue of migration matrix on nation and community scale

The eigenvalue of the migration matrix is an applied method to represent the network's ability to transmit infectious
diseases. By comparing the decrease in eigenvalue, we could obtain the importance of each node. Similar to the k-shell value
distribution, the decrease in eigenvalue is larger in the eastern region and smaller in the western area (Fig. 3AeD). Cities with
large decreases in eigenvalues are almost the capital of provinces like Zhengzhou, Hangzhou, Guangzhou, and so on. The
twenty nodes with the largest decrease in eigenvalue for each period are listed (Table S3 Supplementary Material). Among all
periods, the decrease in the eigenvalue of Shanghai maintains the largest, showing that Shanghai plays the most critical role
in the transmission of infectious disease all year around. There is no significant difference between the nationwide mean
decreases in four periods (Fig. 3E), p ¼ 0.90. However, the decreases in eigenvalue in the Beijing-Tianjin-Hebei and Yangtze
River Delta are larger than that of the Pearl River Delta (Fig. 3J), p < 0.05. It indicates that the other two regions have a stronger
ability to transmit infectious diseases than the Pearl River Delta.

Furthermore, we analyzed the decrease in eigenvalue on the community scale to find out the core node of the community.
The most influential nodes of the three communities are Jinan (Beijing-Tianjin-Hebei), Shanghai (Yangtze River Delta), and
Guangzhou (Pearl River Delta). These most influential nodes remain the same in different periods (Fig. 3FeI).

3.4. Consistency between k-shell value and eigenvalue decrease

We present the list of the top 20 cities ordered according to themean k-shell value and themean decrease in eigenvalue in
Table 1. For all 366 pairs, t ¼ 0.63, p < 0.001. The result indicates a significant correlation between the mean k-shell value and
the mean decrease in eigenvalue. It can be concluded from such consistency that the nodes with higher k-shell values have a
greater impact on infectious disease transmission since the eigenvalue decrease represents the node's impact on the network.

3.5. Association with infectious disease transmission

As the k-s value and eigenvalue decrease of a city reflect its influence on the network, it may
influence awider rangewith a higher k-s value in the aspect of infectious disease transmission. Therefore, we analyzed the

correlation between the spread range of a city and its k-s value as well as eigenvalue decrease to prove the value of these
methods in infectious disease transmission.

Within 14 days, Jilin, Lanzhou, Shanghai, and Quanzhou could affect 7, 4, 11, and 8 cities respectively (Fig. 4A). We found
that both k-s value and eigenvalue decrease were highly correlated with number of affected cities (Fig. 4B). K-s value shows a
significant associationwith number of affected cities (r ¼ 0.98, p ¼ 0.02), while eigenvalue decrease has a weaker association
with number of affected cities (r ¼ 0.90, p ¼ 0.09). In other words, k-s value has a better prediction of the spread range of
infectious diseases. Combining population epidemic model(Fan et al., 2020), we analyzed the Spearman correlation between
risk rankings and k-shell values as well as eigenvalue decrease (Fig. S1 Supplementary Material). It shows that cities with
higher k-shell values and larger decreases of maximum eigenvalue have a higher risk, and the correlation between risk
rankings and k-shell values is 0.57 (p < 0.001), while the correlation between risk rankings and maximum eigenvalue
decrease is 0.65 (p < 0.001). It indicates that eigenvalue decrease performs slightly better in risk assessment. It may be
appropriate to integrate k-shell value and eigenvalue decrease to make better predictions about infectious disease
transmission.

4. Discussion

In our current work, we analyzed the spatiotemporal features of the population mobility network through k-shell
decomposition, random network, Louvain algorithm, eigenvalue analysis, and Kendall's t test. K-shell value is the highest on
1122



Fig. 3. Decrease in eigenvalue in four periods. A-D are the nationwide decrease in the eigenvalue on National Day, Spring Festival, weekends, and workdays.
Similar to the k-shell value distribution, the decrease in eigenvalue is larger in the eastern region and smaller in the western area. Shanghai maintains the largest
decrease in eigenvalue. F-I are the corresponding decrease of eigenvalue on the scale of community. The most influential nodes for the three communities are
Jinan, Shanghai, and Guangzhou. These nodes remain the same in different periods. E shows no significant difference in the nationwide mean decreases between
four periods. J is the boxplot of the decrease in eigenvalue in the three regions in four periods. The decreases in eigenvalue in Beijing-Tianjin-Hebei and Yangtze
River Delta are significantly larger than those of the Pearl River Delta.
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National Day and in the Yangtze River Delta among all periods and communities. According to the decrease in eigenvalue,
there is a higher risk of outbreak and infectious disease transmission on National Day and Spring Festival on weekends and
workdays. And Yangtze River Delta is at the highest risk of an outbreak all year around. Among all 366 cities, Shanghai has the
highest k-shell value as well as eigenvalue decrease in all periods. We also have found the consistency between k-shell value
and eigenvalue decrease.

Our work is practical in control strategy making and epidemic prevention. Nodes with higher k-shell values need extra
attention, like Shanghai and Guangzhou. Once there is an outbreak of infectious disease in the core node, the transmission
may be too fast to take a timely response. Similarly, it's efficient to bring core nodes under control to reduce transmission and
infected nodes. It's demonstrated through numerical simulation and ER model networks that immunizing core nodes in the
network can effectively reduce the number of infected nodes and sufficiently reduce the network density to control the
outbreak of infectious diseases(Saxena et al., 2018). We also work out city clusters through the Louvain algorithm to illustrate
mobility patterns in different periods. All 366 cities are roughly divided into fourteen communities, more than the number of
communities detected by Doctor Lu Xin's group(Tan et al., 2021). But the national agglomeration pattern is similar. According
to the principle of the Louvain algorithm, nodes in the same community are more strongly attached than nodes in other
communities, facing a higher risk of infection once there is an outbreak inside the community. It can be employed to create an
effective and accurate health surveillance system that grows as time passes(Elgazzar et al., 2021).
1123



Table 1
The list of top 20 cities is ordered according to the mean k-shell value and mean decrease of maximum
eigenvalue.

Ranking K-s value Decrease of eigenvalue

1 Shanghai Shanghai
2 Nanjing Suzhou
3 Suzhou Beijing
4 Hangzhou Hangzhou
5 Hefei Shenzhen
6 Wuhu Guangzhou
7 Chuzhou Zhengzhou
8 Fuyang Dongguan
9 Lu'an Nanjing
10 Wuxi Foshan
11 Chizhou Hefei
12 Bengbu Wuxi
13 Maanshan Jinan
14 Changzhou Tianjin
15 Tongling Huizhou
16 Anqing Qingdao
17 Xuzhou Langfang
18 Huainan Ningbo
19 Suzhou Jiaxing
20 Bozhou Wuhan

Fig. 4. Correlation between number of affected cities and k-s value, decrease of maximum eigenvalue. A shows four origin cities and their corresponding affected
cities. Jilin, Lanzhou, Shanghai, and Quanzhou could affect 7, 4, 11, and 8 cities respectively within 14 days. B shows the Pearson correlation between the number
of affected cities and k-shell value, as well as eigenvalue decrease. K-shell value shows a significant association with the number of affected cities (r ¼ 0.98,
p ¼ 0.02).

W. Li, Y. Yao Infectious Disease Modelling 8 (2023) 1117e1126
Complex network analysis is challenging due tomassive data, network size, and changing topology. Although k-shell value
performs better in identifying critical nodes than other metrics like betweenness centrality and closeness centrality, it does
have backdraws in real network analysis. K-shell value always assigns many nodes with the same value, leading to the
limitation in distinguishing the influences of these nodes(Li&Huang, 2021). In our work, 366 cities are assigned into nomore
than twenty k-shell layers. Many nodes have the same k-shell values, especially those with higher k-shell values, making it
hard to portray significance exactly. And it's rarely accurate in quantifying the spreading power of nodes that are not highly
influential(Lawyer, 2015). By the way, depending on a single characteristic of nodes to reliably identify influential spreaders is
inadequate(Li & Huang, 2022; Ullah et al., 2021). Thus, k-shell value should be adopted to form a comprehensive indicator
combined with other metrics like degree centrality, betweenness centrality, gravitational centrality(Wang et al., 2018), and so
on. As for Louvain algorithm, it may yield arbitrarily badly connected communities(Traag et al., 2019). Although in our work,
there exists no such problem, it's worth noting when applying Louvain algorithm to other networks.

Our analysis finds out significant cities and communities in different periods. According to k-shell value and eigenvalue
decrease, there is a higher risk of an outbreak on National Day and Spring Festival. Shanghai and Yangzte River Delta are core
regions in infectious disease transmission. We also discover the consistency between k-shell value and eigenvalue decrease.
Modelling disease transmission needs to take this complex spatiotemporal information into account to make more accurate
predictions about the transmission speed, arrival time, and so on. Further modelling and analytical work will be conducted to
refine and generalize this information as part of the model.
1124



W. Li, Y. Yao Infectious Disease Modelling 8 (2023) 1117e1126
CRediT authorship contribution statement

Wenjie Li: Conceptualization, Data curation, Formal analysis, Methodology, Resources, Software, Validation, Visualization,
Writing e original draft, Writing e review & editing. Ye Yao: Conceptualization, Formal analysis, Methodology, Project
administration, Resources, Software, Supervision, Validation, Visualization, Writing e review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Shanghai Municipal Health Commission Clinical Research Program (20214Y0020), the
General Program of Natural Science Foundation of Shanghai Municipality (22ZR1414600), and the Young Health Talents
Program of Shanghai Municipality (2022YQ076).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2023.10.003.

References

de Arruda, G. F., Barbieri, A. L., Rodríguez, P. M., Rodrigues, F. A., Moreno, Y., & Costa Lda, F. (2014). Role of centrality for the identification of influential
spreaders in complex networks. Physical Review E - Statistical, Nonlinear and Soft Matter Physics, 90(3), Article 032812. https://doi.org/10.1103/PhysRevE.
90.032812

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10), Article P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). In F. Brauer, C. Castillo-Chavez, & Z. Feng (Eds.), Mathematical models in epidemiology (1 ed.). Springer.
https://doi.org/10.1007/978-1-4939-9828-9.

Buchel, O., Ninkov, A., Cathel, D., Bar-Yam, Y., & Hedayatifar, L. (2021). Strategizing COVID-19 lockdowns using mobility patterns. Royal Society Open Science,
8(12), Article 210865. https://doi.org/10.1098/rsos.210865

Bucur, D., & Holme, P. (2020). Beyond ranking nodes: Predicting epidemic outbreak sizes by network centralities. PLoS Computational Biology, 16(7), Article
e1008052. https://doi.org/10.1371/journal.pcbi.1008052

Chaharborj, S. S., Nabi, K. N., Feng, K. L., Chaharborj, S. S., & Phang, P. S. (2022). Controlling COVID-19 transmission with isolation of influential nodes. Chaos,
Solitons & Fractals, 159, Article 112035. https://doi.org/10.1016/j.chaos.2022.112035

Christley, R. M., Pinchbeck, G. L., Bowers, R. G., Clancy, D., French, N. P., Bennett, R., & Turner, J. (2005). Infection in social networks: Using network analysis
to identify high-risk individuals. American Journal of Epidemiology, 162(10), 1024e1031. https://doi.org/10.1093/aje/kwi308

Clusella, P., Grassberger, P., P�erez-Reche, F. J., & Politi, A. (2016). Immunization and targeted destruction of networks using explosive percolation. Physical
Review Letters, 117(20), Article 208301. https://doi.org/10.1103/PhysRevLett.117.208301

Colizza, V., Barrat, A., Barth�elemy, M., & Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global
epidemics. Proceedings of the National Academy of Sciences of the U S A, 103(7), 2015e2020. https://doi.org/10.1073/pnas.0510525103

Dye, C., & Gay, N. (2003). Epidemiology. Modeling the SARS epidemic. Science, 300(5627), 1884e1885. https://doi.org/10.1126/science.1086925
Elgazzar, H., Spurlock, K., & Bogart, T. (2021). Evolutionary clustering and community detection algorithms for social media health surveillance. Mach Learn

Appl, 6, Article 100084. https://doi.org/10.1016/j.mlwa.2021.100084
Fan, C., Cai, T., Gai, Z., & Wu, Y. (2020). The relationship between the migrant population's migration network and the risk of COVID-19 transmission in

Chinadempirical analysis and prediction in prefecture-level cities. International Journal of Environmental Research and Public Health, 17(8).
Freeman, L. C. (1977). Set of measures of centrality based on betweenness. Sociometry, 40(1), 35e41. https://doi.org/10.2307/3033543
Henao-Restrepo, A. M., Preziosi, M. P., Wood, D., Moorthy, V., & Kieny, M. P. (2016). On a path to accelerate access to Ebola vaccines: The WHO's research and

development efforts during the 2014-2016 Ebola epidemic in West Africa. Current Opinion in Virology, 17, 138e144. https://doi.org/10.1016/j.coviro.2016.
03.008

Joshi, Y. V., & Musalem, A. (2021). Lockdowns lose one third of their impact on mobility in a month. Scientific Reports, 11(1), Article 22658. https://doi.org/10.
1038/s41598-021-02133-1

Khan, K., Arino, J., Hu, W., Raposo, P., Sears, J., Calderon, F., Heidebrecht, C., Macdonald, M., Liauw, J., Chan, A., & Gardam, M. (2009). Spread of a novel
influenza A (H1N1) virus via global airline transportation. New England Journal of Medicine, 361(2), 212e214. https://doi.org/10.1056/NEJMc0904559

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks.
Nature Physics, 6(11), 888e893. https://doi.org/10.1038/nphys1746

Krackhardt, D. (1990). Assessing the political landscape - structure, cognition, and power in organizations. Administrative Science Quarterly, 35(2), 342e369.
https://doi.org/10.2307/2393394

Lawyer, G. (2015). Understanding the influence of all nodes in a network. Scientific Reports, 5, 8665. https://doi.org/10.1038/srep08665
Li, Z., & Huang, X. (2021). Identifying influential spreaders in complex networks by an improved gravity model. Scientific Reports, 11(1), Article 22194.

https://doi.org/10.1038/s41598-021-01218-1
Li, Z., & Huang, X. (2022). Identifying influential spreaders by gravity model considering multi-characteristics of nodes. Scientific Reports, 12(1), 9879.

https://doi.org/10.1038/s41598-022-14005-3
Louie, J. K., Acosta, M., Jamieson, D. J., & Honein, M. A. (2010). Severe 2009 H1N1 influenza in pregnant and postpartum women in California. New England

Journal of Medicine, 362(1), 27e35. https://doi.org/10.1056/NEJMoa0910444
Mukherjee, P., Lim, P. L., Chow, A., Barkham, T., Seow, E., Win, M. K., Chua, A., Leo, Y. S., & Cheng Chen, M. I. (2010). Epidemiology of travel-associated

pandemic (H1N1) 2009 infection in 116 patients, Singapore. Emerging Infectious Diseases, 16(1), 21e26. https://doi.org/10.3201/eid1601.091376
Müller, M. A., Meyer, B., Corman, V. M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Aldabbagh, S., Bosch, B. J., Lattwein, E., Alhakeem, R. F., Assiri, A. M.,

Albarrak, A. M., Al-Shangiti, A. M., Al-Tawfiq, J. A., Wikramaratna, P., Alrabeeah, A. A., Drosten, C., & Memish, Z. A. (2015). Presence of Middle East
respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study. The Lancet Infectious Diseases, 15(5),
559e564. https://doi.org/10.1016/s1473-3099(15)70090-3
1125

https://doi.org/10.1016/j.idm.2023.10.003
https://doi.org/10.1103/PhysRevE.90.032812
https://doi.org/10.1103/PhysRevE.90.032812
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/978-1-4939-9828-9
https://doi.org/10.1098/rsos.210865
https://doi.org/10.1371/journal.pcbi.1008052
https://doi.org/10.1016/j.chaos.2022.112035
https://doi.org/10.1093/aje/kwi308
https://doi.org/10.1103/PhysRevLett.117.208301
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1126/science.1086925
https://doi.org/10.1016/j.mlwa.2021.100084
http://refhub.elsevier.com/S2468-0427(23)00088-X/sref12
http://refhub.elsevier.com/S2468-0427(23)00088-X/sref12
http://refhub.elsevier.com/S2468-0427(23)00088-X/sref12
https://doi.org/10.2307/3033543
https://doi.org/10.1016/j.coviro.2016.03.008
https://doi.org/10.1016/j.coviro.2016.03.008
https://doi.org/10.1038/s41598-021-02133-1
https://doi.org/10.1038/s41598-021-02133-1
https://doi.org/10.1056/NEJMc0904559
https://doi.org/10.1038/nphys1746
https://doi.org/10.2307/2393394
https://doi.org/10.1038/srep08665
https://doi.org/10.1038/s41598-021-01218-1
https://doi.org/10.1038/s41598-022-14005-3
https://doi.org/10.1056/NEJMoa0910444
https://doi.org/10.3201/eid1601.091376
https://doi.org/10.1016/s1473-3099(15)70090-3


W. Li, Y. Yao Infectious Disease Modelling 8 (2023) 1117e1126
Saxena, C., Doja, M. N., & Ahmad, T. (2018). Group based centrality for immunization of complex networks. Physica A: Statistical Mechanics and Its Appli-
cations, 508, 35e47. https://doi.org/10.1016/j.physa.2018.05.107

Shaw, K. (2006). The 2003 SARS outbreak and its impact on infection control practices. Public Health, 120(1), 8e14. https://doi.org/10.1016/j.puhe.2005.10.
002

Tan, S., Lai, S., Fang, F., Cao, Z., Sai, B., Song, B., Dai, B., Guo, S., Liu, C., Cai, M., Wang, T., Wang, M., Li, J., Chen, S., Qin, S., Floyd, J. R., Cao, Z., Tan, J., Sun, X., …
Lu, X. (2021). Mobility in China, 2020: A tale of four phases. National Science Review, 8(11), nwab148. https://doi.org/10.1093/nsr/nwab148

Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to leiden: Guaranteeing well-connected communities. Scientific Reports, 9(1), 5233. https://
doi.org/10.1038/s41598-019-41695-z

Ullah, A., Wang, B., Sheng, J., Long, J., Khan, N., & Sun, Z. (2021). Identification of nodes influence based on global structure model in complex networks.
Scientific Reports, 11(1), 6173. https://doi.org/10.1038/s41598-021-84684-x

Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine and International Health, 25(3), 278e280. https://doi.org/10.1111/tmi.13383
Wang, J., Li, C., & Xia, C. (2018). Improved centrality indicators to characterize the nodal spreading capability in complex networks. Applied Mathematics and

Computation, 334, 388e400. https://doi.org/10.1016/j.amc.2018.04.028
Wei, X., Zhao, J., Liu, S., & Wang, Y. (2022). Identifying influential spreaders in complex networks for disease spread and control. Scientific Reports, 12(1),

5550. https://doi.org/10.1038/s41598-022-09341-3
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak orig-

inating in Wuhan, China: A modelling study. Lancet, 395(10225), 689e697. https://doi.org/10.1016/s0140-6736(20)30260-9
Zhang, S. X., Chen, J., Afshar Jahanshahi, A., Alvarez-Risco, A., Dai, H., Li, J., & Patty-Tito, R. M. (2022). Succumbing to the COVID-19 pandemic-healthcare

workers not satisfied and intend to leave their jobs. International Journal of Mental Health and Addiction, 20(2), 956e965. https://doi.org/10.1007/s11469-
020-00418-6

Zhao, D., Yang, S., Han, X., Zhang, S., & Wang, Z. (2020). Dismantling and vertex cover of network through message passing. IEEE Transactions on Circuits and
Systems II: Express Briefs, 67(11), 2732e2736. https://doi.org/10.1109/TCSII.2020.2973414

Zhu, Z., & Zhang, Y. (2019). Factors affecting the spread of multiple information in social networks. PLoS One, 14(12), Article e0225751. https://doi.org/10.
1371/journal.pone.0225751
1126

https://doi.org/10.1016/j.physa.2018.05.107
https://doi.org/10.1016/j.puhe.2005.10.002
https://doi.org/10.1016/j.puhe.2005.10.002
https://doi.org/10.1093/nsr/nwab148
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-021-84684-x
https://doi.org/10.1111/tmi.13383
https://doi.org/10.1016/j.amc.2018.04.028
https://doi.org/10.1038/s41598-022-09341-3
https://doi.org/10.1016/s0140-6736(20)30260-9
https://doi.org/10.1007/s11469-020-00418-6
https://doi.org/10.1007/s11469-020-00418-6
https://doi.org/10.1109/TCSII.2020.2973414
https://doi.org/10.1371/journal.pone.0225751
https://doi.org/10.1371/journal.pone.0225751

	The spatiotemporal analysis of the population migration network in China, 2021
	1. Introduction
	2. Material and methods
	2.1. Data
	2.1.1. Baidu Migration data
	2.1.2. Real epidemic data

	2.2. Methods
	2.2.1. K-shell decomposition
	2.2.2. Generating random networks
	2.2.3. Louvain algorithm
	2.2.4. Eigenvalue analysis
	2.2.5. Kendall's τ test


	3. Results
	3.1. Nationwide k-shell values and significant nodes in four periods
	3.2. Community detection and k-shell value analysis of important regions
	3.3. Decrease in the eigenvalue of migration matrix on nation and community scale
	3.4. Consistency between k-shell value and eigenvalue decrease
	3.5. Association with infectious disease transmission

	4. Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


