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Abstract

Subcortical structures are involved in many healthy and pathological brain processes. It is crucial for many studies to use
magnetoencephalography (MEG) to assess the ability to detect subcortical generators. This study aims to assess the source
localization accuracy and to compare the characteristics of three inverse operators in the specific case of subcortical
generators. MEG has a low sensitivity to subcortical sources mainly because of their distance from sensors and their complex
cyto-architecture. However, we show that using a realistic anatomical and electrophysiological model of deep brain activity
(DBA), the sources make measurable contributions to MEG sensors signals. Furthermore, we study the point-spread and
cross-talk functions of the wMNE, sLORETA and dSPM inverse operators to characterize distortions in cortical and subcortical
regions and to study how noise-normalization methods can improve or bias accuracy. We then run Monte Carlo simulations
with neocortical and subcortical activations. In the case of single hippocampus patch activations, the results indicate that
MEG can indeed localize the generators in the head and the body of the hippocampus with good accuracy. We then tackle
the question of simultaneous cortical and subcortical activations. wMNE can detect hippocampal activations that are
embedded in cortical activations that have less than double their amplitude, but it does not completely correct the bias to
more superficial sources. dSPM and sLORETA can still detect hippocampal activity above this threshold, but such detection
might include the creation of ghost deeper sources. Finally, using the DBA model, we showed that the detection of weak
thalamic modulations of ongoing brain activity is possible.
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Introduction

Magnetoencephalography (MEG) and electroencephalography

(EEG) are well known to have a high temporal resolution (a

millisecond time scale) but a low spatial resolution for source

localization compared to functional magnetic resonance imaging

(fMRI) [1]. Moreover, this spatial resolution decreases rapidly as a

function of the depth of the generators [2]. Thus, the detectability

of deep brain structure activities is still an open question [3–7]. In

addition to the larger sensors-to-source distance, subcortical brain

sources in basal ganglia or in hippocampus have a complex cyto-

architecture that could lead to the conclusion that their

contribution to sensors is quasi-null. Nevertheless, quantifying

the deeper neural currents at a higher time scale than fMRI is

crucial for studying their implications in many brain processes

(language, action, motor [8], [9] or emotion [10], [11]) and related

disorders (stroke, epilepsy, Alzheimer’s, Parkinson’s diseases [12]).

For the last two decades, more and more MEG and EEG (M/

EEG) studies have reported activations that were generated by

neural generators in the hippocampus, amygdala or basal ganglia

(see [13] for a review). Moreover, several papers based on realistic

simulations [6,14,15] have studied the ability of beamformer or

minimum current estimate solutions to localize hippocampal

generators. These studies estimated the necessary signal strength,

the minimum distance between the sources or numbers of trials, to

localize the subcortical generators. They also evaluated the impact

of the experimental paradigm and how data subtraction prior to

source localization could improve the detection of weak hippo-

campal sources (below 5 nAm) [14].

Here, based on the results of [16], we make the hypothesis that

subcortical contributions are not null, at least for the hippocam-

pus, amygdala and thalamus. We focus on the assessment of the

localization error of subcortical neural generators using the deep

brain activity (DBA) model. DBA models the anatomical and

electrophysiological properties of subcortical structures. These

models are based on an imaging approach, which realistically

distributes the current dipoles (CDs) over the neocortex and

subcortical structures. CDs are usually assumed to model the

synchronous summation of postsynaptic potentials that originate

from neocortical macro-columns of pyramidal neurons. The DBA

model introduces more electrophysiological knowledge by speci-

fying a CD location, orientation and current density in a structure-

specific manner.

To estimate the current distributions, we use three methods that

are based on the widely used minimum L2 norm estimate (MNE)
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[17]. Because classical MNE gives source localization that is biased

toward more superficial sources, activities of deeper generators are

under-estimated. To alleviate this problem, it is possible to apply

depth weighting [18,19] to the MNE solution, obtaining a

weighted minimum norm estimate (wMNE). Two other methods

using noise-normalized depth-weighted MNE solutions are com-

pared in this study, dynamic statistical parametric mapping

(dSPM) [20] and standardized low-resolution electromagnetic

tomography (sLORETA) [21]. Recently, Hauk et al. [22] assessed

the differences between these inverse operators at the neocortical

level. They show that depending on the goodness criteria and the

experimenter’s specific questions, there is not a superior method

within these three operators. In this study, we want to compare the

characteristics of the three operators in the specific case of

subcortical generators. These linear approaches naturally produce

a smooth source localization estimate that makes it difficult to

assess the localization accuracy with typical error distances. The

question of choosing good error metrics is not trivial, and several

studies proposed different metrics [19,22,23]. Based on these

studies, our ability to localize deep currents using DBA is assessed

by two dipole localization error (DLEs) metrics:

– DLEg corresponds to the Euclidian distance of a solution’s

gravity center from the true location.

– DLEm corresponds to the Euclidian distance of a solution’s

maximum from the true location.

To quantify the source localization accuracy of our framework,

the paper is designed as follows. First, the forward model, which is

built using the anatomies of seven subjects, is assessed in terms of

the sensitivity (the sum of squares for the gain vector of each

source) and the intensity of the simulated fields. This part tells us

how the neural architecture of subcortical structures influences the

amplitude of the resulting magnetic fields by studying their

distributions compared to the cortex contribution. We then

quantify the point-spread functions (PSF) and the cross-talk

functions (CTF) using the resolution matrix [19,24–26] in the

specific case of the hippocampus. PSF quantifies the distortion of

point source reconstruction by the inverse operators. CTF

quantifies the distortion that is induced from other source

locations. Using these two measures, we assess the regional

distortion impact of one subcortical source on other cortical and

subcortical sources and the influence of these other sources on a

given subcortical source. Second, we perform Monte Carlo

simulations [19,27,28]. Using the MEG resting state activity from

the seven subjects, which is considered to be additional noise, we

simulate MEG signals from subcortical activations across all of the

structures of our model, using an increasing size for the activated

patches. In a second step, we add a neocortical activation of 3 cm2

in the visual area. Temporal delays between cortical and

subcortical activations range from instantaneous to entirely shifted

activations. It allows us to modulate the overlap ratio between the

cortical and the subcortical neural currents when we quantify the

minimum subcortical amplitude that is required for detection,

compared to a cortical amplitude. To summarize, we address two

main questions. First, we assess our ability to detect a single

subcortical activation under optimal conditions. Second, we

quantify the minimum ratio of subcortical activation to neocortical

activation that allows good subcortical detection. Finally, as a

practical illustration, we use our DBA model to analyze a resting

state experiment. This last step is intended to answer the following

question: Can we detect, by using alpha power modulation, the

activity in the thalami that has no specific neural organization (in

contrast to the neocortical macrocolumn of pyramidal cells) and a

very deep location?

Methods

2.1 DBA Model Setup
DBA defines a model of neural generators that is based on

anatomical and electrophysiological priors for neocortex and

subcortical structures. To solve the forward and inverse problem

and to generate simulated fields, the framework is based on the

following key points:

– An accurate anatomical model to constrain the global source

space.

– An electrophysiological model to constrain dipole orientations.

– A realistic current dipole moment density (DMD) to activate

patches of CDs over these structures.

We describe, hereafter, the key points of the setup; the complete

framework is detailed in [13,16].

The anatomical model that corresponds to the source space

location is computed on individual T1-weighted MRI volume data

(3T Siemens Magnetom VERIO, 1 mm isotropic resolution, axial

scans) from 7 healthy subjects. The neocortical sheet composes the

global anatomical model together with the amygdalo-hippocampal

complex and several central grey nuclei and related structures

(putamen, thalamus, reticular perithalamic nucleus (RPN), lateral

geniculate nucleus (LGN) and external pallidum (EGP)). The

model pipeline creation is based on the works of Chupin et al. [29]

and Yelnik et al. [30] and uses the Brainvisa software [31] http://

brainvisa.info/.

The electrophysiological properties in the model are CDs

distributed at each location defined by the global anatomical

model. As usual, neocortical source orientations are constrained to

the local normal of the cortical mantle at each vertex location of

the gray-white matter interface. Central regions of the neocortical

tessellation that correspond to the corpus callosum and residual

brainstem parts from MRI segmentation are manually removed

from the global source space. In contrast to the neocortex, large-

scale electrophysiology of basal ganglia and related structures is

better modeled by distributing current dipoles inside regular

volume grids that are fitted within their surface envelopes. Indeed,

the resulting currents from synchronous activities generated by

sub-territories are generated by volumetric gray matter nuclei.

DBA considers two types of neural generators, ‘‘open’’ and

‘‘closed’’ field cells (see Table 1), according to the resulting

electromagnetic field produced by their dendritic arborization

[32,33]. For nuclei with an oriented neural architecture (EGP,

RPN and LGN), dipoles are orientated along the principal axis of

their respective surface envelope. The thalamus and striatum are

essentially made of closed-field cells (i.e., with no preferred source

orientation); hence, a current dipole is placed at each node of the

inner volume grid with a random orientation [34–36]. In the

specific case of the amygdala, its basolateral nucleus is mainly

composed of pyramidal cells (i.e., open-field cells) without

preferential orientation [37,38]. Therefore, the amygdala is

modeled in the same way as the thalamus and striatum [11].

The hippocampus is a complex structure in terms of the neural

cells and architectural diversity. However, because we do not have

access to the precise inner structure using 3T anatomical MRI, we

limit the hippocampal source space to the external envelope (see

Figure 1). CDs are distributed, similarly to the neocortex,

orthogonally to the local surface. A first approximation assumes

that pyramidal neurons that compose the 3-layered archeo-cortex

Subcortical Source Localization Using DBA Model
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[39] can be represented by a hippocampal tessellation. The

characteristics of the global anatomical and electrophysiological

source model are detailed in Table 1.

2.2 Subjects
Seven healthy volunteers (6 men and 1 woman, 30 years old on

average) participated in this study. The local ethical committee

approved the experimental procedures, and all of the participants

gave written informed consent (CPP Ile-de-France VI, Groupe

Hospitalier Pitié-Salpêtrière, nu7024). The MEG session is detailed

in section 2.4.

2.3 Monte Carlo Simulations
Realistic simulated activations from subcortical structures are

added to the individual data. Source simulations involve the

sequential activation of surface patches or volume patches with

increasing size at every source location (cortex, hippocampus and

basal ganglia; see the illustration in Figure 1). For each structure,

the number of simulations is set to the number of nodes in the

corresponding source grid (see Table 1). Each patch of activation

comprises a subset of connected vertices that belong to the source

space. The simulations are performed for patch sizes ranging from

1 to 5 cm2 by steps of 1 cm2 for surface patches and 1 to 5 cm3 by

steps of 1 cm3 for the volume patches; the simulations are limited

to the left hemisphere of the brain. For the regions that have a

total surface area that is lower than 5 cm2 and a volume lower

than 5 cm3, such as the LGN, the higher patch size is defined as

the total surface area (respectively, volume). The surface (respec-

tively, volume) current strength Ji of the dipole i is computed as

follows:

Ji~srSi (resp: Ji~srSi) ð1Þ

The surface area Si (or volume Vi ) is associated with the dipole

i, and sr (respectively, cr) is the corresponding surfacic (respec-

tively, volumetric) DMD in the region under consideration. DMD

values, the resulting Ji associated with the five sizes of patches and

other characteristics of the DBA model are detailed in Table 1 (for

more details about the electrophysiological assumptions, see [13]).

The gain matrix, G, that relates to the surface and volume

source grids is computed using an overlapping spheres model

implemented in the Brainstorm software [40] version 3.1, which is

documented and freely available for download online under the

GNU general public license (http://neuroimage.usc.edu/

brainstorm). In the case of MEG, which is less sensitive than

EEG to distortions from volume current diffusion, the lead field

computation could be reasonably well approximated with an

adapted spherical geometry compared to a realistic geometry [41].

Finally, the simulated field M is generated by the classical

equation:

M~GJ ð2Þ

Simulated fields combining neocortical activation and subcor-

tical activation result from the addition of both fields from

equation (2). For each activated patch, the signal-to-noise ratio (the

ratio between the energy of spontaneous activity at rest and the

simulated activation energy) is equal to 20, which is an acceptable

approximation of an evoked MEG response using ,100 to 200

average trials. The neocortical activation is defined as a patch of

3 cm2 in the visual cortex and is used to simulate a visual

stimulation in many experimental protocols. The subcortical

activations are computed over all of the sources and for the five

sizes of patches. A Gaussian distribution (FWHM = 30 ms)

modulates both activations after a 200 ms baseline of eyes opened

rest data. We introduce a variation of the temporal correlations

between neocortical and subcortical activations. Neocortical and

subcortical activations are separated in time by an interval Dt that

ranges from 0 to 60 ms. Dt equaling 0 ms means that the

activations appear at the same time. Dt equaling 60 ms means that

the neocortical and subcortical activations are fully separated in

time. Because we assess DLEs at the maximum of the subcortical

activation, Dt allows us to modulate the ratio, Rc, of the

neocortical activation added to the subcortical activation. Thus,

Rc ranges from 100% to 0% (see the illustration in Figure 1).

2.4 Inverse Solutions and Localization Error Metrics
According to Maxwell’s equations, the measured magnetic fields

are linear with respect to the dipole moment generated by neural

generators and nonlinear with respect to the source locations [1].

Hence, it is convenient to separate the dipole moment into its

magnitude and orientation parts to apply constraints on the

locations and orientations from priors used in DBA. Finally, only

the magnitude ĴJ of current generators must be estimated by

solving the inverse problem starting from equation (2), which is

based here on the minimum L2 norm estimate:

Table 1. Global characteristics of the DBA model.

Structures (Left) Cortex Hippocampus Amygdala Thalamus LGN EGP Putamen RPN

Surface | Volume
(cm2 | cm3)

750 15 1 8 0.2 1.5 9 2

Number of vertices 4619 900 273 1043 229 453 1029 529

Cell type O O O C O O C O

DMD
(C|C)

0.25 0.4 1 0.025 0.25 0.0025 0.25 0.0025

Neural current for patch
sizes 1 to 5 (C)

25 to 125 40 to 200 100 to 500 2.5 to 12.5 25 to 125 0.25 to 1.25 25 to 125 0.25 to 1.25

Anatomical and electrophysiological properties of the DBA model for left hemisphere structures (MNI template anatomy). Structures to the left of the vertical bar are
considered to be surfaces, and structures to the right of the vertical bar are volumes. O stands for ‘‘open field’’ cells, and C stands for ‘‘closed field’’ cells. DMD stands for
the dipole moment density, and the neural currents for the patch size are computed according to equation 1.
doi:10.1371/journal.pone.0059856.t001
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ĴJMNE~SGt(GSGtzl2C){1M~KMNEM ð3Þ

where KMNE is the inverse operator, the superscript t indicates the

matrix transpose, l2 is the regularization parameter, and C and S

are, respectively, the noise and the source covariance matrix. By

depth weighting S such as S~diag( Gik k{2w
F ), the depth bias of

ĴJMNE can be partially compensated [42]. Here, w is the weighting

factor, and Gik kF is the Frobenius norm of the gain matrix

containing three dipole components for the i-th point source before

applying orientations. Consequently, this depth weighting leads to

the inverse operator wMNE on which we will focus this paper.

Additionally, depth bias compensation and noise normalization

are used by the two other inverse operators, sLORETA and

dSPM. Both dSPM and sLORETA are derived from the inversion

kernel KMNE . dSPM normalizes KMNE by the noise sensitivity

(MNE of the noise) at each location [20], using the noise

covariance matrix:

KdSPM~diag(KMNECKt
MNE){1=2KMNE ð4Þ

sLORETA applies depth bias compensation and source standard-

ization using the resolution matrix [21]. From equations (2) and

(3), the resolution matrix R [19,24,25,27] is obtained as:

ĴJ~KM~KGJ~RJ ð5Þ

Thus, the sLORETA inversion kernel is computed using

RMNE~KMNEGMNE :

Figure 1. Simulation setup illustrations. A. Schematic view of the simulation setup. The red and blue Gaussians correspond to the distributions
that modulate the neocortical (respectively, subcortical) simulated fields that are generated from the activation of patches; these fields are illustrated
with neocortical and hippocampal tessellations. The summation of both activations is used to estimate the actual generators. Dt is the time between
the maximum of the two Gaussians. The variation in Dt allows variations in the ratio Rc between the cortical and the subcortical activations. B. The
lower part displays the anatomical model that has the mentioned structures and is included to give to the reader a better idea of their positions. ‘‘P’’
stands for posterior and ‘‘A’’ anterior.
doi:10.1371/journal.pone.0059856.g001
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KsLORETA~diag(RMNE){1=2KMNE ð6Þ

All inverse operators are computed with Brainstorm v3.1 (using

a weighting factor of w = 0.6 and a regularization parameter of

SNR = 3) and a baseline of 200 ms from the individual eyes

opened rest activity to compute the noise covariance matrix.

PSF and CTF are obtained from the resolution matrix. Rows of

R (CTF) quantify the point sources that induced modifications on

other point sources. Columns of R (PSF) allow mapping the

representation of a point source by a given inverse operator K, i.e.,

the induced distortions of the inverse operator. The lower the

values of CTF and PSF are, the more accurate is the estimation.

As shown in [22], we can see from equations (4) and (6) that only

the rows of R are scaled by the normalization applied with the

diagonal matrices, and the columns are not modified. Thus, the

shape of CTF must not change across the operators, but the PSF

will vary because of the normalization. For that reason, we will

particularly focus on the PSF differences induced by the three

kernels in terms of spatial dispersion and maximum mis-location.

Based on the metrics used in [19,22,23], our ability to localize

subcortical currents using DBA is assessed by two dipole

localization error (DLE) metrics (in centimeters):

– DLEg corresponds to the Euclidian distance of a solution’s

gravity center lg to the true location li:

DLEg(i)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(li{lg)2

q
ð7Þ

with lg~

P
k

lk DĴJk D
P
k

DĴJk D
, Vk[ĴJ50% ð8Þ

DaD represents the absolute value of a. ĴJ50% is the threshold

estimated currents map containing dipoles having amplitudes

that are above 50% of ĴJ ’s maximum, to remove weak sources.

– DLEm corresponds to the Euclidian distance of a solution’s

maximum lm to the true location li:

DLEm(i)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(li{lm)2

q
ð9Þ

DLEm is widely used to quantify the mis-localization of the

estimated maximum of the true source. This error assumes that

the current map is distributed spherically around the maximum

and that the chosen threshold is defined as a fraction of this

maximum. However, this assumption is not always true, and

DLEm does not tell us how well the spatial extent of the estimated

map is mapped. Using DLEg as the gravity center of the

estimation, Lin et al. propose to account for the classical Euclidian

distance metric with the spatial extension. Given these two types of

DLEs, the localization assessment becomes more understandable

and accurate concerning the different properties of each method.

The group-level analysis across the seven subjects is performed

using Brainstorm by the registration of each individual anatomy

on the Montreal Neurological Institute (MNI) brain Template.

Then, the individual maps (CTF, PSF, DLE) are projected on the

template before a group average.

2.5 Thalamo-cortical Loop Using the Resting State MEG
Experiment

We seek here to detect alpha power modulations in the

thalamus during the well-established contrast between resting state

eyes opened and eyes closed (EO/EC) [43,44]. Alpha ongoing

modulations are well known to be dominant during the eyes-closed

condition, and neocortical alpha waves are widely considered to be

paced by the thalamus [45,46]. In fact, in the early seventies, it was

clearly demonstrated that the cortical visual regions are signifi-

cantly correlated with the thalamus during alpha rhythms [47].

Moreover, using multimodal EEG-fMRI, studies described

thalamic modulations during the resting state [48]. The ability

to detect thalamic activations using MEG was already shown by

the early nineties with the work of [4,49] and, recently, [50]. As

mentioned at the beginning of the simulations setup, seven healthy

volunteers participated in this study. The MEG session was

composed of a block-designed EO/EC paradigm, with each block

lasting for 30 s, for a total duration of 5 minutes per condition.

MEG signals are recorded on a 151-channel CTF whole-head

system, at a 1250 Hz sampling rate. The data are first band-pass

filtered within the individual alpha band of each subject. For each

subject, distributed source imaging is performed using the DBA

model and the three inverse operators. Student t-tests are used to

detect modulations of source amplitudes by contrasting the eyes

opened vs. eyes closed conditions. All of the source maps are

registered and normalized to the MNI reference template for

group statistical analysis. Group average source maps are then

thresholded at p,0.05 and FDR corrected [51,52].

Results

3.1 Sensitivity and Simulated Fields
Figure 2B shows the normalized grand averaged MEG

sensitivity distributions (and fitted Gaussian distributions) that

correspond to the normalized average RMS contribution to

sensors for neocortex (gray), hippocampus (red), amygdala (green)

and thalamus (light blue). The corresponding sensitivity maps for

the hippocampus surface and the amygdala volume are also

displayed. Figure 2A illustrates the normalized histogram (and

fitted Gaussian distributions) for simulated fields, using patches of

3 cm2 that belong to the above-mentioned structures. As expected,

the sensitivity to subcortical sources is more than ten times lower

than that in the neocortex. However, considering an appropriate

electrophysiological and anatomical model, the simulated fields

are strong enough to overlap parts of the neocortical field’s

distribution, except for the thalamus, which produces lower fields.

We can see at the subcortical structures level (right blue rectangle)

that there is a decreasing gradient of the sensitivity, starting from

the parts of the structure that are closer to the sensors. However,

the same pattern does not occur for the hippocampus tail. Note

that the color map is scaled to the subcortical sensitivity.

Furthermore, the sensitivity is lower on the hippocampus edges

because they are mainly composed of radial sources. At the

cortical scale (not shown in Figure 2), the sensitivity drops off

rapidly with the distance to the sensors [2], with a lower sensitivity

appearing on the gyri’s crests. Posterior sources have a stronger

sensitivity because of the usual positions of the subjects within the

MEG helmet (head resting on the back of the helmet). Note that

the x-axis of the right graphic is logarithmic for a better evaluation

of the distributions of the subcortical sources.

Subcortical Source Localization Using DBA Model
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3.2 Point Spread and Cross-talk Functions
Figure 3 displays, on the left side, the PSF maps of three

hippocampal sources (blue dots) in the case of the wMNE

method. This PSF and CTF study is performed for the first

subject and thresholded at 50% of the maximal value. The

three sources are chosen in the head, the body and the tail. We

can see the PSF moving according to this location. In the case

of the head source, mainly the head but not the edges are

affected. The distortion also extends into the nearest subcortical

and neocortical regions. Strong PSF values are found in the

amygdala, which is the closest region to this source, and in the

anterior temporal lobe. In the two other cases, PSF values are

lower in the amygdala and remain distributed in the nearest

regions. On the right side, the resulting average PSF map of the

overall hippocampal sources shows that the highest values are

located in the medial and lateral temporal lobe, which are the

closest regions of the hippocampus. More precisely, on the

medial view, the highest values are found in the parahippo-

campal and entorhinal cortices. On the lateral view, the highest

values are located in the temporal pole, especially on the crests

of the superior and inferior temporal sulci. Among the seven

subcortical structures that compose the model, the distribution

extends into the thalamus and the amygdala, specifically into

the regions that are closest to the hippocampus (see the zoom in

the blue rectangle). Finally, hippocampal edges that are mainly

composed of radial sources have no point spread.

Figure 4 aims to compare the average PSF and the average

CTF maps (as presented in Figure 3) of the three inverse operators.

Averaging is performed over all of the hippocampus sources; thus,

the wMNE PSF map is identical to the map of Figure 3. The PSF

and CTF maps are shown, respectively, on the 1st and 2nd lines.

wMNE, sLORETA and dSPM are shown, respectively, on the 1st,

2nd and 3rd columns. The sLORETA PSF map shows a significant

decrease in PSF in the neocortex but still shows significant values

in the parahippocampal area. However, a PSF increase in the

deeper regions is shown in the thalamus and the nearest amygdala

part. dSPM PSF are small in the neocortex and decrease in the

hippocampus and other subcortical structures. From the CTF

point of view, the maps of the three methods are identical. This

result is in agreement with the theory. Indeed, noise normalization

is performed on the columns of the resolution matrix and, thus,

does not modify the CTF [22]. The strongest values of the CTF

maps are located in the lateral temporal lobe, especially in the

superior temporal sulcus. There are no significant regional

differences between source locations in the hippocampus con-

cerning the CTF distribution.

3.3 Monte Carlo Simulations
Figure 5A shows the DLEs maps averaged across the seven

subjects for Dt = 60 ms, which correspond to single patch

activations of 3 cm2 (or 3 cm3) for each surface (or volume)

structure, respectively. Only the hippocampus, the amygdala and

the thalamus results are presented here. DLEg and DLEm are

shown, respectively, on the 1st and 2nd lines. wMNE, sLORETA

and dSPM are shown, respectively, on the 1st, 2nd and 3rd

columns. The DLEg maps are heterogeneous along the hippo-

campus shape. The spatial distribution has an increasing gradient

from the hippocampus’s head to the tail. As shown, the DLEg in

the tail is more than double that in the head. DLEg maps have

similar patterns for the three methods, with the strongest values for

sLORETA at the edges and the tail. DLEg for wMNE give the

best results, with errors below 0.8 cm in the majority of the head

and the body. Conversely, DLEm shows a strong mis-localization

of the maximum for wMNE. The better DLEm estimate is

obtained for dSPM and sLORETA, where the error in the tail is

the smallest. However, their spatial patterns are not similar.

Indeed, dSPM has less DLEm in the tail and edges and gives a

homogeneous DLEm map. In contrast, sLORETA, which also

shows lower DLEm in the head and the tail, shows a decreasing

error in the body with respect to the source depth. DLEs for

amygdala are homogeneously distributed, with values close to the

DLEs values for the hippocampus’s head. The noise normalization

impact of sLORETA and dSPM are largely the opposite.

sLORETA has a lower DLEm in the deeper central regions, such

as the thalamus, with errors under 0.5 cm, whereas dSPM has a

very good correction over the hippocampus and strong errors in

the thalamus, where DLEm ranges from 1 to 2 cm. Figure 5B

shows histograms of DLEg distributions for each method and for

the five sizes of patches. These distributions are drawn in the case

of the hippocampus. The distribution is similar for the three

Figure 2. Simulated magnetic fields and sensitivity distributions. A. Plot of normalized distributions (with fitted Gaussian distributions) of
the simulated fields for patches of 3 cm2 that belong to the four structures. These distributions account for the DMD of each structure, the geometry
of the patches and the gain matrix of the sources that belong to the patches. B. Normalized averaged sensitivity distributions (normalized average
root mean-squared (RMS) contribution to sensors) over 7 subjects. The corresponding maps are displayed for the hippocampus and the amygdala.
Note that the x-axis is logarithmic and that the colormap is scaled at the subcortical level to better evaluate the distributions of the subcortical
sources. These distributions are calculated using the gain vector at each source location.
doi:10.1371/journal.pone.0059856.g002
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methods, with a better distribution of small errors (under 1 cm) for

wMNE. Interestingly, activations of large patches give stronger

DLEg, whereas large patches of 4 and 5 cm2 produce the strongest

currents (see Table 1).

Figure 6 shows the estimated maps for two simultaneous

activations; one patch in the hippocampus and one neocortical

patch (see their localization on Figure 1) for subject one by

varying Dt and, thus, the ratio between the amplitude of the

neocortical activation and the hippocampal activation. A dot

colored in blue is displayed on the maps at the local estimated

maximum in a sphere of 4 cm radius. This radius is, on

average, half the distance between the sources of the

hippocampus patch and the sources of the neocortical patch.

The size of the activated patches is 3 cm2 for both the

neocortex and the hippocampus. Four neocortical/subcortical

ratios are shown; Rc equals 25, 50, 75 and 100%, respectively,

from the 1st to the 4th line. Additionally, the right bottom side

of each map displays the histogram of the relative proportion (in

percentage) of the estimated activations in the hippocampus, the

amygdala and the thalamus, to better quantify the well and

badly localized activities by each method. When the hippocam-

pal activity is stronger than the neocortex (Rc = 25%), hippo-

campal generators are well estimated by the three methods;

there is a better spatial extent around the true patch for

wMNE. However, wMNE shows some mislocalization in the

lateral temporal cortex near the regions that have stronger

cross-talk (see Figure 4), whereas the noise normalizations of

both sLORETA and dSPM show less bias on the lateral

temporal cortex but still significant values in the insula. Only

dSPM maintains the maximum well localized in the hippocam-

pus and has the highest proportion of activation in the

hippocampus compared to the amygdala and thalamus. As

expected, a higher increase in Rc causes the worsening of

hippocampal localization for all of the methods. wMNE has

good detection, which is up to Rc = 50% with no estimated

sources in the thalamus. Conversely, for up to Rc = 100%,

sLORETA and dSPM have good estimation; however, they

create local maxima in the thalamus. This effect is stronger for

sLORETA than for dSPM. The reconstructed activities in the

visual neocortical patch are well defined for all three methods,

Figure 3. Point spread functions of hippocampus sources using wMNE. The left side displays the PSF maps of three point sources (blue dots)
using wMNE. Each PSF map is normalized (i.e., normalization of the given point source’s column of the resolution matrix) to better visualize each
spatial distribution. By averaging the PSF maps over all of the hippocampus and after normalization, we obtain the PSF maps that are displayed on
the right side. Note that the colorbar does not start from zero and that the structure sizes are modified to make the sources more visible. See
Figure 1B for a medial view of the relative position of the structures.
doi:10.1371/journal.pone.0059856.g003
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but are not quantified here because they serve only as

additional noise with variable amplitudes.

3.5 MEG Experiment
The proposed experimental validation, based on resting state

MEG data, allows us to detect thalamo-cortical modulations by

contrasting eyes opened and eyes closed (EO/EC) conditions. The

left upper white rectangle on Figure 7 displays the averaged

spectral power densities (PSD) over all sensors and over the seven

subjects. The power is the strongest during the eyes-closed

condition (blue line) approximately 10 Hz. The figure also shows

the EO/EC contrast from estimated sources in this alpha

frequency band using wMNE. DBA detects strong bilateral source

amplitude modulations in the posterior neocortical regions and in

the thalami. For ease of reading, the right neocortex and the

thalamic (light blue) envelopes are superimposed on the MNI T1

MRI. Thalamic sources passing the threshold are displayed as blue

spheres, the sizes of which are proportional to the estimated

amplitudes. The results obtained with the two other methods gave

the same results.

Discussion

This study aims to assess the source localization accuracy and to

compare the characteristic of three inverse operators in the specific

case of subcortical generators. This assessment was performed

using the five steps that are discussed in detail in the following.

Using our realistic anatomical and electrophysiological model

(DBA), we first show that one can expect magnetic fields that are

detectable at the sensor level, especially for the hippocampus and

amygdala. As shown on Figure 2A, this is explained by a

Figure 4. Average PSF and CTF maps over all hippocampus sources. Average PSF (1st line) and CTF (2nd line) maps are shown for the three
inverse kernels: wMNE, sLORETA and dSPM. Note that the colorbar does not start from zero and that the structure sizes are modified to make the
sources more visible. See Figure 1B for a medial view of the relative position of the structures.
doi:10.1371/journal.pone.0059856.g004
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compensation of the depth’s sources (whereas they have ten times

less MEG sensitivity than the neocortex; see Figure 2B) by a

realistic estimation of their neural currents, indeed, their current

densities compensate the distance to the sensors even in the case of

the amygdala, which have randomly oriented distributed dipoles.

The thalamus has much lower simulated fields than other

structures. Two reasons explain this result. The thalamus is

considered in the DBA model to have a neural density that is ten

times lower on average than the density in the neocortex and, thus,

will produce smaller neural currents. Second, the thalamus has no

preferential neural organization and is mainly composed of stellate

cells; thus, we should expect more current cancellation within the

structure. Consequently, thalamic activation could be detectable

mainly by manipulating experimental paradigms to increase the

signal to noise ratio (see the experimental validation in Figure 7) or

by using an indirect measure, using hidden sources in Dynamical

Figure 5. Monte Carlo Simulations of single activations. A. DLEg (1st line) maps and DLEm (2nd line) for single activations over the
hippocampus, amygdala and thalamic sources and across the seven subjects. The results are shown for the three inverse methods, wMNE (1st

column), sLORETA (2nd column) and dSPM (3rd column). Note that the colorbar does not start from zero and that the structures sizes are modified to
make the sources more visible. See Figure 1B for a medial view of the relative position of the structures. B. Histograms of DLEg (x-axis in cm)
distributions for all sizes of hippocampus patches (1 to 5 cm2). Note that the y-axes are normalized to be comparable.
doi:10.1371/journal.pone.0059856.g005
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Causal Modeling [53]. Nevertheless, the increase in sensor

numbers combining numerous gradiometers and magnetometers

from the newest MEG systems accompanied by good hardware

and software noise subtraction techniques could allow us to expect

greater sensitivity to subcortical generators. Indeed, magnetome-

ters have a higher sensitivity to deeper sources and, thus, could

Figure 6. Two estimated maps of activations. Estimated normalized current maps for the three methods (columns). The actual patches are
defined as shown in Figure 1, with one patch in the hippocampus and one patch in the neocortex. The results are given for the case of subject one;
the values of Dt and the ratio (Rc) are varied, where (Rc) is the ratio between the neocortical activation and the hippocampal activation. A blue dot is
displayed on the maps at the local estimated maximum in a sphere of 4 cm radius. The right bottom side of each map shows the histogram of the
relative proportion (in percentage) of the estimated activations in the Hippocampus (H), the amygdala (A) and the thalamus (T). Note that the
colorbar does not start from zero and that the structure sizes are modified to make the sources more visible. See Figure 1B for a medial view of the
relative position of the structures.
doi:10.1371/journal.pone.0059856.g006
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increase MEG sensitivity to deeper structures [54]. Concerning

the special case of the hippocampus, the model used for now is a

first approximation; we assume that pyramidal neurons composing

the 3-layered archeo-cortex (Ammon’s horn, i.e., CA1 to CA4)

[39] can be represented by the hippocampal external tessellation.

Indeed, using 3T T1 MRI, we have not accessed the internal

bilaminar structure and, thus, we cannot fully realistically estimate

the cancellations between sub-territories or inside one sub-territory

by increasing the size of the patch. Therefore, we decided to use

the external envelope as a model and to consider that the main

hippocampal generators are coming from the synchronous

activation of Ammon’s horn macro-hippocampal column of

pyramidal neurons. We hope, as a result of the high field 7 T

MRI [55,56], to improve this model and to evaluate the impact of

the complex bilaminar geometry where the dentate gyrus is

entangled with Ammon’s horn.

PSF and CTF results allow us to better understand how the

three inverse operators manage the reconstruction of subcortical

sources. PSF and CTF maps for hippocampus sources (see Figure 3

and Figure 4) give us a good overview of the regions from where

(CTF) and to where (PSF) induce distortions, given the inverse

operator. Considering a specific hippocampal point source using

wMNE (see Figure 3), a regional map appears and moves in the

temporal lobe according to its position. To extract a more global

view of the most ambiguous regions at the whole hippocampal

scale, Figure 4 shows regions that are obtained by averaging the

PSF and CTF maps over all of the hippocampal point sources.

These regions correspond to the nearest part of other subcortical

structures and the nearest neocortical territories, the parahippo-

campal regions and the crests of the superior and inferior temporal

sulci. In the two latter cases, the distortions could be the result of

dipole orientations, which are very similar to the dipole

Figure 7. Thalamo-cortical modulations at rest. Thalamo-cortical modulations contrasting resting state eyes opened/closed conditions with 7
subjects using wMNE. The upper left rectangle displays the averaged power spectral density (PSD) of opened (red)/closed (blue) MEG data, with a
vertical band (gray area) in the alpha frequencies. The right neocortex and the thalamic (light blue) envelopes are superimposed on the MNI T1 MRI.
The overlaid neocortical map shows t values with a threshold at p,0.05, which are FDR corrected. Thalamic sources that pass the threshold are
displayed with blue spheres, where the sizes are proportional to the estimated amplitudes.
doi:10.1371/journal.pone.0059856.g007
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orientations in most of the hippocampus. In contrast to wMNE,

which has a high PSF on the lateral temporal lobe, the two other

operators minimize the PSF distortion on the cortex. This

correction is performed by construction and, in the case of

sLORETA, the normalization appears to overcompensate for the

correction in deeper sources with a strong biased spatial extent in

the thalamus. Finally, cross-talk is found to be equal across the

three methods. Indeed, the noise normalizations of sLORETA

and dSPM modify only the point-spread functions. Cross-talk is

maximal mainly for sources placed on the wall of the superior

temporal sulcus. Accounting for this cross-talk is important in the

interpretation of the estimated current maps because these regions

will influence mostly the reconstruction of the hippocampal

sources.

The error maps resulting from Monte Carlo simulations with

the activations of single patches, i.e., Dt = 60 ms (see Figure 5A),

are not homogeneously distributed along a given structure,

especially for the hippocampus. These maps give us more spatial

knowledge about the sub-territories that have the strongest errors,

as is the case for the hippocampal tail and edges. Consequently,

the results draw confidence maps for future subcortical source

estimations. Globally, DLEg shows better results using wMNE,

with errors lower than 0.8 cm in the majority of the hippocampus

and the amygdala. However, we can see on the hippocampus

DLEm maps that the noise normalization impact of dSPM and

sLORETA is directly visible compared to wMNE. A significant

improvement of both dSPM and sLORETA compared to wMNE

is that because of their respective normalizations, they keep DLEs

ranges in the interval from 0.5 to 2 cm. Thus, the estimated

maximum is still accurately localized with these two methods,

whereas wMNE always mislocalized it. In contrast, sSPM and

sLORETA show bias induced by the noise normalization. dSPM

has an increase in DLEm in the deepest regions, such as the

thalamus, and sLORETA has an increase of DLEm in the

amygdala and the hippocampus body. Additionally, we can note

that sLORETA should have zero localization errors [21] because

this result was recently shown [22] in the case of a point source

study using DLEm. However, this result is not the case in our

DLEm maps of single patch activations where Monte Carlo

simulations are achieved using additive noise composed of real

background activity and by using patches of activations that

account for precise cortical/subcortical local morphology. We

chose here to compute the head model using an overlapping

spheres method, which is not optimal, especially in the case of

deep sources. However, in a first approach, we wanted to assess

our DBA model with the most popular method that is used

routinely with our MEG data. In a second step, we will study in

more detail the impact of the forward problem methods, using a

more realistic model such as the BEM. Concerning the activations

of single patches and by looking at the histograms of DLEg (see

Figure 5B), we can see a difference between small and large sizes of

patches. Interestingly, activations of large patches give stronger

DLEg. This result is paradoxical in the sense that the largest sizes

of patches generate larger currents. However, because our model

accounts for the geometry, the generated fields are more realistic.

This relationship could be explained by the cancellation of

currents that have opposite orientations. Similarly, Chupin et al.

[57] show that magnetic fields generated by increasing sizes of

patches are not linear and reach saturation with a patch size that is

larger than 2 cm2. The closed shape and the small size of the

hippocampus explain this phenomenon. This aspect is one more

reason to better quantify, in the future, the resulting currents of

hippocampus sub-territories using high field MRI.

Concerning two simultaneous activations, i.e., Dt ,60 ms, the

results show that the three methods could indeed localize

hippocampal activation in the presence of a neocortical activation

that has no more than 50% of the hippocampal amplitude. The

simulated patch is in the hippocampal head, which is an area

adjacent to the amygdala (see Figure 1B); this placement makes it

very difficult to differentiate between these two parts. For this

reason, the histograms show similar estimated currents in both the

amygdala and the hippocampus. Moreover, wMNE has not

completely compensated for the bias toward superficial sources

and, thus, is more vulnerable to a region that has strong cross-talk.

With a lower ratio, wMNE can no longer differentiate efficiently

the subcortical generators from the neocortical generator. For a

higher neocortical ratio, sLORETA and dSPM reconstruct

hippocampal generators. However, these two methods produce

local maxima in the thalamus, which could be mis-interpreted as

another simultaneous activation. These false positives are the

consequence of a higher spatial dispersion of the two noise-

normalized methods compared to wMNE, as shown by the DLEg

results. When no strong assumptions are known, ambiguous

configurations of neural generators appear with no possibility of

determining which ones are real or not real. Consequently,

depending on the experimenter’s questions, a trade-off should be

made between using wMNE, which is more sensitive to cross-talk

from superficial sources and does not reach a high level of

detection, and using noise-normalized methods, which create

deeper ghost sources. Moreover, similar to previous studies

[6,14,15], by increasing the number of trials, improving the

experimental paradigm or increasing the magnitude of neural

currents, the localization accuracy will increase. The scope of our

simulations is intrinsically limited by the chosen parameters, and

several points should be discussed in more detail.

First, DMD that defines the activation amplitude plays a crucial

role in the localization accuracy [58]. Choosing small DMDs most

likely increases the DLEs. However, we decided to use the smallest

DMDs given in the literature [13], and thus, our results show the

worst case scenario. The hippocampal DMD might be increased

to 0.8 nAm=mm2, as shown in [59], instead of 0.4 nAm=mm2,

which was used in our simulations. In the same way, thalamic

contributions are modeled with low DMD (ten times lower than

the neocortex), which is an average approximation, and randomly

oriented dipoles, which is a rough approximation of the

cancellations occurring in this structure. Further studies are

required to better estimate precisely the DMD and to define new

ways to better approximate the neural thalamic architecture.

Second, the chosen SNR placed these simulations in the case of

classical evoked field data. However, it could be interesting, as

shown in the simulations of [15], to quantify the SNR threshold at

which the method is no longer able to detect the simulated

activities or how the DBA addresses ongoing oscillating data.

Moreover, it could be interesting to define a lower SNR for

subcortical sources than for the neocortex. Third, the impact of a

higher patch size or a higher number of cortical sources [60] must

be assessed in the subcortical case. Testing other imaging models

could be a good starting point for further evaluations. Indeed,

several studies developed inverse methods that combined para-

metric and distributed approaches based on multipole models

[28,61] and/or a multiresolution approach [62,63] that better

estimates spatial extension. These approaches could be adapted to

volume-based structures such as the amygdala or thalamus (mainly

composed of non-oriented cells). Finally, other parameters, such as

the number of subjects or experimental paradigms, could also be

evaluated.
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In our experimental protocol, a large amount of data are

recorded to contrast Eyes opened/Eyes closed conditions, in which

cortico-thalamic modulations are strong enough to be detected.

These results encourage us in our ability to detect subcortical

activity, especially for regions that are assumed to contribute very

weakly to MEG. However, the thalamic activations are found but

are not accurate in the posterior parts of the thalamus, which is

expected because of previous studies [47]. This result showed the

limited spatial resolution that is sustainable by MEG in these very

deep structures.
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