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Abstract.
Background: Gait, speech, and drawing behaviors have been shown to be sensitive to the diagnosis of Alzheimer’s disease
(AD) and mild cognitive impairment (MCI). However, previous studies focused on only analyzing individual behavioral
modalities, although these studies suggested that each of these modalities may capture different profiles of cognitive
impairments associated with AD.
Objective: We aimed to investigate if combining behavioral data of gait, speech, and drawing can improve classification
performance compared with the use of individual modality and if each of these behavioral data can be associated with different
cognitive and clinical measures for the diagnosis of AD and MCI.
Methods: Behavioral data of gait, speech, and drawing were acquired from 118 AD, MCI, and cognitively normal (CN)
participants.
Results: Combining all three behavioral modalities achieved 93.0% accuracy for classifying AD, MCI, and CN, and only
81.9% when using the best individual behavioral modality. Each of these behavioral modalities was statistically significantly
associated with different cognitive and clinical measures for diagnosing AD and MCI.
Conclusion: Our findings indicate that these behaviors provide different and complementary information about cognitive
impairments such that classification of AD and MCI is superior to using either in isolation.
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INTRODUCTION

As the world’s elderly population increases, the
number of people living with dementia is increasing
rapidly, becoming a serious health and social prob-
lem. Alzheimer’s disease (AD) is the most common
form of dementia and may account for an estimated
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60 to 80% of cases [1, 2]. Although no cure of AD is
available, there is an urgent need for the early iden-
tification of AD, especially at its early stages, e.g.,
mild cognitive impairment (MCI), to enable the indi-
vidual and their carers to prepare for the future and
receive appropriate care to help manage symptoms
[3]. A growing body of evidence also suggests modi-
fying risk factors and interventions that could prevent
or delay progression to AD [3–5]. However, even
dementia diagnostic coverage worldwide remains so
low that only 40–50% of people with dementia have
been diagnosed even in high-income countries [6]. In
this context, there is growing interest in developing
accurate and easy-to-perform screening tools for the
early identification of AD and MCI.

Gait, speech, and drawing behaviors individu-
ally have been shown to change in AD and MCI
patients [7–27], and discrete characteristics of these
behavioral impairments are associated with specific
cognitive impairments [7–13, 18, 21, 22, 27]. For
example, slower gait speed and greater gait variability
(e.g., step-to-step fluctuations in time) occur even in
the prodromal stages of AD and has been suggested
to be particularly associated with impaired executive
function [7–12]. Speech and language impairments,
including changes in phonetic characteristics such as
speech rate and pause as well as in linguistic char-
acteristics such as lexical and semantic content, have
been observed in the early stages of AD [15–18] and
may enable to predict the onset of AD [14, 15, 20].
The associations between quantitative speech char-
acteristics and specific cognitive impairments have
also been shown. For example, increased pauses as
well as a reduction in relevant information during a
picture description task were correlated with impair-
ments in episodic memory [18, 21]. Drawing tasks,
such as trail-making and clock-drawing tests, have
been widely used for screening cognitive impairment
and dementia. In addition to the drawing outcome,
the characteristics of the drawing process such as
reduced drawing speed as well as increased pauses
between drawings have been reported as statisti-
cally significant signatures for detecting AD and MCI
[22–25] and impaired global cognition [22]. There-
fore, these behavioral analyses are expected to help
in the early detection of AD and MCI as useful
screening tools. Furthermore, a gait test may be incor-
porated into the clinical practice by using sensors,
such as an electronic walkway or wearable sensors
[13, 27–30], and speech and drawing data can be
collected during standard neuropsychological tests
for the diagnosis of dementia [19, 20, 22–24, 31].

Although most existing research investigated each
behavior in isolation, the heterogeneity of the brain
regions involved in their execution [12, 13, 24, 27, 29,
32–36] as well as of their behavior-cognitive relation-
ships [7–13, 18, 21, 22, 27] suggests that each of these
behaviors may capture different and complementary
profiles of cognitive impairments associated with
AD. Therefore, we hypothesized that gait, speech,
and drawing behaviors that provide complementary
information about cognitive impairments can be com-
bined to provide higher accuracy for AD and MCI
detection.

Here, we aimed to investigate if combining behav-
ioral data of gait, speech, and drawing can improve
classification performance compared with the use of
individual modality and if each of these behavioral
data can be associated with different cognitive and
clinical measures for the diagnosis of AD and MCI.
To this end, we collected gait, speech, and drawing
behaviors as well as cognitive and clinical measures
from the same participants and investigated them
by using statistical analysis and machine learning
models.

METHODS

Participants

We recruited outpatients from the Department
of Psychiatry, University of Tsukuba Hospital, the
spouses of the patients, and other participants either
through local recruiting agencies or advertisements
in the community in Ibaraki, Japan. Inclusion crite-
ria for the patients were a diagnosis of AD or MCI.
The AD patients were in mild to moderate stages.
MCI subtypes were not examined. Controls were age-
matched to the patients. Patients were excluded if
they had diagnoses of non-AD dementia (dementia
with Lewy bodies, frontotemporal dementia, vascu-
lar dementia, etc.), non-AD MCI, or other serious
diseases or disabilities that would interfere with the
behavioral data collection. All examinations were
conducted in Japanese. This study was conducted
under the approval of the Ethics Committee, Univer-
sity of Tsukuba Hospital (H29-065 and R01–168) and
followed the ethical code for research with humans as
stated by the Declaration of Helsinki. All participants
provided written informed consent to participate in
this study.

Cognitive performance of all participants was
assessed using the following neuropsychological



Y. Yamada et al. / Combining Behavioral Data for Detecting AD 317

examinations conducted by neuropsychologists: the
Mini-Mental State Examination (MMSE) for global
cognition, immediate and delayed recall of the logical
memory-story A of the Wechsler Memory Scale-
Revised (LM-IA and LM-IIA) for episodic memory,
the Frontal Assessment Battery (FAB) for execu-
tive function, Trail Making Test part-A (TMT-A) for
information processing speed and Trail Making Test
part-B (TMT-B) for executive function and attention,
and the Clock Drawing Test (CDT) for visuospa-
tial function. For clinical scales, all participants were
administered the Clinical Dementia Rating (CDR),
Geriatric Depression Scale (GDS), body mass index
(BMI), Barthel Index of Activities of Daily Living
(ADL), and Lawton Instrumental Activities of Daily
Living (IADL). The severity of medial temporal lobe
(MTL) atrophy was also evaluated using structural
magnetic resonance imaging (MRI) (please see the
Supplementary Material for more details).

Regarding the diagnosis of AD, MCI, and cogni-
tively normal (CN), two psychiatrists (authors T.A.
and K.N.), who were experts in dementia and blinded
to the results of behavioral data analysis, discussed
each case based on the clinical record as well as
the neuropsychological scores and clinical scales,
and confirmed the diagnoses of AD, MCI, and CN.
AD patients fulfilled the National Institute on Aging
and Alzheimer’s Association (NIA-AA) criteria for
probable AD dementia [37]. They also fulfilled the
AD Neuroimaging Initiative (ADNI) criteria for AD
in terms of MMSE, CDR, and LM-IIA scores [38],
except that we included patients with moderate AD
based on Benoit et al.’s criteria [39]. Specifically,
AD patients fulfilled the following criteria: MMSE
score 10–26; the CDR global score 0.5 or 1; and
LM-IIA score ≤8 for 16 years of education (YoE),
≤4 for 8–15 YoE, and ≤2 for 0–7 YoE. MCI patients
fulfilled the NIA-AA criteria for MCI [40]: 1) cogni-
tive concern by the subject, informant, or clinician;
2) impairment in one or more cognitive domains;
3) essentially normal functional activities; and 4)
absence of dementia. They also fulfilled at least two
of the three ADNI criteria for MCI [38]: MMSE score
24–30; the CDR global score 0.5, with the memory
box score being 0.5 or greater; and LM-IIA score ≤8
for 16 YoE, ≤4 for 8–15 YoE, and ≤2 for 0–7 YoE.
CN participants did not fulfill the NIA-AA criteria for
MCI or dementia [37, 40]. They also fulfilled at least
two of the three ADNI criteria for CN [38]: MMSE
score 24–30; the CDR global score 0; and LM-IIA
score ≥9 for 16 YoE, ≥5 for 8–15 YoE, and ≥3 for
0–7 YoE.

Behavioral data collection and feature extraction

For the gait task, participants walked at their
usual pace over nine meters with a marker-based
motion capture system with an eight-camera Opti-
Track Flex13, sampled at 120 Hz using OptiTrack
Motive software 2.1.0 Beta 1 (NaturalPoint, Inc, Cor-
vallis, OR, USA), and we analyzed three trials per
participants. Speech and drawing tasks were selected
from a set of neuropsychological tasks frequently
used for detecting AD or MCI [19, 22–24, 31]. Par-
ticipants performed five speech tasks with a tablet
device (iPad Air 2): counting backwards, subtraction,
phonemic and semantic verbal fluency, and picture
description with the Cookie Theft picture adapted
from the Boston Diagnostic Aphasia Examination
[41]. Speech data were recorded by using the iPad’s
internal microphone (core audio format, 44,100 Hz,
16-bit). Participants also performed the following five
drawing tasks during the neuropsychological assess-
ment using a digitizing tablet and pen (Wacom Cintiq
Pro 16; sampling rate: 180 Hz, pen pressure levels:
8192): writing a sentence about anything and the
copy intersecting-pentagon item of MMSE (here-
inafter called Sentence and Pentagon), TMT-A and
TMT-B, and CDT.

We extracted behavioral features based on previ-
ous studies to facilitate interpretations (for gait [7,
8, 27, 33, 42], for speech [19, 31, 43–51], for draw-
ing [22–25]). Here, we provide an overview of the
behavioral features, and a full description is provided
in the Supplementary Material. The 35 gait features
consisted of those associated with pace (e.g., gait
speed and step/stride length), rhythm (e.g., step/stride
time), variability (e.g., step/stride time variability),
left-right asymmetry (e.g., the difference between
left-right step/stride time), and postural control (e.g.,
maximum toe clearance). The 84 speech features
consisted of acoustic features (e.g., Mel-frequency
cepstral coefficients (MFCCs)) and prosodic features
(e.g., pitch variability and proportion of pause dura-
tion) extracted from audio data as well as linguistic
features (e.g., proportion of mistakes in both calcula-
tion tasks) extracted from manually transcribed text
data. Linguistic features during the picture descrip-
tion task included Honoré’s statistics for measuring
vocabulary richness [48] and the number of unique
entities that a participant described in the picture,
referred to as information units, for measuring infor-
mativeness [43, 44, 49–51]. The 60 drawing features
consisted of those associated with kinematics (e.g.,
drawing speed), pressure-related (e.g., pressure vari-
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ability), time-related (e.g., pause durations between
drawings), and TMT-specific features (e.g., time
duration between nodes). For drawing, we focused
on features that represent the drawing process, and
thus did not investigate features representing the final
product of drawing such as linguistic aspects of the
sentence and characteristics of the clock face in CDT.
Variability features of all modalities were calculated
using the standard deviation (SD), except that vari-
abilities of step/stride length and writing pressure
were calculated using the coefficient of variation
(CV).

Classification model

The classification models were built on the basis of
behavioral features using multiple types of machine
learning models with automatic feature selection. The
models included k-nearest neighbors [52], random
forest [53], and support vector machine (SVM) [54]
implemented using the Python package scikit-learn
(version 0.23.2). For the feature selection, we used a
sequential forward selection algorithm. Model per-
formances were evaluated by using accuracy and
the area under receiver operating characteristic curve
(AuROC) obtained from 20 iterations of ten-fold
cross-validation methods. A three-class AuROC was
computed as defined by Hand and Till [55]. For more
details including model parameters, please see the
Supplementary Material.

Statistical analysis

Group differences between CN, MCI, and AD in
demographics and cognitive/clinical measures were
examined by using the chi-square test for sex and
one-way analysis of variance (ANOVA) tests for
other continuous data. Shapiro-Wilk tests were used
to check normality assumption and behavioral fea-
tures that did not fit the normal distribution were
power transformed to normalize the distributions.
Between-group comparisons of behavioral features
were conducted with one-way ANOVAs adjusted for
age and sex. Pairwise multiple comparisons (Bon-
ferroni adjusted p values) were performed when
comparing individual diagnostic groups. We did
not perform multiple-comparison corrections across
behavioral features, and the statistical significance
was set to a two-sided p < 0.05.

Multiple linear regression controlling for age and
sex as covariates was used to investigate associations
between cognitive/clinical measures and behav-

ioral features selected in the classification model.
Specifically, the dependent variable was one of the
cognitive or clinical measures for MMSE, LM-IA,
LM-IIA, FAB, TMT-A, TMT-B, CDT, GDS, ADL,
IADL, and MTL atrophy. As for the independent
variables, we first performed principal component
analyses to limit multiple comparisons and extract
uncorrelated behavioral factors. We then used the first
two principal components (PCs) of each behavioral
modality as the independent variables in addition to
age and sex as covariates. Thus, the number of inde-
pendent variables were eight.

RESULTS

Participant characteristics and behavioral data

A total of 135 participants were recruited for this
study and met the inclusion criteria, and behavioral
data collection was performed on them for all three
behavioral modalities. 17 participants were excluded
from this analysis because of problems in the data
processing due to noise in the motion capture data.
This yields a total of 118 participants: 47 CN partic-
ipants, 45 MCI patients, and 26 AD patients. Table 1
lists the clinical and demographic information of all
these participants. Regarding the demographics, age,
and years of education did not differ between groups,
while there was a significantly lower proportion of
female participants in the MCI group compared with
the control group (Table 1). For the cognitive and
clinical measures, BMI, GDS, and ADL did not dif-
fer between groups, and other variables were different
between the three diagnostic categories (Table 1).

For the behavioral data collection, all participants
completed the three gait trials and five drawing tasks
and 114 of the 118 participants completed all five
speech tasks. For full information of the missing data,
please see the Supplementary Material.

Differences in behavioral features between AD,
MCI, and controls

In an adjusted model controlling for age and sex,
18 of the 35 gait features, 13 of the 84 speech features,
and 27 of the 60 drawing features showed statistically
significant differences between the diagnostic groups
(all p < 0.05; Table 2 and Supplementary Table 1).
Among these 58 features with significant differences
between diagnostic groups, 51 features (i.e., 87.9%)
showed larger changes from CN in AD compared
with MCI, indicating gradual changes of behavioral
features from CN to MCI and to AD.
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Table 1
Demographic, cognitive, and clinical measures for CN, MCI, and AD

Characteristics CN (N = 47) MCI (N = 45) AD (N = 26) p

Age 72.3 ± 4.2 74.1 ± 4.8 75.2 ± 7.5 0.0692
Sex (% Female) 30/47 (63.8)M 17/45 (37.8)C 16/26 (61.5) 0.0279
Education 13.0 ± 2.0 13.7 ± 2.6 12.3 ± 2.5 0.0688
Body Mass Index 23.3 ± 2.8 23.1 ± 2.7 21.8 ± 3.5 0.1030
Mini-Mental State Examinationa 27.6 ± 1.9A 26.8 ± 2.0A 20.1 ± 2.9C,M < 0.0001
LM-IAb 11.4 ± 3.5M,A 7.4 ± 3.3C,A 2.1 ± 2.0C,M < 0.0001
LM-IIAc 9.5 ± 3.1M,A 4.8 ± 3.2C,A 0.4 ± 0.9C,M < 0.0001
Frontal Assessment Batteryd 13.6 ± 2.5A 12.9 ± 3.2A 8.7 ± 2.8C,M < 0.0001
Trail making test-part A [s] 34.8 ± 12.0M,A 43.1 ± 16.8C,A 68.7 ± 44.3C,M < 0.0001
Trail making test-part B [s] 93.4 ± 51.0M,A 138.2 ± 76.0C,A 242.7 ± 74.3C,M < 0.0001
Clock Drawing teste 6.7 ± 0.9A 6.6 ± 0.7A 5.5 ± 2.2C,M 0.0003
Geriatric Depression Scalef 2.9 ± 2.9 3.0 ± 2.8 4.0 ± 3.2 0.3355
Clinical Dementia Rating† 0.0 ± 0.1M,A 0.5 ± 0.0C,A 0.8 ± 0.2C,M < 0.0001
Activity of Daily Livingg 99.9 ± 0.7 99.3 ± 2.3 98.1 ± 5.6 0.0530
Instrumental Activity of Daily Livingh 7.9 ± 0.4M,A 7.3 ± 1.0C,A 5.4 ± 2.1C,M < 0.0001
Medial temporal lobe atrophy 0.8 ± 0.5M,A 1.2 ± 0.8C,A 2.4 ± 1.2C,M < 0.0001

Data displayed as mean ± standard deviations were assessed using one-way ANOVAs, whereas number (percentage) were assessed using
the chi-square test. Bold values highlight statistically significant differences. Pairwise multiple comparisons (Bonferroni adjusted p values)
were performed when comparing individual diagnostic groups. Significant differences between groups are marked with C, M, or A (C:
Different to CN, M: Different to MCI, A: Different to AD). †The CN group includes one participant with a CDR test score of 0.5. aThe total
possible score ranges from 0 to 30. bLM-IA: immediate recall of the logical memory-story A of the Wechsler memory scale-revised; the
total possible score ranges from 0 to 25. cLM-IIA: delayed recall of the logical memory-story A of the Wechsler memory scale-revised; the
total possible score ranges from 0 to 25. dThe total possible score ranges from 0 to 18. eThe total possible score ranges from 0 to 7. f The
total possible score ranges from 0 to 15. gThe total possible score ranges from 0 to 100. hThe total possible score ranges from 0 to 8.

Pairwise comparisons with Bonferroni correc-
tions identified statistically significant differences
in behavioral features between CN participants and
patients with AD or MCI (Table 2 and Supplementary
Table 1). We found features with statistically dif-
ferences between CN participants and AD patients
from all categories of behavioral features in each
modality and from all tasks investigated in this study.
Specifically, compared with CN participants, AD
patients walked with slower gait speed related to
pace (p < 0.001); with slower stride time related to
rhythm (p = 0.027); with greater stride time vari-
ability (p = 0.044); with greater step time left-right
asymmetry (p = 0.043); and with lower maximum
toe clearance related to postural control (p < 0.001).
Speech of AD patients showed significant changes in
acoustic features such as lower MFCC1 during the
picture description task (p = 0.023); in prosodic fea-
tures such as less pitch variability during the counting
backwards task (p = 0.009) and greater proportion
of pause durations both in spontaneous speech dur-
ing the picture description task (p = 0.001) and in
word production during the semantic verbal flu-
ency task (p < 0.001); and in linguistic features such
as increased proportion of mistakes during both
calculation tasks (p < 0.001) and lower vocabulary
richness measured by Honoré’s statistics and less

informativeness measured by the total number of
information units normalized by the length of the
speech during the picture description task (p = 0.019,
p = 0.009). Drawings of AD patients showed sig-
nificant differences in kinematics such as slower
drawing speed in TMT-B (p < 0.001); in pressure-
related features such as greater pressure variability
in both TMT-A (p = 0.010) and TMT-B (p < 0.001);
in time-related features such as longer pause dura-
tion between drawings normalized by total stroke
length in all five tasks (Sentence: p = 0.005, Pen-
tagon: p = 0.023, TMT-A and TMT-B: p < 0.001;
CDT: p = 0.003); and in TMT-specific features such
as longer time duration between nodes in both TMT-
A (p = 0.008) and TMT-B (p = 0.026).

MCI patients had also statistically significantly
different features from CN participants in parts of
behavioral feature categories and in parts of tasks.
Gait of MCI patients was significantly different in
two categories of gait features: pace, such as lower
peak gait speed (p = 0.030) and shorter step length
(p = 0.040), and postural control, such as lower max-
imum toe clearance (p = 0.020). Speech of MCI
patients showed significant changes in only acoustic
features of MFCCs during the picture descrip-
tion tasks (p ≤ 0.015) and no significant differences
in other prosodic and linguistic features. Drawing
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Table 2
Examples of behavioral features with statistically significant differences between diagnosis categories of AD, MCI, and CN

CN (N = 47) MCI (N = 45) AD (N = 26) p

Gait
Pace Gait speed [m/s] 1.33 ± 0.16A 1.24 ± 0.21A 1.07 ± 0.18C,M < 0.0001

Step length [m] 0.68 ± 0.07M,A 0.65 ± 0.09C,A 0.58 ± 0.07C,M < 0.0001
Rhythm Stride time [s] 1.04 ± 0.07A 1.07 ± 0.08 1.11 ± 0.11C 0.0098
Variability Stride time variability (SD) [s] 0.06 ± 0.02A 0.07 ± 0.03 0.08 ± 0.03C 0.0292
Left-right asymmetry Step time left-right asymmetry [s] 0.04 ± 0.02A 0.05 ± 0.03 0.07 ± 0.05C 0.0182
Postural control Maximum toe clearance [m] 0.13 ± 0.02M,A 0.12 ± 0.03C 0.11 ± 0.02C 0.0009

Speech
Acoustic MFCC1 (Picture description) –496.2 ± 31.9A –492.6 ± 36.3 –514.4 ± 35.5C 0.0273
Prosodic Pitch variability (SD) [Hz] (Counting

backwards)
23.3 ± 9.6A 19.6 ± 9.4 16.8 ± 5.4C 0.0148

Proportion of pause duration (Semantic
verbal fluency)

0.75 ± 0.07A 0.77 ± 0.05A 0.84 ± 0.07C,M < 0.0001

Linguistic Proportion of mistakes (Subtraction) 0.13 ± 0.17A 0.20 ± 0.23 0.36 ± 0.28C 0.0005
Honoré’s statistics [x103] (Picture

description)
1.93 ± 0.96A 2.07 ± 0.98A 1.34 ± 0.65C,M 0.0061

Normalized total number of information
units† [words/s] (Picture description)

0.27 ± 0.10A 0.26 ± 0.12A 0.19 ± 0.09C,M 0.0098

Drawing
Kinematics Drawing speed [mm/s] (TMT-B) 102.0 ± 18.5A 100.5 ± 28.4A 79.0 ± 20.8C,M 0.0006
Pressure-related Pressure variability (CV) (TMT-B) 0.077 ± 0.037M,A 0.124 ± 0.068C 0.149 ± 0.074C < 0.0001
Time-related Normalized pause duration between

drawings‡ [s/mm] (Sentence)
0.016 ± 0.009A 0.019 ± 0.012 0.025 ± 0.013C 0.0154

Normalized pause duration between
drawings‡ [s/mm] (Pentagon)

0.027 ± 0.015A 0.032 ± 0.021 0.043 ± 0.029C 0.0328

Normalized pause duration between
drawings‡ [s/mm] (CDT)

0.023 ± 0.009A 0.031 ± 0.030 0.045 ± 0.039C 0.0121

TMT-specific Time duration between nodes (TMT-A) 1.10 ± 0.22A 1.20 ± 0.36 1.41 ± 0.50C 0.0107

Data displayed as mean ± standard deviations were assessed using one-way ANOVAs adjusted for age and sex. Bold values highlight
statistically significant differences. Pairwise multiple comparisons (Bonferroni adjusted p values) were performed when comparing individual
diagnostic groups. Significant differences between diagnosis categories are marked with C, M, or A (C: Different to CN, M: Different to
MCI, A: Different to AD). †Data were normalized by the length of the speech ‡Data were normalized by total stroke length.

features that were significantly different between
MCI patients and CN participants were all those
during the TMT-A or TMT-B. They consisted of
all categories except for kinematics: pressure-related
features such as greater pressure variability in TMT-B
(p = 0.004), time-related features such as longer pause
duration between drawings normalized by total stroke
length in TMT-B (p = 0.008), and TMT-specific fea-
tures such as longer task duration normalized by the
number of answered edges in both TMT-A (p = 0.037)
and TMT-B (p = 0.005).

Classification using gait, speech, and
drawing data

We evaluated the model performance for classify-
ing three diagnosis categories of AD, MCI, and CN
on the basis of gait, speech, and drawing behavioral
features by using iterative ten-fold cross validation.
Consequently, combing multiple behavioral modal-
ities improved the model’s performance compared

with that using a single modality. The model using all
three behavioral data achieved the best performance
with an accuracy of 93.0% (AuROC of 0.98; Table 3
and Fig. 1). This was higher than an AuROC value of
0.86 calculated as a baseline value by using MMSE
scores. The model using all three behavioral data was
based on an SVM with a radial basis function (RBF)
kernel using 13 gait features, 17 speech features, and
15 drawing features selected by the automatic feature
selection procedure. The SVM with an RBF kernel
also had the highest accuracies in the other settings
using two or single modalities.

We also tested the performance of the classifica-
tion models in discriminating AD (or MCI) from
CN participants. The results of the iterative ten-fold
cross validations showed similar trends to those of
the three-class classification models: the model using
the combined data of all three behavioral modali-
ties achieved more accurate discrimination between
AD (or MCI) patients and CN participants, fol-
lowed by that using two modalities, and that using
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Fig. 1. Normalized confusion matrixes of the three-class classification model for AD, MCI, and CN obtained using 20 iterations of ten-fold
cross validation. The number in parentheses indicates the mean number of individuals with CN, MCI, and AD among the 20 iterations. (a)
The best model using a single modality (when using speech features) with 81.9% accuracy and AuROC of 0.91. (b) The best model using
two different modalities (when using speech and drawing features) with 88.6% accuracy and AuROC of 0.96. (c) The model using all three
modalities of gait, speech, and drawing with 93.0% accuracy and AuROC of 0.98.

Table 3
Model performance for classifying three diagnosis categories of
AD, MCI, and CN. Values were obtained by 20 iterations of ten-

fold cross validation

Mean [95% CI]

Accuracy (%) AuROC

Gait 75.8 [75.5, 76.1] 0.86 [0.85, 0.86]
Drawing 80.8 [80.3, 81.4] 0.92 [0.91, 0.92]
Speech 81.9 [81.4, 82.4] 0.91 [0.91, 0.91]
Gait + Drawing 86.1 [85.8, 86.4] 0.93 [0.93, 0.94]
Gait + Speech 87.5 [87.3, 87.7] 0.95 [0.95, 0.95]
Speech + Drawing 88.6 [87.9, 89.3] 0.96 [0.96, 0.96]
Gait + Speech + Drawing 93.0 [92.4, 93.6] 0.98 [0.98, 0.98]

a single modality (Tables 4 and 5). Specifically, for
discriminating AD from CN participants, the model
using gait, speech, and drawing features achieved
100.0% accuracy (100.0% sensitivity, 100.0% speci-
ficity, 100.0% F1 score, AuROC of 1.00), while the
best accuracy on a single modality was 96.2% when
using drawing features (96.9% sensitivity, 95.7%
specificity, 94.7% F1 score, AuROC of 0.98). For
discriminating MCI from CN participants, the model
using gait, speech, and drawing features achieved
89.5% accuracy (94.7% sensitivity, 84.5% specificity,
89.8% F1 score, AuROC of 0.96), while the best
accuracy on a single modality was 83.0% when using
speech features (82.4% sensitivity, 83.6% specificity,
82.6% F1 score, AuROC of 0.86). Both AuROC val-
ues using all three modalities for discriminating AD
(or MCI) patients from CN participants were higher
than those of 0.98 (0.62) calculated as a baseline
value by using MMSE scores. All two-class clas-
sification models achieving the best accuracies on

each setting were based on the SVM with an RBF
kernel.

Association of behavioral features with cognitive
and clinical measures

To better understand how combining multimodal
behavioral data could improve classification perfor-
mance, we investigated the association of behavioral
features selected in the model with cognitive and
clinical measures. We first applied a principal com-
ponent analysis to the selected features and obtained
the first two PCs for each behavioral modality. They
comprised 67.3%, 35.5%, and 54.0% of the total
variance in the selected gait, speech, and drawing
features, respectively. The estimated factor loadings
indicated the characteristics of each principal com-
ponent as follows: the PC1 of gait features was
mainly related to gait acceleration and PC2 was
related to stride time variability; the PC1 of speech
features was mainly related to pause durations and
PC2 was related to variances of the speech spectrum
(i.e., variances of MFCCs); and the PC1 of draw-
ing features was mainly related to drawing speed and
PC2 was related to pause duration between draw-
ings.

The results of multiple linear regression con-
trolling for age and sex showed that different
combinations of behavioral modalities were associ-
ated with cognitive and clinical measures (Table 6).
Specifically, among the modalities, PCs of only
speech features were associated with LM-IIA (p =
0.003 for PC1; p = 0.010 for PC2), FAB (p < 0.001
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Table 4
Model performance for classifying diagnosis categories of AD and CN. Values were obtained by 20 iterations of ten-fold cross validation

Mean [95% CI]

Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

Gait 89.3 [88.3, 90.3] 82.7 [79.7, 85.7] 93.0 [91.4, 94.6] 84.6 [83.1, 86.2]
Speech 92.5 [91.9, 93.0] 90.8 [89.3, 92.2] 93.4 [92.9, 93.9] 89.6 [88.8, 90.3]
Drawing 96.2 [95.4, 96.9] 96.9 [94.8, 99.1] 95.7 [95.7, 95.7] 94.7 [93.6, 95.8]
Gait + Speech 96.7 [96.2, 97.2] 95.0 [93.7, 96.3] 97.7 [97.2, 98.1] 95.4 [94.6, 96.1]
Gait + Drawing 98.4 [97.7, 99.0] 99.2 [97.5, 101.0] 97.9 [97.9, 97.9] 97.7 [96.8, 98.6]
Speech + Drawing 98.6 [98.6, 98.6] 100.0 [100.0, 100.0] 97.9 [97.9, 97.9] 98.1 [98.1, 98.1]
Gait + Speech + Drawing 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]

Table 5
Model performance for classifying diagnosis categories of MCI and CN. Values were obtained by 20 iterations of ten-fold cross validation

Mean [95% CI]

Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

Gait 77.2 [75.9, 78.4] 84.9 [84.2, 85.6] 69.8 [67.3, 72.3] 78.5 [77.5, 79.4]
Drawing 81.0 [79.1, 82.8] 77.6 [76.0, 79.1] 84.3 [81.3, 87.2] 80.0 [78.2, 81.7]
Speech 83.0 [81.8, 84.3] 82.4 [80.9, 84.0] 83.6 [81.7, 85.5] 82.6 [81.4, 83.9]
Gait + Drawing 87.1 [86.2, 87.9] 80.4 [79.4, 81.4] 93.4 [92.3, 94.5] 85.9 [85.0, 86.8]
Gait + Speech 88.6 [87.7, 89.4] 88.0 [86.3, 89.7] 89.1 [88.7, 89.6] 88.3 [87.3, 89.3]
Speech + Drawing 89.2 [87.3, 91.2] 86.9 [84.0, 89.7] 91.5 [90.1, 92.9] 88.7 [86.6, 90.8]
Gait + Speech + Drawing 89.5 [88.2, 90.7] 94.7 [93.0, 96.4] 84.5 [83.0, 85.9] 89.8 [88.5, 91.0]

for PC1 and PC2), GDS (p < 0.001 for PC1), and
MTL atrophy (p < 0.001 for PC1); PCs of only draw-
ing features were associated with TMT-A (p < 0.001
for PC1; p = 0.008 for PC2) and CDT (p < 0.001 for
PC1); PCs of gait and drawing features were asso-
ciated with ADL (p < 0.001 for gait PC2; p = 0.006
for drawing PC2); PCs of speech and drawing fea-
tures were associated with LM-IA (p = 0.004 for
speech PC1; p = 0.003 for speech PC2; p = 0.041
for drawing PC1) and MMSE (p < 0.001 for speech
PC1; p = 0.006 for speech PC2; p = 0.031 for draw-
ing PC1); PCs of gait, speech, and drawing features
were associated with IADL (p < 0.001 for gait
PC2; p = 0.004 for speech PC2; p = 0.036 for draw-
ing PC1; p = 0.033 for drawing PC2) and TMT-B
(p = 0.037 for gait PC2; p = 0.009 for speech PC1;
p = 0.013 for speech PC2; p < 0.001 for drawing PC1
and PC2).

We also found statistically significant associations
of discrete behavioral characteristics with specific
cognitive domains reported in previous studies on
individual behavioral modalities, even considering
the effects of other behavioral modalities. Specifi-
cally, they included the associations between stride
time variability of gait PC2 and executive func-
tion measured by TMT-B (p = 0.037); between pause
durations of speech PC1 and episodic memory mea-
sured by LM-IA (p = 0.004) and LM-IIA (p = 0.003);

and between drawing speed of drawing PC1 and
global cognition measured by MMSE (p = 0.031).

DISCUSSION

We investigated multimodal behavioral data of
gait, speech, and drawing collected from 118 partici-
pants consisting of AD, MCI, and CN participants.
Our first main finding was that combining multi-
modal behavioral data could consistently improve
classification performance both for classifying AD,
MCI, and CN as well as discriminating AD (or MCI)
from CN participants. Combining all three behavioral
modalities could consistently achieve more accurate
classifications than combining any two modalities,
and the model using two modalities could achieve bet-
ter classification performance than that using a single
modality. Our second finding was that each behav-
ioral data may contain different and complementary
information for cognitive impairments associated
with AD. The regression analysis showed that each
behavioral modality was associated with different
cognitive and clinical measures for the diagnosis
of AD and MCI. In addition, different modalities
could achieve the best performance for differentiat-
ing AD (or MCI) from CN participants, i.e., drawing
for AD versus CN and speech for MCI versus CN.
Our findings suggest that gait, speech, and drawing
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Table 6
Associations of behavioral features with cognitive and clinical measures

MMSE† LM-IA† LM-IIA† FAB† TMT-A† TMT-B† CDT† GDS ADL IADL† MTLa†

Gait
PC1 0.006 0.027 0.027 0.010 0.008 0.017 0.000 0.012 0.002 0.025 –0.039

(0.010) (0.015) (0.015) (0.015) (0.010) (0.018) (0.018) (0.019) (0.003) (0.016) (0.089)
PC2 0.012 0.020 0.018 0.012 0.017 0.038∗ 0.009 0.009 0.010∗∗∗ 0.055∗∗∗ 0.074

(0.010) (0.015) (0.014) (0.015) (0.010) (0.018) (0.017) (0.018) (0.003) (0.016) (0.088)
Speech

PC1 0.047∗∗∗ 0.052∗∗ 0.052∗∗ 0.070∗∗∗ 0.016 0.057∗∗ 0.021 0.096∗∗∗ –0.003 0.009 0.448∗∗∗
(0.011) (0.018) (0.017) (0.017) (0.011) (0.021) (0.021) (0.022) (0.003) (0.019) (0.102)

PC2 0.034∗∗ 0.059∗∗ 0.049∗∗ 0.070∗∗∗ 0.018 0.058∗ 0.018 –0.022 0.007 0.059∗∗ 0.042
(0.012) (0.019) (0.019) (0.019) (0.012) (0.023) (0.022) (0.023) (0.003) (0.020) (0.113)

Drawing
PC1 0.023∗ 0.034∗ 0.028 0.022 0.059∗∗∗ 0.152∗∗∗ 0.069∗∗∗ –0.028 0.000 0.037∗ 0.160

(0.011) (0.017) (0.016) (0.016) (0.010) (0.020) (0.019) (0.020) (0.003) (0.017) (0.096)
PC2 0.016 0.020 0.024 0.003 –0.025∗∗ 0.085∗∗∗ –0.017 –0.019 0.007∗∗ 0.033∗ 0.151

(0.009) (0.014) (0.014) (0.014) (0.009) (0.017) (0.017) (0.018) (0.003) (0.015) (0.084)

Data displayed as beta coefficient (standard error) were assessed using multiple linear regression adjusted for age and sex. The possible
score range of all cognitive and clinical measures except for MTLa were rescaled from 0 to 1. In addition, TMT-A, TMT-B, GDS, and MTLa
scores were reversed for the purpose of comparison with other variable coefficients, as higher scores indicate better performance. All gait,
speech, and drawing variables were standardized by subtracting the mean and dividing by standard deviation. PC, Principal Component;
MMSE, Mini-Mental State Examination; LM-IA, immediate recall of the logical memory-story A of the Wechsler memory scale-revised;
LM-IIA, delayed recall of the logical memory-story A of the Wechsler memory scale-revised; FAB, Frontal Assessment Battery; TMT-A,
Trail making test-part A; TMT-B, Trail making test-part B; CDT, Clock Drawing Test; GDS, Geriatric Depression Scale; ADL, Activity
of Daily Living; IADL, Instrumental Activity of Daily Living; MTLa, Medial temporal lobe atrophy. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
†Measures with statistically significant differences between diagnosis categories of AD, MCI, and CN assessed by ANOVAs.

behavioral data provides different and complemen-
tary information about cognitive impairments useful
for the diagnosis of AD and MCI such that clinical
diagnostic classification is superior to using either in
isolation.

All three behavioral modalities had features that
statistically significantly differentiated AD or MCI
patients from CN participants and almost all fea-
tures with significant differences between diagnostic
categories showed larger changes from CN in AD
compared with MCI. The trends in their changes were
consistent with those reported in previous studies on
AD or MCI (for gait [7, 8, 27, 33, 42], for speech
[19, 31, 43–47], for drawing [22–25]). These behav-
ioral sensitivities to the diagnosis of AD and MCI
have been explained as follows: as these behaviors
are complex tasks requiring coordination between
widespread brain regions related to both motor and
cognitive functions [12, 13, 24, 27, 29, 32–36], dis-
crete characteristics of each behavioral modality may
reflect neuropathological changes due to AD demen-
tia [12, 13, 27, 56–59]. Our results align with those of
previous studies that have shown statistically signif-
icant changes in behavioral characteristics from CN
individuals and their larger changes in AD compared
with earlier stages (i.e., MCI), suggesting the possi-
bility of behavioral markers for detecting AD/MCI
and neuropathological changes due to AD. In addi-

tion, we found statistically significant features for
differentiating MCI patients from CN participants in
specific feature categories (e.g., gait features related
to pace and postural control) and specific tasks (e.g.,
TMTs), while those for differentiating AD patients
from CN participants were found both in all cate-
gories and in all tasks investigated in this study. This
result may help explore behavioral characteristics
showing higher sensitivity to changes at early stages
of AD in cognitive function and in neuropathological
changes.

Our results show that combining gait, speech, and
drawing behavioral data can consistently and sub-
stantially improve the classification performance of
the individual-modality-based classification models.
Combining all three behavioral modalities achieved
93.0% accuracy for classifying AD, MCI, and CN,
and only 81.9% when using even the best single
modality. Because the classification model achiev-
ing the best accuracy was based on the SVM with an
RBF kernel, nonlinear interactions between behav-
ioral features of different modalities might contribute
to the improvement of classification performance by
combining multimodal behavioral data. Many stud-
ies on biomarkers such as structural MRI, functional
imaging, and cerebrospinal fluid have shown that
their combinations enhance the classification accu-
racy of detecting AD or MCI [60, 61]. One of our
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contributions lies in providing the first empirical evi-
dence that the benefit of combining different data
modalities for detecting AD and MCI can be achieved
even with combinations of daily behaviors.

We also suggest that the enhancement of clas-
sification performance by combining multimodal
behaviors results from their complementary nature
regarding 1) cognitive and clinical measures for the
diagnosis of AD and MCI as well as 2) discrimination
of AD or MCI from CN ones. The selective behavior-
cognitive relationships that we showed includes those
found in previous studies such as stride time vari-
ability and executive function [9–12], pauses during
spontaneous speech and episodic memory [21], and
drawing speed and global cognition [22]. By demon-
strating these associations by using the multimodal
behavioral data collected from the same individuals,
our results strengthen the notion that these behavioral
characteristics in each modality reflect different pro-
files of cognitive impairments associated with AD
[7–13, 18, 21, 22, 27]. In addition, gait, speech,
and drawing behaviors each have been suggested to
reflect neuropathological changes due to AD [13,
27, 56–59]. Our results suggest that these behavioral
modalities may also provide different and comple-
mental information for estimating neuropathological
changes. To confirm this suggestion, a further study
with validated biomarkers for measuring neuropatho-
logical changes is required.

Behavioral data such as gait, speech, and drawing
have been proposed as a non-invasive, easy-to-
perform means of helping detect AD and MCI in
clinical settings [26, 27, 29, 31, 59]. For example,
adding a gait test or speech analysis to a neuropsy-
chological assessment has been found to improve
the accuracy in detecting people with MCI [31] or
a higher probability of developing dementia [29]. In
addition, the behavioral data we analyzed in this study
may be easily acquired in routine clinical practice. In
fact, the speech and drawing data were collected dur-
ing representative neuropsychological tests for the
diagnosis of AD, and the gait data were collected
through simple nine-meter walk trials. Although the
marker-based motion capture system used in this
study might not be readily available in clinical set-
tings, wearable sensors instead might be used for
measuring gait characteristics as studies suggested
(e.g., [28, 62, 63]). Given the accessibility to behav-
ioral data in clinical practice, our results suggest that
combining such behavioral data can help clinicians
accurately detect patients with AD and MCI. This
would be also useful as an easy-to-perform screen-

ing tool to select individuals who should be further
examined with biomarkers both in clinical practice
and clinical treatment trials.

Another clinical implication of this study is that
our findings might help computerized detection of
AD without specialists by improving the perfor-
mance of computerized screening methods proposed
in previous studies [13, 23, 27, 30, 64, 65]. Exam-
ples of such methods include automatic assessments
of gait characteristics using electronic walkways or
wearable sensors [13, 27, 30] and those of drawing
characteristics during neuropsychological tests using
a digital pen [23]. These methods might benefit from
being combined with other behavioral modalities.
In addition, when comparing with approaches using
computerized assessment tools including digitalized
neuropsychological tests, this approach focusing on
behavioral data may help promote future efforts
towards the development of continuous and passive
monitoring tools for the early detection of AD from
data collected in everyday life. In fact, recent studies
demonstrated the feasibility of using daily walking
behavior collected in accelerometer sensors in a free-
living setting [28] and daily conversational speech
[66–68] for detecting AD or MCI patients. Although
further research is needed to investigate the operabil-
ity and acceptability of real-world data collection, the
combination of multimodal behavioral data may be
useful for developing an accurate screening tool using
behavioral data collected in everyday life.

We acknowledge a number of limitations. First, our
analysis did not include validated biomarkers such as
cerebrospinal fluid and positron-emission tomogra-
phy markers of amyloid-� and pathologic tau, even
though these biomarkers have been recognized as a
standard means of evidencing the biological state of
AD [69]. A future study should confirm our findings
with a diagnosis based on biomarkers. Second, parts
of the cognitive measures we used for the diagno-
sis and regression analysis were based on the tablet
version of drawing tasks instead of the standard
paper-and-pencil version; however, given the previ-
ous studies showing high correlations between the
resulting scores of the tablet- and paper-based tests
[70, 71], its effect on our main findings is poten-
tially small. Third, although to our knowledge this
is the first study investigating combinations of gait,
speech, and drawing data for detecting AD and MCI,
the sample size was limited. This might affect the
generalizability of our results. Fourth, residual con-
founding can still exist in addition to age and sex
considered in the analysis. Fifth, in terms of statistical
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analyses, we did not adjust for multiple comparisons
across behavioral features due to the exploratory
nature of this investigation. However, our results
showed that all three modalities had behavioral fea-
tures with significant differences at the p < 0.0001
level and their trends in their changes were consis-
tent with those reported in previous studies on AD
or MCI [7, 8, 19, 22–25, 27, 31, 33, 42–47]. Thus,
we believe that our first empirical evidence obtained
from the investigation of multimodal behavioral data
collected from the same participants could still pro-
vide support for the hypothesis that each behavior is
sensitive to the diagnosis of AD and MCI, although
results need to be replicated on large samples. Finally,
all results of the classification performances reported
in this work are cross-validation results due to the
limited data samples, which is less ideal compared
with using a separate validation dataset. To further
confirm our results about the improvement of classi-
fication performance by combining data of multiple
behavioral modalities, future studies should examine
the model performance using a separate validation
dataset or nested cross-validation procedure.

In conclusion, this pilot study provides initial evi-
dence that multimodal behavioral data of gait, speech,
and drawing provide different and complementary
information about cognitive impairments such that
clinical diagnostic classification for AD and MCI
is superior to using either in isolation. Our find-
ings may help develop non-invasive, easy-to-perform
screening tools. A future study is needed to better
understand the associations of behavioral charac-
teristics with specific profiles of neuropathological
changes.
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Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V,
Ritchie K, Rockwood K, Sampson EL, Samus Q, Schnei-
der LS, Selbæk G, Teri L, Mukadam N (2020) Dementia
prevention, intervention, and care: 2020 report of the lancet
commission. Lancet 396, 413-446.

[6] Prince M, Comas-Herrera A, Knapp M, Guerchet M,
Karagiannidou M (2016) World Alzheimer Report 2016.
Improving healthcare for people living with dementia: Cov-
erage, quality and costs now and in the future. Alzheimer’s
Disease International, London.

[7] Beauchet O, Allali G, Montero-Odasso M, Sejdić E, Fantino
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