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Helicobacter pylori (H. pylori) infection is the strongest causative factor of gastric cancer.
Growing evidence suggests that the complex crosstalk of H. pylori and the tumor
microenvironment (TME) exerts a profound influence on gastric cancer progression.
Hence, there is emerging interest to in-depth comprehension of the mechanisms of
interplay between H. pylori and the TME. This review discusses the regulatory
mechanisms underlying the crosstalk between H. pylori infection and immune and
stromal cells, including tumor-associated macrophages (TAMs), neutrophils, dendritic
cells, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, B and T cells,
cancer associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs), within the
TME. Such knowledge will deepen the understanding about the roles of H. pylori in the
immune evasion mechanism in gastric cancer and contribute to the development of more
effective treatment regimens against H. pylori-induced gastric cancer.
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INTRODUCTION

Gastric cancer is a global health issue, with over 1 million newly diagnosed cases globally each year
(1). Despite the descended morbidity and mortality of this malignancy during the last five years, it is
still the third major cause of cancer-related deaths (2). The prognosis of advanced gastric cancer is
undesirable with a five-year survival rate of less than 30%. Platinum-fluoropyrimidine combination
Abbreviations: TME, tumor microenvironment; ECM, extracellular matrix; H. pylori, Helicobacter pylori; TAMs, tumor-
associated macrophages; NK, natural killer; CAFs, cancer associated fibroblasts; EMT, epithelial–mesenchymal transition.
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chemotherapy represents the first-line therapeutic option against
advanced patients (1). However, patients usually have a low
complete response rate to chemotherapy, with substantial
toxicity. Gastric cancer is diagnosed histologically following
endoscopic biopsy as well as staged utilizing computed
tomography, endoscopic ultrasound, positron emission
tomography, and laparoscopy. Currently, histopathological
classification schemes designate gastric cancer as intestinal or
diffuse in accordance with the morphology, differentiation, and
cohesion of glandular cells. Intestinal gastric cancer is
preceded through alterations in the gastric mucosa as the
Correa cascade that evolves via inflammatory response,
metaplasia, dysplasia, or adenocarcinoma. Diffuse gastric
cancer lacks cell adhesion and exhibits a diffuse aggressive
growth feature. Recently, comprehensive evaluation of the
Cancer Genome Atlas (TCGA) has categorized this malignancy
as 4 molecular subtypes: genome stable (GS), microsatellite
instability (MSI), EBV infection, as well as chromosomal
instability (CIN) (3). Moreover, the Asian Cancer Research
Group (ACRG) project offers a new molecular classification,
including MSI subtype, microsatellite stable with epithelial to
mesenchymal transition (MSS/EMT), MSS/TP53 mutant (MSS/
TP53+), and MSS/TP53 wild-type (MSS/TP53-) subtypes (4). In
terms of histopathological or molecular classifications, gastric
cancer is not an isolated mass of cancerous epithelial cells. In
contrast, these tumors present a complex morphology in which
tumor cells are surrounded by the tumor microenvironment
(TME) (5). The TME contains extracellular matrix (ECM),
stromal cells, immune cells, and secreted factors, which present
high correlations to gastric cancer progression and therapeutic
responses (6). The innate immune cell populations (macrophage,
neutrophil, dendritic cell, innate lymphoid cell, myeloid-derived
suppressor cell, natural killer cell) as well as adaptive immune
cell populations (T cell and B cell) trigger gastric cancer
progression within the TME (7). Innate and adaptive immune
responses exert critical functions in tumor immune surveillance
as well as suppression of tumor progression. Tumor cells inhibit
the immune system, and thus evade immune disruption and
facilitate tumor growth, and metastases. Tumor immune
surveillance is capable of recognizing and eliminating tumor
cells. Tumor immune escape permits tumor cells to proliferation
and metastases following escaping immune surveillance and thus
results in unfavorable clinical outcomes. Numerus factors
participate in the process of tumor immune escape, especially
Helicobacter pylori (H. pylori) infection.

H. pylori is a gram-negative microaerobic spiral rod-shaped
bacteria that colonizes the surface of human stomach mucosa
(2). It is a highly invasive microorganism and is one of the
reasons for the highest incidence of chronic infections in the
world, though more than 80% of infected patients are still
asymptomatic (2). At present, several virulence-related genes
in the genome of H. pylori have been confirmed, mainly
cytotoxin-associated gene A (cagA), vacuum toxin gene A
(vacA), induced by contact epithelium (iceA), blood group
antigen-binding Adhesin gene (babA), etc. (2). Over 50% of
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individuals are infected with H. pylori across the globe. Nearly
all cases of gastric cancer are linked with H. pylori infection (8).
H. pylori eradication is capable of preventing gastric cancer
progression and quadruple therapy (bismuth quadruple and
concomitant) is the recommended first-line therapeutic option
(8). However, antibiotic resistance with a growing prevalence is
the main reason for the therapeutic failure of H. pylori. Growing
evidence suggests the crucial roles of H. pylori infection in
immune evasion mechanisms during gastric cancer progression
(8). The persistence of H. pylori infection results in an
immunosuppressive microenvironment as well as allows
gastric carcinoma cells to evade immune surveillance (8). In
this review, we summarize a comprehensive outline of research
advances of the molecular mechanisms concerning the crosstalk
of H. pylori with components within the TME of gastric cancer,
suggesting the crucial roles of H. pylori infection in tumor
immune escape.
THE CROSSTALK OF H. PYLORI WITH
INNATE IMMUNE CELLS WITHIN THE
TUMOR MICROENVIRONMENT

Tumor-Associated Macrophages
Within the TME, macrophages, known as TAMs, are the most
abundant immune cells. TAMs are categorized as two subtypes:
M1 and M2 (9). M1 macrophages (also called as classical
macrophages) can be primarily stimulated by IFN-g, TNF-a,
and LPS; M2 macrophages can be induced by IL-4 (9). The
polarization and recruitment of macrophages produce pro-
inflammatory and pro-cancerogenic cytokines and thus
sustain the initiation and progression of gastric carcinoma (9).
H. pylori-induced chronic inflammation exerts a crucial
regulatory role in gastric carcinogenesis and TAMs involved in
this process. The polarization and recruitment of macrophages
supply pro-inflammatory and pro-tumorigenic cytokines and
thus support the development and progression of gastric
cancer (9). The degree of H. pylori infection is linked with
macrophage polarization by interplay of reactive oxygen
species (ROS) with hypoxia inducible factor 1 subunit a (HIF-
1a) (10). HIF-1a can directly or indirectly trigger tumor
development via modulating immune surveillance escape
through inducing immunosuppressive factors and downstream
targets. Inhibition of macrophage polarization can ameliorate H.
pylori-induced gastric injury (11). Exosomes are small
extracellular vesicles, which are critical mediators of cell-cell
communication. H. pylori infection triggers the up-regulation of
mesenchymal-epithelial transition factor (MET) in exosomes
and activates tumor-associated macrophages through IL-1b,
thereby promoting gastric cancer progression (12). H. pylori
triggers nitric oxide (NO) release in macrophages that leads to
methylation of runx3 in gastric epithelial cells (13). Runx3
methylation is linked with differentiation, nodal metastases,
and unfavorable clinical outcomes of gastric cancer.
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Experimental evidence shows that suppression of runx3 triggers
gastric carcinoma progression as well as metastases. H. pylori
also promotes the release of TNF-a from macrophages and thus
up-regulates the expression of C-X-C motif chemokine receptor
4 (CXCR4) in gastric cancer cells (14). CXCR4 is a seven-span
transmembrane G-protein coupled receptor, which is the main
receptor of CXCL12. CXCL12 is released from stromal cells
within the TME and thus binds to CXCR4 on the surface of
tumor cells, eventually promoting tumor metastases and
unfavorable survival outcomes. Notch signaling can facilitate
the activation and bactericidal activities of macrophages, and one
of its ligands Jagged1 enhances macrophage-mediated response
to H. pylori (15). CXCL12/CXCR4 signaling-mediated
macrophage polarization can trigger gastric cancer metastases
(16). MiR-22 inhibits gastric cancer cell growth through
triggering a deficiency in endogenous S-adenosylmethionine,
which can sustain NLRP3 expression and attenuate H. pylori-
induced gastric cancer initiation (17).H. pylori infection weakens
miR-22 expression and thus up-regulates NLRP3 inflammasome
activation and release of oncogenic mature IL-1b, thereby
triggering uncontrolled proliferation of epithelial cells and the
occurrence of gastric cancer (8).
Neutrophils
Neutrophils are the most abundant circulating leukocytes in
cancer patients, which present two forms: circulating neutrophils
that circulate freely and are recruited into tumors as well as
peripheral neutrophils that bind to the capillary endothelium
(18). Persisting and increasing neutrophil infiltrations are linked
with gastric cancer progression (18). Hepatoma-derived growth
factor (HDGF) displays high expression in gastric carcinoma
tissues, which is linked with lymph node metastases and
undesirable clinical outcomes. Additionally, the differentiation
of mesenchymal stem cells into myofibroblast-like cells induced
by HDGF triggers the progression of H. pylori-induced gastric
cancer. Recent research has proposed that HDGF expression is
up-regulated both in tumors and peripheral blood of H. pylori-
infected patients, which mediates H. pylori-triggered neutrophil
recruitment or activation of inflammatory TNF-a/COX-2
pathway, and thus promotes gastric carcinogenesis (19).
Dendritic Cells
Dendritic cells are professional antigen-presenting cell
populations, which can induce antigen-specific adaptive
immune response that is of importance for immune
surveillance and tolerance (20). Impaired function of dendritic
cells results in the ineffective innate and adaptive immune
responses against H. pylori for gastric cancer populations (20).
H. pylori suppresses the maturation of dendritic cells through IL-
10-independent activation of the signal transducer and activator
of transcription 3 (STAT3) signaling, potentially favoring
chronic infection, and promoting gastric carcinogenesis (21).
H. pylori-induced immune evasion is mediated by dendritic cell-
induced Th17/Treg balance towards Treg-biased responses and
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inhibition of Th17 immunity (22). MiR-375 expression is
frequently decreased in gastric carcinoma as well as weakens
cell proliferation through targeting JAK2 oncogene. H. pylori
infection downregulates its expression in gastric cancer cells and
promotes the release of cytokines IL-6, IL-10, and VEGF via the
JAK2-STAT3 signaling, and thus induces the maturation of
dendritic cells and the reduction in the number of CD4+ and
CD8+ T cells (23).
Myeloid-Derived Suppressor Cells
MDSCs are a heterogeneous subset of immature myeloid cell
populations with immunosuppressive function. MDSCs have been
considered as a main obstacle of immunotherapy (24). Numerous
scientists are exploring the inhibitory products against MDSCs and
exploiting novel therapies that may enhance the efficacy of
immunotherapies. Although immunotherapies mainly focus on
the manipulation of T cells, targeting MDSCs provides another
insight for anti-cancer therapy. The differentiation and function of
MDSCs may be mediated by H. pylori infection. CXCL8 is a crucial
inflammatory chemokine induced by H. pylori infection. This
chemokine is up-regulated in gastric cancer and is linked with an
undesirable survival outcome and tumor metastases (24). CXCL8
can promote the recruitment of MDSCs to tumors via binding
CXCR1/2. MDSCs restrain the antitumor immune response
primarily through weakening T cell function. Kruppel-like factor
4 (KLF4) is an underlying tumor suppressor in gastric carcinoma.
H. pylori infection results in KLF4 inactivation in gastric carcinoma
with a Tet Methylcytosine Dioxygenase 1 (TET1)-independent
DNA methylation mechanism (25). H. pylori infection up-
regulates CXCL8 expression through down-regulating KLF4
expression in gastric cancer cells and thus facilitates the
recruitment of MDSCs, thereby shaping an immunosuppressive
microenvironment (26). Hence, effective inhibition and blockade of
CXCL8 and disrupt ion of the immunosuppressive
microenvironment are of importance for improving the effects of
immunotherapy in gastric cancer. H. pylori-induced programmed
death ligand-1 (PD-L1) expression within the gastric epithelium is
mediated through the Hedgehog (Hh) pathway that is a contributor
of H. pylori-induced atrophic gastritis progressing to gastric cancer.
MDSCs require the activation of the Hh pathway-mediated
transcription factor GLI1 and thus promotes neoplastic
transformation (27). The myeloid differentiation factor Schlafen4
(Slfn4) represents a subpopulation of MDSCs in the gastric with H.
pylori-induced spasmolytic polypeptide-expressing metaplasia
(SPEM). MiR-130b is required for the T-cell suppressor
phenotype displayed by the SLFN4-positive cells, which promotes
H. pylori-induced gastric carcinogenesis (28). Depletion of MDSCs
can sensitize gastric cancer cells to anti-programmed death-1 (PD-
1)/PD-L1 agents (29).
Natural Killer Cells
NK cells, large granular innate lymphoid cells, are a main
contributor to immunosurveillance as well as control of tumor
progression through mediating apoptosis of gastric cancer cells
June 2022 | Volume 12 | Article 862462
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(30). NK cells mainly mediate cytotoxic resistance through two
mechanisms: cancer cells escape NK cell-induced response
through co-suppressive signals, resulting in anergic or
irresponsiveness states of the immune subpopulation, and
cancer cells escape NK cell effector activities following
recognition of target cells (such as ineffective perforin binding)
(30). High NK-cell infiltration is an indicator of more favorable
clinical outcomes of gastric carcinoma subjects, constituting
the first line of defense against cancers. H. pylori infection
alters NK cell function within the TME. NK cells in the
peripheral blood of gastric cancer patients possess a serious
suppression capacity in producing IFN-g following H. pylori
infection (30). IFN-g is an important cytokine secreted from NK
and NK T cells or activated T cells within the TME. Innate and
adaptive antitumor immune responses can trigger the secretion
of IFN-g. Oppositely, IFN-g induces feedback suppression,
thereby compromising antitumor immune responses.
Moreover, IFN-g upregulates the expression of immune
suppressive factors within the TME. Especially, IFN-g can
activate the PD-1 pathway via directly upregulating PD-L1/2
in cancer, immune as well as stromal cell populations, and thus
interacts with PD-1 on T cells, thereby downregulating the
cytotoxic responses. NK cells can kill susceptible target tumor
cells with a perforin-dependent mechanism. Perforin is a pore-
forming protein expressed only in killer cells, allowing cytotoxic
proteases (31). H. pylori down-regulates perforin production in
gastric cancer cells-co-cultured CD56+ NK cells, indicating the
decrease in killing efficiency of NK cells (32).
THE CROSSTALK OF H. PYLORI WITH
ADAPTIVE IMMUNE CELLS WITHIN THE
TUMOR MICROENVIRONMENT

B and T cells are central mediators of adaptive immunity (33).
H. pylori infection deregulates T and B cells to mediate immune
escape of gastric epithelial cells (34). Immune score has been
exploited for estimating the adaptive immune compositions
within the TME. In accordance with immune score, tumors
are categorized into four subtypes: hot, altered-excluded,
altered-immunosuppressed, as well as cold (35). Hot tumors
present the features of enhanced infiltrations of PD-1- or
CTLA4-expressing cytotoxic T lymphocytes as well as tumor
cells expressing costimulatory molecules that are capable of
maintaining T-cell functions (36). Intriguingly, hot tumors
present the features of the presence of local inflammatory
responses as well as high responses to immunotherapy. T-cell
exclusion inside the tumors, triggered by the presence of
abnormal vasculature and fibrotic nets, represents a major
characteristic of altered-excluded immune tumors. Altered-
immunosuppressed tumors present the intermediate
infiltrations of exhausted T cells and the increased density of
soluble inhibitory factors and immune-suppressive cell
populations. Cold tumors present the characteristics of the
absence of T-cell infiltrations because the cells or mechanisms
underlying T-cell priming or activation are lacking. H. pylori-
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induced adrenomedullin facilitates IFN-g-producing T-cell
responses within the gastric microenvironment (37). The
production of suppressive cytokine IL-10 in H. pylori-infected
gastric cancer patients is elevated and thus results in a decreased
cytotoxic anti-tumor T-cell response in the gastric mucosa,
thereby contributing to gastric carcinogenesis (38). H. pylori
VacA targets myeloid cells in the gastric mucosa and thus
creates a tolerogenic environment that promotes regulatory T-
cell (Treg) differentiation and suppresses effector T-cell priming
and functionality (39).

Figure 1 summarizes the crosstalk of H. pylori with innate
immune cells within the TME, including TAMs, neutrophils,
dendritic cells, MDSCs, and NK cells.
THE CROSSTALK OF H. PYLORI WITH
CANCER ASSOCIATED FIBROBLASTS
WITHIN THE TUMOR
MICROENVIRONMENT

CAFs are a major stromal component that display massive
infiltrations within the TME (40). CAFs are mainly distributed
around blood vessels or in the fibrous interstitium around
tumors, secreting cytokines, ECM components, and related
enzyme molecules (41). ECM provides physical support for
cells in the TME and plays an important role in cell adhesion
and infiltration. ECM deposition can produce dense fibrous
interstitium that envelops tumors, which makes tumor tissues
more brittle and firmer than normal tissues, thereby forming a
physical barrier that hinders immune cell infiltration, and
inhibiting anti-tumor drugs from targeting the TME (40).
Moreover, the matrix metalloproteinases secreted by CAFs
can reshape ECM, release chemokines, growth factors, and
pro-angiogenesis factors, and promote the malignant
transformation of tumors. With the rapid growth of tumors
and vascular alienation, insufficient blood supply often occurs
in the tumors and long-term hypoxia (42). Meanwhile, cell
metabolism will increase the accumulation of lactose and
hydrogen ions to form the acidic TME. The activation of a
cascade of signals caused by vascular defects and metabolic
disorders promotes the formation of immunosuppressive TME
(43). CAF mainly affects TME through four perspectives: tumor
cell proliferation and metastases, angiogenesis, ECM
remodeling, and immune inhibition. H. pylori can activate
gastric fibroblasts into cells possessing CAFs. H. pylori
infection increases vascular adhesion molecule 1 (VCAM1)
expression in CAFs within the TME through activating the
JAK/STAT1 pathway, and CAF-derived VCAM1 interacts with
integrin avb1/5 in gastric cancer cells to trigger cancer invasion
(40). H. pylori infection induces the cyclooxygenase-2 (COX-
2)/prostaglandin E2 (PGE2) pathway and enhances PGE2
production, leading to the hypermethylation of miR-149 in
CAFs as well as the increase in IL-6 secretion. Epigenetic
silencing of miR-149 in CAFs mediates the interplay of CAFs
with gastric cancer cells within the TME (44).
June 2022 | Volume 12 | Article 862462

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. H. pylori and GC Immune Evasion
THE CROSSTALK OF H. PYLORI WITH
MESENCHYMAL STEM CELLS WITHIN
THE TUMOR MICROENVIRONMENT

Epithelial–mesenchymal transition (EMT) process may confer
mesenchymal phenotype and characteristics to epithelial cells
(45, 46), with the abnormality of epithelial polarization and cell-
to-cell junction as well as acquiring mesenchymal and motile
phenotypic changes (47). H. pylori infection triggers the EMT of
epithelial cell populations in the stomach mucosa. Moreover, this
process can result in the appearance of CSC characteristics in
gastric cancer. CSCs are a rare cell subset in tumors, which can
initiate the progression and spread of tumors to induce distant
metastasis. H. pylori infection can unveil CSC-like properties
through inducing EMT-like alterations in gastric epithelial cells
via CagA (47). Hippo pathway effectors yes-associated protein
(YAP) along with transcriptional co-activator with PDZ binding
motif (TAZ) mediates gastric carcinoma occurrence or
development. TAZ activation responding to H. pylori can result
inH. pylori-triggered EMT as well as CSC features. Thus, TAZ up-
regulation constitutes a contributor of early conversion during
H. pylori-induced gastric cancer initiation (48). Bone marrow-
Frontiers in Oncology | www.frontiersin.org 5
derived MSCs facilitate H. pylori-induced gastric cancer
progression via secretion of thrombospondin-2 (49).
DISCUSSION

H. pylori infection has been considered as a microorganism that is
highly effective in triggering inflammatory response within the
stomach. Recent research has revealed a synergistic interplay ofH.
pylori infection with the components within the TME. An in-
depth comprehension of how H. pylori and these cell populations
interact can provide novel ideas and perspectives in treating gastric
cancer and promising biomarkers for early detection. As
mentioned, the interactions of H. pylori infection with TAMs,
neutrophils, dendritic cells, MDSCs, NK cells, B and T cells, CAFs,
and MSCs exert crucial roles in gastric carcinogenesis.
FUTURE PERSPECTIVES

Because H. pylori infection can induce strong immune response
in the stomach, the resulting inflammation can facilitate gastric
FIGURE 1 | The crosstalk of H. pylori with innate immune cells within the tumor microenvironment (TME). Innate immune cells mainly contain tumor-associated
macrophages (TAMs), neutrophils, dendritic cells, myeloid-derived suppressor cells (MDSCs), and natural killer (NK) cells.
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cancer progression. Most studies investigating the influence ofH.
pylori infection on the mentioned cell populations within the
TME have been conducted in vitro. Furthermore, the exact
mechanisms underlying the interplay of H. pylori infection
with the TME should be addressed, assisting better expounding
of the roles of H. pylori infection in gastric carcinogenesis. More
biomedical or pharmaceutical regimens specifically targeting H.
pylori infection can offer potential treatment methods for gastric
cancer prevention.
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