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Abstract

The success of our political institutions, environmental stewardship and evolutionary fitness all hinge on our ability to
prioritize collective-interest over self-interest. Despite considerable interest in the neuro-cognitive processes that underlie
group cooperation, the evidence to date is inconsistent. Several papers support models of prosocial restraint, while more re-
cent work supports models of prosocial intuition. We evaluate these competing models using a sample of lesion patients with
damage to brain regions previously implicated in intuition and deliberation. Compared to matched control participants
(brain damaged and healthy controls), we found that patients with dorsolateral prefrontal cortex (dIPFC) damage were less
likely to cooperate in a modified public goods game, whereas patients with ventromedial prefrontal cortex (vmPFC) damage
were more likely to cooperate. In contrast, we observed no association between cooperation and amygdala damage relative
to controls. These findings suggest that the dIPFC, rather than the vimPFC or amygdala, plays a necessary role in group-
based cooperation. These findings suggest cooperation does not solely rely on intuitive processes. Implications for models

of group cooperation are discussed.
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Introduction

Prioritizing collective-interest over self-interest is essential for
adaptive group living and is critical for resolving numerous so-
cial problems, including voter turnout (Ostrom, 1990), climate
change (Jacquet et al, 2013), scientific integrity (Everett and
Earp, 2015) and evolutionary fitness (Axelrod and Hamilton,
1981). For centuries, philosophers have debated whether proso-
cial tendencies are rooted in institutions that regulate our self-
ish impulses (Hobbes, 1650) or emerge through natural
intuitions, only to be suppressed by civilized and calculated
self-interest (Rousseau, 1754). This debate persists to this day.

This debate is often framed through the lens of dual-process
theories that carve the mind into two core systems (Kahneman,
2011): intuition—immediate, reflexive mental processes—and de-
liberation—delayed, reflective processing. Some argue, for in-
stance, that humans’ unique capacity for self-reflection (i.e.
compared to other primates) provides a critical avenue to pro-
mote prosocial behavior (Stevens and Hauser, 2004). There is
additional evidence that depleting cognitive resources impairs
helping behavior (DeWall et al., 2008; Capraro and Cococcioni,
2016) and amplifies dishonesty (Mead et al., 2009), supporting
models of prosocial restraint, whereby cooperation stems from
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Fig. 1. Lesion overlap of patients. (A) Patients with vmPFC damage (n=7) are shown in axial slices Z =[-24, —19, —14, -9, —4, 1, 6]. (B) Patients with dIPFC damage (n=7)
are shown in sagittal slices X = [64, 59, 54, 49, 44, 39, 34]. Both images include patients with combined vmPFC and dIPFC damage (n = 6). Patients with right hemisphere
damage (n=2) were flipped to generate the overlap lesion reconstruction. (C) ATL patients with amygdala damage (n=14) are shown in sagittal slices X =[44, 39, 34, 29,
24,19, 14]. For symmetric visualization purposes, lateralized damage has been reflected onto both hemispheres.

deliberate restraint of our selfish impulses (Martinsson et al.,
2012; Achtziger et al., 2016; Lohse, 2016).

These models have been recently challenged by opposing
models of prosocial intuition (Zaki and Mitchell, 2013), whereby
intuitive cooperation is compromised by calculated self-interest
(Rand et al., 2014). Research supporting these models often in-
volves experimental economic games that use real money to pit
self-interest against collective-interest. In the public goods
game (PGG), for instance, the group benefits when everyone
contributes their money, even though it is in each individual’s
self-interest to keep their money (i.e. free-riding). Observations
that people are relatively slower to free-ride in these games was
initially interpreted as evidence for intuitive cooperation (Rand
et al., 2012). Follow-up investigations however suggest these
slower reaction times more likely index decision conflict, rather
than deliberation, per se (Evans et al., 2015; Krajbich et al., 2015).
In addition, some recent meta-analyses and preregistered stud-
ies indicate that experimentally inducing intuition (e.g. manipu-
lating time-pressure) tends to boost group contributions in
these games (Rand, 2016; Everett et al., 2017), whereas others
have reported inconclusive or null results (Tinghog et al., 2013;
Bouwmeester et al., 2017). Given this mixed evidence with be-
havioral measurements and manipulations, we leverage neuro-
psychological samples to help evaluate these conflicting
models of prosocial restraint and prosocial intuition.

Despite extensive research devoted to promoting group-
based cooperation (Van Lange, 1999), we still know relatively lit-
tle about the neuro-cognitive processes that guide this adaptive
behavior. Early work in social neuroscience attempted to map
intuition and deliberation onto specific brain systems
(Lieberman, 2007; see also Cunningham et al., 2007). Evidence
from functional magnetic resonance imaging (fMRI) suggests
the ventromedial prefrontal cortex (vmPFC) is implicated in im-
mediate, automatic evaluations (Satpute and Lieberman, 2006;
Lebreton et al., 2009), whereas the dorsolateral prefrontal cortex
(dIPFC) is associated with delayed, controlled deliberation and
self-restraint (Hare et al., 2009; Hutcherson et al., 2012). In add-
ition, patients with vmPFC damage show blunted affective pro-
cessing (Bechara et al., 1996; but see Dunn et al,, 2006 for a

review of alternate conclusions), while dIPFC damage appears
to impair deliberative processes, such as working memory, rea-
soning and self-regulation (Barbey et al., 2013; Zhu et al., 2014).
Evidence from fMRI, brain lesions and single-cell recordings fur-
ther implicates subcortical structures like the amygdala in
rapid, affective processing that precedes evaluations in the
vmPFC (Phelps and LeDoux, 2005).

Thus, examining cooperative behavior among patients with
damage to their dIPFC, vimPFC or amygdala can help arbitrate
between prosocial restraint vs intuition models. Unlike the in-
herent correlational nature of fMRI, lesion approaches can ef-
fectively probe the causal contribution of these regions (Fellows
et al., 2005). Prior studies leveraging this method have suggested
causal links between dIPFC damage and honesty (Zhu et al.,
2014), vmPFC damage and fairness (Koenigs and Tranel, 2007),
as well as amygdala damage and trust (Koscik and Tranel, 2011).
While these studies provide valuable insight into dyadic social
decision-making, no study (to our knowledge) has examined
how damage to these regions impacts cooperation in group con-
texts. We measure group cooperation using a PGG, pitting the
prosocial intuition hypothesis—whereby patients with vmPFC or
amygdala damage should contribute to the public goods less
frequently than controls, against the prosocial restraint hypoth-
esis—whereby patients with dIPFC damage should contribute
to the public good less frequently. PGGs measure group cooper-
ation by allowing players to make fiscal contributions to their
group that are then multiplied and distributed equally (i.e. even
to players who keep all their money for themselves). Even
though it is in the group’s collective-interest if all players con-
tribute, it is in each individual’s self-interest to contribute noth-
ing and reap the benefits of other’s generosity (i.e. free-riding).

Materials and methods
Participants
We report how we determined our sample size, all data exclu-

sions, all manipulations and all measures in the study. Thirty-
seven patients (Mage =40.7 years, s.d.age = 11.5 years) with brain
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lesions due to stroke, tumor, head injury and surgical resection
of tumor, epileptogenic tissue, abscesses and cortical malforma-
tions were recruited from the New York University Patient
Registry for the Study of Perception, Emotion and Cognition.
Using lesion masks created by a clinical neuropsychologist prior
to data collection (Supplementary Material Section S1), patients
were classified into different groups reflecting the primary loca-
tion of resection or tissue damage. This procedure resulted in 10
patients with frontal lobe damage extending into vmPFC or
dIPFC, 16 patients with anterior temporal lobe (ATL) resections
(involving the amygdala and hippocampus), and 11 brain-
damaged comparison (BDC) patients with mixed lobar (frontal,
parietal or temporal) lesions different than those resected/dam-
aged in the frontal and ATL groups.

Among the 10 frontal patients, 2 had primarily vmPFC dam-
age and 2 had primarily dIPFC damage. The remaining six fron-
tal patients had substantive damage to both vimPFC and dIPFC
and could not be cleanly categorized into either group (see
Supplementary  Table S1). Twenty-nine age-matched
(M=36.1years, s.d.=10.9years) healthy comparison partici-
pants (HC) with no brain damage were recruited from the NYC
community. Our target sample size for patients was to recruit
all eligible volunteers within the registry. Given the limited abil-
ity to recruit eligible frontal patients (n=10), we intentionally
oversampled healthy controls by a factor of three (n ~ 30). All
participants gave written informed consent. Across all groups,
seven participants failed to meet our inclusion criteria (see
Supplementary Material Section S2), leaving a final sample of 26
HC participants, 8 frontal patients (1 vmPFC, 1 dIPFC, 6 mixed),
14 Amygdala patients and 11 BDC patients (see Figure 1). Since
most frontal patients had a mixture of vmPFC and dIPFC dam-
age, our primary analysis treated degree of damage to each sub-
region as a continuous regressor (see Supplementary Material
Section S4).

Neuroanatomical analysis

Each patient’s lesion was manually reconstructed by a clinical
neuropsychologist using MRIcron and FSL View software
(Supplementary Material Section S1). ROIs were constructed
with MarsBar toolbox by combining corresponding structures
from the Harvard-Oxford Maximum Probability Atlases
(Supplementary Material Section S1).

Stimuli and task

Participants played 20 one-shot PGGs. In each PGG, participants
were given $8.00 that they could either keep for themselves or
contribute to benefit the group (see Figure 2). Players interacted
in groups of four; all contributions were doubled and split
equally amongst all group members. There was no time limit
for making decisions and reaction times were recorded. After
each choice, participants were shown feedback about the other
players’ decisions and resulting payouts. To ensure all payouts
were based on real economic interactions with other humans
without deception, other players’ decisions were based on real
responses from publicly available data. These decisions were
predetermined and presented in randomized order. On average,
the other players gave 60% of the time with the following distri-
bution: 0 givers (1 trial), 1 giver (6 trials), 2 givers (9 trials) and 3
givers (4 trials). Participants were informed that their decisions
were anonymously recorded and could be used to influence the
payment of future participants.
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After reading through instructions with visualized examples
of gameplay, participants completed a brief comprehension
quiz. Participants were unable to begin the task until they cor-
rectly answered all quiz questions. The experimenter then
walked through two example rounds illustrating how, no mat-
ter what the other players decided, it was always in the partici-
pant’s self-interest to keep their money and always in the
group’s collective-interest to give their money. During debrief-
ing, participants were again assessed as to (1) whether they
understood the task and (2) whether they believed their deci-
sions could actually influence others. Participants who misun-
derstood instructions or expressed suspicion about the
prosocial nature of the task were excluded (see Supplementary
Material Section S2). This intensive comprehension assessment
helped alleviate concerns that cooperative behavior stemmed
from misunderstanding or confusion (Burton-Chellew et al,,
2016). Participants received $10 for participating, and could earn
up to $20 more based on one randomly selected trial. The pro-
cedure typically lasted 15min but was nested within a longer,
90-min protocol with other measures which are being analyzed
for a separate report (see Supplementary Section S3 for full
protocol).

Data availability

All materials, analysis scripts and summary data will be made
available to other scientists upon publication on the Open
Science Framework (https://osf.io/r8gwx/).

Analysis strategy

Our primary analysis aimed to test the relationship between
group cooperation and damage to vmPFC, dIPFC and amygdala.
Cooperation was operationalized as a trial-by-trial binary out-
come (0=keep, 1=give). Given the multilevel structure of the
data, we used generalized estimating equations (GEE) to fit a
multiple logistic regression with exchangeable correlation
matrices clustered on each patient." Six (out of the eight) frontal
patients had diffuse damage overlapping both vmPFC and dIPFC
(r(6) =0.26, 95% bootstrapped CI [-0.23, 0.87], P=0.536). To help
assess the independent effects of each brain region, we simul-
taneously included vmPFC, dIPFC and amygdala damage as pre-
dictors of each participant’s decision to give. This ROI analysis
converged with the traditional group analysis.

Results

Behavioral results

Participants chose to cooperate on 38.5% of trials (s.d. =48.6%),
indicating they were more inclined to free-ride than give their
money to the group. Participants spent an average of 1.85s
deciding (s.d.=1.87). Although they were faster to keep
(M=1.75s, s.d.=1.48) than to give (M=2.02s, s.d.=2.35), this
difference was not significant (P>0.13). Finally, although co-
operation tended to decrease over the course of the 20 trials
(see Supplementary Figure S1), this trend was not significant,?
%*(1) =2.05, P=0.153. Thus, we find insufficient evidence that
decisions in our task change over time or differ in response
time.

Primary analysis

The prosocial intuition hypothesis predicts reduced cooperation
among vmPFC or amygdala patients, whereas the prosocial
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Fig. 2. The PGG. Each game began with a prompt indicating that a new round was about to begin. Participants decided whether to keep or give $8.00. Participants then
saw three stages of guided feedback: (1) each player’s contribution to the public good, (2) the total contribution multiplied by two, then (3) each player’s resulting pay-
out. Each feedback stage was presented for 5 s. The next trial began immediately afterwards, for a total of 20 games. Each game consisted of a separate one-shot inter-
action with three new players. In the example above, the participant decides to keep and then learns, in the feedback stage, that the other three players chose to give.
Decisions to keep and give were depicted in yellow and blue, respectively. Not shown to scale.

restraint hypothesis predicts reduced cooperation among dIPFC
patients. In contrast to the prosocial intuition hypothesis,
vmPFC damage was associated with heightened cooperation
[odds ratio (OR)=1.55, 95% CI [1.06, 2.26], (1) =5.09, P =0.024],
such that the odds of cooperating were 1.55 times larger for
each additional 10% of vmPFC damage. Consistent with the pro-
social restraint hypothesis, dIPFC damage was associated with
reduced cooperation (OR=0.49, 95% CI [0.27, 0.90], 7*(1) =5.31,
P=0.021), such that the odds of free-riding were 2.04 times
larger for each additional 10% of dIPFC damage (Figure 3; see
Supplementary Material Section S3 for analysis details). The de-
gree of amygdala damage was not significantly associated with
cooperative behavior (OR=0.82, 95% CI [0.62, 1.06], P=0.133).
The overall results were consistent with models of prosocial
restraint.

Secondary analyses

In addition to the ROI analysis using continuous regressors, we
also tested whether overall cooperation rates differed between
lesion groups (Figure 4; see Supplementary Material Section S5
for analysis details). The amygdala group (29.6% overall

cooperation) cooperated at similar rates compared to the HC
(41.0%) and BDC groups (43.8%), with no statistical difference be-
tween the HC and BDC participants (all Ps >0.15). In contrast to
the prosocial intuition hypothesis, the vmPFC patient cooper-
ated more often (90%) than both the HC groups [OR=13,
%*(1) =104.07, P<0.001] and BDC groups [OR=10, 4*(1)=38.57,
P <0.001]. Moreover, a bootstrapped 95% confidence interval
indicated a lower bound of 15.36% cooperation among the
amygdala group, suggesting neither amygdala nor vmPFC ap-
pear necessary for cooperation. Consistent with the prosocial
restraint hypothesis, the patient with isolated dIPFC damage
did not cooperate (0%) across the entire task, indicating the
dIPFC may be necessary for cooperation. Although we are reluc-
tant to draw general conclusions about task-specific effects of
damage from single patients, this overall pattern of results
(along with the primary ROI analysis) is consistent with the pro-
social restraint hypothesis. A secondary analysis using voxel-
based lesion symptom mapping produced convergent results
consistent with models of prosocial restraint (Supplementary
Material Section S6 and Supplementary Figure S4).

Several follow-up analyses were conducted in order to rule
out alternative explanations. There is extensive evidence, for
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B Cooperation as a Function of ROl Damage
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Fig. 3. Cooperation as a function of ROI damage. (A) vmPFC (red) and dIPFC (blue) ROIs are pictured at the following slices: Sagittal X =4 (top), Coronal Y =40 (middle),

Sagittal X =44 (bottom). (B) Predicted probabilities of giving are plotted against damage within each RO, after adjusting for external ROI damage. Lines are interpolated
through the range of the observed levels of predictors. Bands indicate 95% confidence intervals.
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Fig. 4. Frequency of giving between isolated lesion groups. Proportions of ‘give’ decisions are shown for each participant group. Across all twenty trials, no differences
were observed between healthy comparison (light grey), BDC (dark grey), and amygdala patients (green; all Ps >0.26). However, all three comparison groups differed sig-
nificantly from the vmPFC and dIPFC patients. Results show that dIPFC damage is associated with reduced cooperation, and vmPFC damage is associated with greater
cooperation. Violin plot width represents the density of the distribution for each frequency of giving (e.g. healthy comparison participants give 41% of the time more
often than 100% of the time). Plot height is constrained to the range of the data for each group (e.g. amygdala patients never gave more than 90% of the time). Circles re-
flect mean for each lesion group. Vertical lines indicate =1 SEM. Since the isolated vmPFC and dIPFC groups each consist of one patient, horizontal lines at the mean
are used instead of error bars.

given evidence linking increased self-interest with slower deci-
sions (Rand et al., 2012) and experience (Rand et al., 2014), we
also entered reaction time and trial number into the model.
Hierarchically entering these covariates into the analysis did

instance, that cooperation decays once participants learn that
others are exploiting their generosity by free-riding (Frey and
Meier, 2004). However, vimPFC patients may be particularly in-
sensitive to trial-by-trial feedback, given fMRI work implicating

this region in social norm learning (Behrens et al., 2008). To ad-
dress this possibility, we used the number of ‘givers’ (i.e. other
players who cooperated on each trial) to compute two add-
itional measures for each participant: (1) the number of givers
on the trial preceding each decision and (2) the running average
of givers across all trials that preceded each decision. Moreover,

not predict cooperation, nor did it qualitatively change the prior
associations between ROI damage and cooperation (see
Supplementary Table S2). Moreover, constraining the analysis
to each participant’s first decision (trial 1) revealed results con-
sistent with the full data (Supplementary Figures S5 and S6).
Prior PGG studies have occasionally revealed higher
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contributions from women and younger participants (Rand
et al., 2012). However, our results did not significantly change
when adjusting for participant age and gender (Supplementary
Table S4). Overall, these follow-up analyses suggest the associ-
ations between ROI damage and cooperation are robust, even
when adjusting for learning (see Supplementary Figures S10
and S11 for raw temporal data) and individual differences (see
Supplementary Material Section S4 for further analyses).

Discussion

We investigated the necessity of several brain regions for
group-based cooperation. A sample of lesion patients provided
no evidence that the vmPFC or amygdala are necessary for co-
operation in a PGG. This is particularly striking given prior fMRI
investigations linking vmPFC (Rilling et al., 2002) and amygdala
(Fermin et al., 2016) with cooperative decisions in two-player
games. In contrast, the extent of dIPFC damage associated with
reduced cooperation, and the patient with the greatest dIPFC
damage did not cooperate on a single trial. Considering recent
associations between dIPFC damage and greater dishonesty
(Zhu et al., 2014), this study adds to a growing body of literature
showing that the lateral prefrontal cortex may be necessary for
a broad range of prosocial behaviors.

Our findings have implications for competing models of pro-
social behavior. The prosocial intuition hypothesis predicts that
(1) impaired intuition (e.g. vmPFC or amygdala damage) will de-
crease cooperation, and (2) impaired deliberation (e.g. dIPFC
damage) should increase (or at minimum preserve) cooperation.
None of these predicted outcomes was observed, suggesting in-
tuition did not guide cooperation in our sample. Instead, our be-
havioral and neuropsychological data were more consistent
with prosocial restraint models.

We believe that there may still be contexts in which intuitive
processes guide cooperative behavior (Rand, 2016). For instance,
recent findings suggest that concerns over equity (i.e. fair allo-
cations of resources) are intuitive whereas concerns over effi-
ciency (i.e. maximizing collective resources, a likely component
of our PGG) are deliberative (Capraro et al., 2017). In addition,
incentivizing cooperation (by manipulating the payoff contin-
gencies) results in relatively faster and more frequent decisions
to cooperate, whereas more costly cooperation produces the op-
posite pattern (Krajbich et al., 2015). In our task, free-riding was
the most common response among healthy controls. As a re-
sult, the neuropsychological associations we observed may re-
verse under conditions when cooperation is the modal response
or involves efficiency tradeoffs.

The dual-process models of cooperation we tested have ad-
mittedly been largely silent to neuroscience. We hope that this
investigation helps trigger the development of multi-level theo-
ries of cooperation and encourages future work leveraging the
methods and samples from neuroscience to develop a more
comprehensive understanding of human cooperation. For in-
stance, there is growing evidence that models pitting intuition
against deliberation may not capture the dynamic and widely
distributed nature of evaluation and moral decision-making
(Cunningham et al., 2007; Van Bavel et al., 2015). Thus, future in-
vestigations should examine broader neural substrates impli-
cated in prosocial behavior, such as the ventral striatum (Fareri
et al., 2015), insular cortex (Lamm et al., 2011), subgenual anterior
cingulate cortex (FeldmanHall et al., 2015) and temporal parietal
junction (Hutcherson et al., 2015). We also believe this approach
will move theoretical debates beyond broad constructs, like

Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 4

intuition and deliberation, and focus on the underlying neural
computations of value that guide cooperation.

One limitation of our primary analysis is that it assumes the
ROIs we selected are fungible homogenous substrates (e.g. 10%
damage to anterior vimPFC is equivalent to 10% damage to pos-
terior vimPFC). Given evidence suggesting anterior vmPFC en-
codes more abstract, secondary reinforcers (Klein-Fliigge et al.,
2013), future investigations should leverage larger samples that
can fully capitalize on more spatially granular analyses, such as
voxel-based lesion-symptom mapping (Rorden et al.,, 2007).
Nevertheless, while our sample size is smaller than typically
seen in psychology papers, it is quite normal for lesion studies
(e.g. Bechara et al., 1996; Koenigs and Tranel, 2007; Spunt et al.,
2015). Indeed, lesion samples can provide critical insights into
underlying cognitive processes. For instance, our models of
human memory were revolutionized by a single participant
(H.M.; Scoville and Milner, 1957).

Conclusion

The success of our political institutions, environmental stew-
ardship, scientific progress and evolutionary fitness all hinge
on our ability to prioritize collective-interest over self-interest.
The present research illustrates how combining behavioral
and neurological measures can help advance ancient philo-
sophical debates about human benevolence. Understanding
the neural systems involved helps clarify the underlying
neuro-cognitive processes guiding cooperation and may ul-
timately inform interventions that push the limits of our co-
operative potential.

Prior to this paper, JW presented these findings at various
meetings and conferences. In addition, an earlier draft of the
paper was posted as a preprint on PsyArXiv (https://osf.io/
juhbx/).
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