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Corynebacterium glutamicum belongs to the microbes of enormous biotechnological

relevance. In particular, its strain ATCC 13032 is a widely used producer of L-amino

acids at an industrial scale. Its apparent robustness also turns it into a favorable platform

host for a wide range of further compounds, mainly because of emerging bio-based

economies. A deep understanding of the biochemical processes in C. glutamicum is

essential for a sustainable enhancement of the microbe’s productivity. Computational

systems biology has the potential to provide a valuable basis for driving metabolic

engineering and biotechnological advances, such as increased yields of healthy producer

strains based on genome-scale metabolic models (GEMs). Advanced reconstruction

pipelines are now available that facilitate the reconstruction of GEMs and support

their manual curation. This article presents iCGB21FR, an updated and unified GEM

of C. glutamicum ATCC 13032 with high quality regarding comprehensiveness and

data standards, built with the latest modeling techniques and advanced reconstruction

pipelines. It comprises 1042 metabolites, 1539 reactions, and 805 genes with detailed

annotations and database cross-references. The model validation took place using

different media and resulted in realistic growth rate predictions under aerobic and

anaerobic conditions. The new GEM produces all canonical amino acids, and its

phenotypic predictions are consistent with laboratory data. The in silico model proved

fruitful in adding knowledge to the metabolism of C. glutamicum: iCGB21FR still

produces L-glutamate with the knock-out of the enzyme pyruvate carboxylase, despite

the common belief to be relevant for the amino acid’s production. We conclude

that integrating high standards into the reconstruction of GEMs facilitates replicating

validated knowledge, closing knowledge gaps, and making it a useful basis for

metabolic engineering. The model is freely available from BioModels Database under

identifier MODEL2102050001.
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1. INTRODUCTION

The strain Corynebacterium glutamicum ATCC 13032 is a
Gram-positive, facultatively anaerobic soil bacterium, which
produces L-glutamate under particular treatments or growth
conditions (Kimura, 2005). The annual production of several
tons of L-glutamate (Eggeling and Bott, 2005) as well as other
metabolically engineered products, such as other amino acids
(Eggeling and Bott, 2015; Wendisch et al., 2016), alcohols
(Inui et al., 2004a; Niimi et al., 2011; Yamamoto et al., 2013;
Jojima et al., 2015), biopolymers (Liu et al., 2007), organic
acids (Hüser et al., 2005; Okino et al., 2008; Takeno et al.,
2013), terpenoids (Heider et al., 2014; Kang et al., 2014) or
diamines (Kind et al., 2010a,b; Schneider and Wendisch, 2010),
have turned C. glutamicum into a versatile and enormously
relevant biotechnological microorganism. Despite an ongoing
biotechnological application of C. glutamicum and the resulting
knowledge on this bacterium for more than 70 years (Vertes
et al., 2013), its metabolic potential not yet exhausted. Due to the
prominent role of C. glutamicum in biotechnology, obtaining a
more profound understanding of its physiology and metabolism
is highly desirable.

One method of formalizing this knowledge is a genome-

scale metabolic network reconstruction. Genome-scale metabolic
network reconstructions represent a systematic knowledge
base of bibliomic and genomic data of all known metabolic
reactions of a specific target organism (Thiele and Palsson,
2010). By creating a mathematical representation of the
reconstructed network, the network can be changed into
a genome-scale metabolic model (GEM). GEMs enable the
qualitative description of the genotype-phenotype relationship

and predictions of various phenotypes (Fang et al., 2020).
GEMs can be constructed by mapping the annotated genome

sequence with its genes via the encoded proteins to reactions.
This step is followed by an intensive curation phase of the
computational model and a subsequent analysis phase. Prevalent
methods for analyzing GEMs are summarized under the
therm constraint-based modeling. The main advantage of these
modeling techniques over other approaches, such as dynamic
modeling (Dräger et al., 2009), lies in their potential to analyze
entire metabolic networks at the scale of all enzymatic capabilities
of an organism without the necessity of knowing numerical
values of all the kinetic parameters therein. Flux sampling
can be used as an unbiased way to characterize the space of
stoichiometrically feasible fluxes and solutions (Jadebeck et al.,
2020). Flux balance analysis (FBA) is a biased method for steady-
state analysis of GEMs. By imposing further physiologically
realistic, relevant constraints and a target objective function
on the computational model, the network’s metabolic flux
distributions can be simulated (Fang et al., 2020). Nevertheless,
increasing network scale results in an increasingly complex
process of reconstructing all cellular properties in the form of a
coherent computer model.

In recent years, new tools and automated techniques in
systems biology have emerged, such as CarveMe (Machado et al.,
2018), ModelPolisher (Römer et al., 2016), MEMOTE (Lieven
et al., 2020), or BOFdat (Lachance et al., 2019). These tools

support the reconstruction, refinement, and validation of GEMs
using Minimal Information Required In the Annotation of
Models (MIRIAM) standards (Le Novère et al., 2005). Several
GEMs of the C. glutamicum have already been published
(e.g., Kjeldsen and Nielsen, 2009; Shinfuku et al., 2009, see
Figure 1). However, these models were curated before the newly
developed tools were available. Thus, these new tools were so
far not applied to GEMs of C. glutamicum. The most recently
published GEM of C. glutamicum is iCW773 (Zhang et al.,
2017), which is based on Shinfuku et al. (2009). The model
iCW773 can produce all canonical amino acids. The production
rates of amino acids are generally lower than experimental
results (Eggeling and Bott, 2005). Comparing these production
rates to those of other published GEMs of C. glutamicum is
difficult since neither the composition of the complete medium
nor the medium used for the in silico experiments is reported.
Based on the MEMOTE report of iCW773, the model seems
to lack stochiometric consistency and contains no Systems
Biology Ontology (SBO) terms (see below for more information
on SBO terms Courtot et al., 2011). It contains 98 orphan
and 116 dead-end metabolites. In the respiratory chain, the
metabolites ubiquinone and its derivates are used. However,
several experimental studies confirmed that the only respiratory
quinones in C. glutamicum are menaquinone and its derivates
(Kanzaki et al., 1974; Collins et al., 1977, 1979; Bott and Niebisch,
2003; Maeda et al., 2020). After conversion to Systems Biology
Markup Language (SBML) Level 3 Version 1 (Hucka et al.,
2018), iCW773 reaches a total MEMOTE score of only 29%
(Lieven et al., 2020, see below for more information on MEMOTE

and this score). Newly available tools such as MEMOTE have
not yet been applied to reconstruct any previous GEM of
C. glutamicum. The goal of this model is to fill this application
gap. Given its importance as a biotechnological microbe, an
updated GEM reflecting the current state of knowledge about
C. glutamicum and incorporating the scope of newly available
tools is indispensable.

In this study, we present an updated GEM of high quality
for C. glutamicum named iCGB21FR. It combines the knowledge
about C. glutamicum from the previous models iKK446 (Kjeldsen
and Nielsen, 2009) and iEZ482 (Zelle et al., 2015) and extends it
by including a broader metabolic coverage than previous models.
This GEM was reconstructed using the latest available in silico
methods and tools and represents a model composed of the
most current standards in systems biology. Furthermore, this
GEM uses current community standards and follows the best-
practice recommendations by Carey et al. (2020). High quality
in terms of GEM reconstruction encompasses several aspects,
such as a fully annotated GEM in terms of metabolites, reactions,
and genes with gene-protein-reaction (GPR) associations. In
addition, SBO terms (Courtot et al., 2011) are included in
the model. These allow a more fine-grained description of
the respective compound. With the aid of the high-quality
reconstruction of the GEM, we reproduced experimentally
validated findings. This model allows a more accurate in silico
depiction of the genetic makeup of C. glutamicum. The new
model iCGB21FR contributes to filling knowledge gaps in the
metabolism of C. glutamicum by providing further information
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FIGURE 1 | Timeline and model history of all available C. glutamicum genome-scale metabolic models. The GEMs are depicted in the chronological order of their

publication dates, with iKK446 as the first available GEM of C. glutamicum. The figure elucidates which GEM is based on which previous GEMs. The upper part of the

timeline depicts the number of reactions (blue), metabolites (gray), and genes (green) for each of the five GEMs of C. glutamicum. While the number of reactions,

metabolites, and genes in the first three GEMs are comparable in their magnitude, the number of metabolites and genes more than doubled in the most recent two

GEMs. The number of reactions more than doubled in iCW773 (Zhang et al., 2017) and more than tripled in iCGB21FR. The model iCGB21FR is an updated GEM of

iEZ482 based on the first published GEM of C. glutamicum iKK446. The model iCW773 is based on the shortly later published GEM iYS502.

on relevant pathways used in the production of L-glutamate.
Finally, this model uses FAIR data standards (findable, accessible,
interoperable, reusable; Wilkinson et al., 2016). Access to all data
and metadata used in this model is provided. A highly detailed
annotation level within the model is used, and the reconstruction
process is described as transparently as possible (Carey et al.,
2020).

2. MATERIALS AND METHODS

2.1. The Metabolic Network
Reconstruction Process
2.1.1. Strain
The GEM of the strain Corynebacterium glutamicum
ATCC 13032 was reconstructed using the annotated genome
sequence (accession number: NC006958.1), which was
downloaded from the National Center for Biotechnology
Information (NCBI) at https://www.ncbi.nlm.nih.gov (Agarwala
et al., 2018).

2.1.2. Draft Reconstruction
The reconstruction process closely followed the protocol by
Thiele and Palsson (2010). In short, an automated draft
reconstruction was created using CarveMe (Machado et al.,
2018), version 1.2.2, and stored in the SBML Level 3 Version 1
format (Hucka et al., 2018). The SBML Level 3 extension
for flux balance constraints (fbc) version 2 by Olivier and
Bergmann (2018) was enabled and used under default settings for
the draft reconstruction. SBML represents a machine-readable
exchange format that allows manipulating computational models
of biological processes (Keating et al., 2020; Renz et al., 2020). The

fbc plugin enables adding structured, semantic descriptions for
domain-specificmodel components such as charges, annotations,
flux bounds, GPR rules, or chemical formulas of metabolites
(Lieven et al., 2020). This initial draft contained 1496 reactions,
1030 metabolites, and 782 genes in the three compartments:
extracellular, cytosol, and the periplasm.

Further automated and manual refinement of the
reconstruction of C. glutamicum was performed using libSBML
(Bornstein et al., 2008), version 5.18.0, and COBRApy (Ebrahim
et al., 2013), version 0.17.1. All simulations were run using the
CPLEX optimizer, version 12.10 by IBM (https://www.ibm.com/
analytics/cplex-optimizer). Metabolic pathways were visualized
using the Escher software (King et al., 2015). To support the
display as standardized Process Description (PD) map (Rougny
et al., 2019) in Systems Biology Graphical Notation (SBGN)
enabled software (Touré et al., 2020), the Escher maps were
converted to the SBGN Markup Language (SBGNML) format
(Bergmann et al., 2020) using EscherConverter (https://github.
com/draeger-lab/EscherConverter).

2.1.3. Annotations
Cross-references of the model’s instances to other databases
were shifted from the notes to the annotations field. Additional
metadata, such as annotations and cross-references, was added
using the ModelPolisher (Römer et al., 2016). The model’s genes
were annotated using the old and new locus tags from NCBI and
the NCBI protein identifier. SBO terms (Courtot et al., 2011)
further annotate the model’s instances. SBO terms represent
controlled vocabularies, which provide semantic information
about model components. For metabolites and genes, the general
SBO-terms for simple chemical (SBO:0000247) and genes
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(SBO:0000243) were used, respectively. The SBO terms for
the reactions were chosen as precisely as possible using a new
curation pipeline (Fritze, 2020).

2.1.4. Refinement of Metabolite Attributes
The draft was curated to include the correct positioning of the
metabolites’ chemical formulas and charges. All charges were
obtained, if more than one charge per compound was available,
in the Biochemically, Genetically, and Genomically structured
(BiGG) Models database (Norsigian et al., 2019). In the following
verification step, the most appropriate charge for a given reaction
in a specific compartment was manually chosen and added to
the model. Dead-end metabolites and orphan metabolites were
identified and, when appropriate, removed.

2.1.5. Manual Extension
Intensive manual curation was done using the databases BiGG
(Norsigian et al., 2019), MetaCyc (Caspi et al., 2020), BioCyc
(Karp et al., 2019), Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2019), and new bibliomic data. This
draft was then revised using the iEZ482 model (Zelle et al., 2015)
as a reference. The model iEZ482 is an updated version of the
iKK446 model (Kjeldsen and Nielsen, 2009) and contains 475
reactions, 408 metabolites, and 482 genes. Reactions, metabolites,
and genes present in iEZ482 but not in iCGB21FR were manually
checked in MetaCyc (Caspi et al., 2020) or BioCyc (Karp
et al., 2019) for their biochemical relevance in the model and,
if appropriate, added. Altogether, 50 new reactions, 14 new
metabolites, and 23 new genes were added to iCGB21FR. BiGG
identifiers (IDs) and annotations were included in the model for
all newly added compounds, thus enabling easier comparison
with other models. If BiGG IDs were not yet existent, BioCyc IDs
(Karp et al., 2019) and additional annotations such as SBO terms
were added to the new instance.

2.1.6. Mass and Charge Imbalances
The chemical formulas of all participating metabolites were
verified. All mass and charge imbalanced reactions were
manually checked. Pseudo-reactions, including exchange, sink,
or biomass reactions, were excluded from this curation step.
For reactions with imbalanced charge, the charge of every
participating metabolite was verified and, if necessary, adapted.
Mass imbalanced reactions were checked formissingmetabolites,
such as protons.

2.1.7. Energy-Generating Cycles
Energy-generating cycles represent thermodynamically infeasible
states. Charging of energy metabolites without any energy
source causes such cycles (Fritzemeier et al., 2017). If left
undetected in the model, these can result in erroneous
increases in maximal yields in the biomass (Fritzemeier
et al., 2017). The following 13 carrier metabolites for energy
or redox equivalent were tested for their ability to form
thermodynamically infeasible cycles: adenosine triphosphate
(ATP), cytidine triphosphate (CTP), guanosine triphosphate
(GTP), uridine triphosphate (UTP), inosine triphosphate (ITP),
reduced nicotinamide adenine dinucleotide (NADH), reduced
nicotinamide adenine dinucleotide phosphate (NADPH), flavin

adenine mononucleotide (FMN), flavin adenine dinucleotide
(FAD), menaquinol-8, 2-demethylmenaquinol 8, acetyl-CoA,
and L-glutamate. All exchange reactions of the model were set
to 0mmol gDW−1 h−1 to investigate the presence of energy-
generating cycles. Energy dissipating reactions were created
for each of the 13 individual metabolites. These allow the
corresponding metabolite to be removed from the system.
Each reaction was added one-at-a-time to the model and then
used as the objective function. If the optimization returned a
result unequal to zero, an energy-generating cycle was detected
and subsequently removed. Additionally, the proton exchange
between cytosol and periplasm was included.

2.1.8. Biomass Objective Function
The initial biomass objective function (BOF) of iCGB21FR
was created using CarveMe (Machado et al., 2018). It
represents a universal bacterial biomass objective function
(BOF). The species-specific biomass objective function (BOF)
was further refined using BOFdat (Lachance et al., 2019).
BOFdat allows calculating and refining a pseudo-reaction for
the biomass function without using any pseudo-metabolites
or macromolecules, such as deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), or protein. The nucleotide sequence
of C. glutamicum ATCC 13032 was used to refine the DNA
nucleotides in the BOF. Coenzymes and inorganic ions were
identified and specifically adapted for C. glutamicum in the BOF
within the second step of BOFdat. As the model initially did
not simulate growth on the minimal medium CGXII (see section
2.2.2), trace elements in the BOF were compared to the elemental
composition of C. glutamicum cells (Liebl, 2005). Based on this
comparison, cobalt was removed from the BOF.

2.1.9. Subsystems and Groups Plugin
Biological pathways were obtained from the KEGG database
(Kanehisa et al., 2019) using the old locus tags in the genes’
annotations. Pathways associated with a reaction were added to
the reaction’s annotations based on genes in the GPR association.
The pathways were added as a biological qualifier with the
attribute OCCURS_IN. Additionally, the groups plugin was
enabled, available for SBML Level 3. The groups plugin in
libSBML (Bornstein et al., 2008) allows a more flexible grouping
of specific connected components in the metabolic model
(Hucka and Smith, 2016). The groups plugin was used to add
every metabolic pathway or subsystem as a group. Participating
reactions were then added to the groups as members.

2.1.10. Quality Control
The quality of the GEM was tested performing a FROG analysis
(König, 2020) and using MEMOTE, version 0.11.1. MEMOTE is
a platform to test standardized measures of metabolic models
and outputs quality scores ranging from 0% for poor model
quality to 100% for excellent model quality (Lieven et al., 2020).
The measures that generate the MEMOTE scores evaluate the
model’s consistency and annotations within different categories.
These categories include basic information about the model,
the metabolites and reactions, the degree of annotations for
metabolites, reactions, genes, and SBO terms. MEMOTE also
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checks the presence of GPRs, a realistic biomass function, energy
metabolism, and appropriate network topology. Apart from
these individual MEMOTE scores for the different subcategories,
MEMOTE also reports an overall score. This overall score
represents an overall measurement of how well the model scored
within all individual categories. To evaluate the consistency of the
model, the stoichiometric consistency, mass and charge balances,
metabolite connectivity, and unbounded fluxes in the default
medium were used. Within the evaluation of the annotations,
MEMOTE checks for the presence and conformity of various
databases and the presence of specific SBO terms. All categories
are scored individually. The overall MEMOTE quality score is
calculated based on the individual category scores (Lieven et al.,
2020).

2.1.11. Curation of iCW773
The model iCW773 (Zhang et al., 2017) was downloaded in
Microsoft Excel format as the supplementary published and
converted to Character-Separated Value (CSV) format. The
application Table2Model (Dräger, 2021) was developed based
on JSBML (Rodriguez et al., 2015) to parse the CSV files and
convert the information to SBML Level 3 Version 1 (Hucka et al.,
2018). Since the original publication did not explicitly define
any units, these had to be added to the model. For consistency
reasons, the units were defined in the same way as for iCGB21FR.
The generated SBML Level 3 Version 1 file was syntactically
validated using a combination of JSBML (Rodriguez et al., 2015)
and libSBML (Bornstein et al., 2008), including unit consistency
validation. MEMOTE version 0.11.1 (Lieven et al., 2020) was used
for semantic model checking. Annotation of the model iCW773
was performed using the same curation pipeline described above
with the help ofModelPolisher (Römer et al., 2016) and SBO term
addition (Fritze, 2020). Themodel was wrapped in an (Bergmann
et al., 2014) OMEX archive file (Neal et al., 2018) together
with a metadata file and uploaded to BioModels Database
(Malik-Sheriff et al., 2020), where it is available under accession
MODEL2110010001 (see Availability).

2.2. Model Validation
All model validations were performed with a physiological pH
of 7.0. The growth behavior was tested in several media with
access to varying carbon sources under aerobic and anaerobic
conditions to validate the predictive power of the curated
model iCGB21FR.

2.2.1. Definition of the Growth Unit
The growth rate is defined as the flux through the biomass
objective function, which corresponds to the system’s biomass-
producing reaction. In their fundamental work from Varma and
Palsson (1994) explain that “Vgro is the growth flux (grams of
biomass produced), which with the basis of 1 g (dry weight) per
h reduces to the growth rate (grams of biomass produced per
gram [dry weight] per hour).” It should be noted that 1 gDW
corresponds to 1 g with a semantic annotation regarding the
dry weight fraction of a probe. Gottstein et al. (2016) explain
that the metabolic fluxes are typically given in mmol gDW−1 h−1

and confirm (Varma and Palsson, 1994) that the growth rate

µ has the unit g gDW−1 h−1. Gottstein et al. (2016) also state
that the biomass objective function describes the accumulation
of biomass components per hour and relative to the amount
of biomass in gDW. Consequently, all molecular species need
to be expressed in the unit mmol gDW−1, which corresponds
to the amount of the biomass component per gram of biomass
(cf. section 2.1; Gottstein et al., 2016). Since all stoichiometric
coefficients have dimensionless units, the biomass forming
reaction can be considered a summation of components in
mmol gDW−1, each times a dimensionless factor. Consequently,
the rate of this reaction, which defines a change per time,
results in mmol gDW−1 h−1.

Accordingly, the SBML specification defines that the units of
all reactions in a model have to be identical and are defined in
units of extent per time (see Hucka et al., 2018, section 4.2.5; ).
According to the specification of SBML Level 3 Version 1
Release 2 (see Hucka et al., 2018, Table 9), the extent units
should be substance units or a combination of units derived from
those. Here, the extent of the reactions and the substance units
of all compounds are defined in units of mmol gDW−1 (note
that in contrast to Varma and Palsson (1994), we here define
the biomass in units of mmol instead of in g). The time units
are defined in h (or 3600 s). Hence, all reactions have the unit
mmol gDW−1 h−1. It should be noted that the upper and lower
bounds of all reactions have the same unit and are therefore
consistently defined with the flux through the biomass reaction.
In this way, these parameters already implicitly define the flux
units because the flux’s upper and lower bounds must have the
same unit as the flux itself.

For more information, readers may also consider the
specification of the SBML extension package fbc (Olivier and
Bergmann, 2018), which provides similar examples in its
appendix, and the detailed analysis on this matter outlined
by Gottstein et al. (2016). To improve the units’ definition,
iCGB21FR and iCW773 explicitly declare the attributes
extentUnits and timeUnits within the model element
in their SBML files. It also declares substanceUnits
in mmol gDW−1 and the volumeUnits in fl so that all
compounds and compartments inherit defined units from the
model container.

Experimentally observed growth rates µ may be given in
the unit 1/h. In this case, directly comparing the calculated
growth rate to the experimentally obtained value is possible if the
biomass consistency of a GEM approaches 1mmol gDW−1 h−1

because then its produced biomass has a molecular weight
of 1 gmmol−1. With this, the conversion 1 g gDW−1 h−1 =
1 g g−1 h−1 = 1 h−1 can be performed because the biomass of
the GEM is, in this case, standardized. A direct comparison of
growth rates is then valid, because with a biomass consistency
close to 1mmol gDW−1 h−1, the different units of the growth
rate µ converge.

2.2.2. Growth in Different Media and Conditions
Following common laboratory practice in cultivating
C. glutamicum, the complete lysogeny broth (LB) medium
(Bertani, 1951) and the two minimal media M9 (Sambrook
et al., 1989) and CGXII (Keilhauer et al., 1993; Eggeling and
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Bott, 2005) were chosen to simulate in silico aerobic growth
of C. glutamicum. Transporters for the inorganic ions nickel
and calcium had to be added to allow growth on the M9
minimal medium. As protocatechuic acid is a component of the
CGXII medium (Keilhauer et al., 1993), all necessary exchange
and transport reactions were added to model the uptake this
compound. The model iCGB21FR did initially not grow on the
minimal medium CGXII. Literature research pointed toward
cobalt in the BOF as a potential issue. Removing cobalt from the
BOF allowed growth on CGXII.

D-glucose served as the predominant carbon source in the
two minimal media. The composition of each medium was
used to constrain the model’s exchange reactions with the
environment. For simulating growth in the three different
media, the lower bounds of the metabolites’ exchange reactions
available in the respective medium were set to the default value
−10mmol gDW−1 h−1 to enable the uptake. All other exchange
reactions’ lower bounds were set to 0mmol gDW−1 h−1. While
applying these medium-specific constraints, the BOF was set as
the objective function. If the model did not simulate growth
on one of the experimentally confirmed media, literature was
queried to identify missing metabolites or reactions hampering
growth. These were then added to iCGB21FR.

C. glutamicum is a facultative anaerobe microbe (Eggeling
and Bott, 2005, 440). The growth under anaerobic conditions
was evaluated to demonstrate the validity of iCGB21FR. The
model initially created with CarveMe (Machado et al., 2018)
did not simulate growth when applying anaerobic conditions
by blocking the oxygen uptake. The model was evaluated using
flux balance analysis (FBA) to identify relevant oxygen-carrying
reactions to identify potential reasons for this. Additionally,
literature was searched to find alternative or missing reactions.
Furthermore, the gap-filling option of CarveMe was used for
the M9 minimal medium under anaerobic conditions. To this
end, a novel draft model with CarveMe was created, where
the gap-filling option was enabled during the curation step.
The reaction set of the gap-filled model was compared to
our extended iCGB21FR model’s reaction set, and the missing
reactions were added. These six missing reactions include the
catalase reaction (CAT), the succinate dehydrogenase (SUCDi),
the phosphoribosylformylglycinamidine synthase (PRFGS_1), a
different calcium transporter (CAt4), the fumarate reductase
(FRD7), and the glycolate transport via proton symport
(GLYCLTt2rpp). With the inclusion of these reactions, the
model simulated anaerobic growth on all three tested media.

The C. glutamicum-specific CGXII minimal medium was
used to test the model’s growth behavior on different carbon
sources. The metabolites glucose, fructose, sucrose, ribose,
gluconate, pyruvate, acetate, lactate, and propionate were tested
under aerobic and anaerobic conditions as sole carbon sources
since experimental data confirmed their role as carbon sources
(Michel et al., 2015). All tested compounds could serve as the
sole carbon source under aerobic conditions. Under anaerobic
conditions, however, only glucose, fructose, sucrose, and ribose
could serve as carbon and energy sources (Michel et al., 2015).
Therefore, all nine carbon sources were tested in silico under
aerobic and anaerobic conditions using the CGXII minimal

medium. If iCGB21FR did not simulate growth on one of the
experimentally verified carbon sources, missing exchange and
transport reactions were added based on results from a literature
search. These included adding a pyruvate exchange and transport
reaction and a lactate transporter for the aerobic condition.
Further gap-filling steps were performed when necessary.

2.2.3. Verifying Capabilities for Amino Acid

Production
The model was further validated by simulating the production
of all 20 canonical amino acids in the CGXII medium and
D-glucose as the predominant carbon source under aerobic
conditions. The availability of D-glucose was restricted to
the default uptake rate of 10mmol gDW−1 h−1. The growth
rate was fixed to 0.4mmol gDW−1 h−1 to ensure the microbe’s
maintenance during the amino acid production. Subsequently, a
sink reaction was created for each amino acid, set as the objective
function, and optimized. The relative amino acid production
was calculated by dividing the total amino acid production rate
by the glucose uptake rate. The same approach was taken for
the CO2 production rate, which was set in relationship to the
amino acid production rate. The efflux of the CO2 exchange
reaction (EX_co2_e) was taken as the CO2 production rate.
The ATP production rate was calculated by summing up the
fluxes of all ATP-producing reactions. These were then correlated
with the amino acid production rate, analogously to the CO2

production rate.

2.3. Model Application: New Insights for
Metabolic Engineering
As C. glutamicum is widely used in biotechnology, the model’s
capabilities can be used to yield hints for metabolic engineering.
All subsequent analyses were performed using the CGXII
minimal medium with D-glucose as the sole carbon source under
aerobic conditions.

2.3.1. Relation Between Growth and L-glutamate

Production
A sink reaction (sink_glu__L) was added to optimize the
L-glutamate production (see Figure 5). This reaction was then
set as the objective function. As L-glutamate is also part of
the biomass objective function, a potential association between
these two reactions (BOF and L-glutamate sink reaction) was
evaluated by varying the BOF between 0 and the maximum
growth rate 0.57mmol gDW−1 h−1 while maximizing the sink
reaction. 0.57mmol gDW−1 h−1 is the maximum in silico growth
rate of iCGB21FR under aerobic growth conditions with D-
glucose as the sole carbon source on CGXII (see section 3.2).

2.3.2. Relevance of the pyruvate carboxylase (PC)
PC is a pivotal enzyme in the L-glutamate production in
C. glutamicum (Peters-Wendisch et al., 2001). A metabolic map
was drawn, which depicts the primary reactions relevant for the
L-glutamate production starting at D-glucose as the predominant
carbon source using the tool Escher (King et al., 2015, see
Figure 5). The model was optimized for the sink reaction for L-
glutamate (sink_glu__L) using FBA while fixing the growth
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rate to 0.4mmol gDW−1 h−1. This growth rate is an intentionally
chosen growth rate within the interval where the L-glutamate
production is only marginally affected by growth. The resulting
flux distribution is depicted in Figure 6. This analysis was
repeated after knocking out the PC’s reaction to elucidate further
the PC’s effect on the metabolic flux distribution.

2.3.3. Identification of Relevant Reactions for

L-glutamate Production
A loopless flux variability analysis (FVA) was used to identify
reactions relevant to L-glutamate production. FVA represents
a standard method to evaluate the range of feasible steady-
state fluxes for each reaction by sequentially minimizing and
maximizing each reaction (Schellenberger et al., 2011). Loop
reactions are a subset of reactions with unbounded fluxes.
Loopless FVA eliminates thermodynamically infeasible loops
by not allowing the model to use these loops (Schellenberger
et al., 2011). After running the loopless FVA, reactions with
almost identical minimal and maximal allowed flux values were
extracted (relative tolerance of 10−5, absolute tolerance of 10−8).

3. RESULTS

3.1. The Model iCGB21FR Is of High Quality
The new GEM of Corynebacterium glutamicum constructed
in this work is named iCGB21FR. This name follows the
latest recommended naming conventions, which are part of the
community standardization of metabolic models (Carey et al.,
2020). The lower-case “i” in italics means in silico, followed by
the species indicator “CG” for C. glutamicum. “B” represents
the city where the particular strain ATCC 13032 was sequenced
(Bielefeld, Germany, see also Kalinowski et al., 2003). The three-
letter code “CGB” also serves the corresponding strain identifier
in the KEGG pathway database (Kanehisa et al., 2019). It follows
an iteration identifier, in this case, the year 21 of this century. The
last two characters, “FR,” refer to the last names of the primary
model curators.

The model iCGB21FR is available in the SBML Level 3
Version 1 format (Hucka et al., 2019) with the fbc plugin (Olivier
and Bergmann, 2018) and the groups plugin (Hucka and Smith,
2016) enabled. It contains 1042 metabolites, 1539 reactions,
and 805 genes. Thus, further 42 reactions, 13 metabolites,
and 25 genes were added to the model following the initial
draft reconstructed with CarveMe (Machado et al., 2018). All
metabolites and reactions have a human-readable, descriptive
name and a chemical formula. The model comprises the
cytosolic, periplasmic, and extracellular compartments.

Its overall MEMOTE score amounts to 87%. The MEMOTE

score of the initial draft model created with CarveMe was 33%.
With intensive manual curation, the number of mass and charge
imbalanced reactions could be diminished from an initial 170
to 19 imbalanced reactions. These represent 1.2% of the total
number of reactions. The model has a stoichiometric consistency
of 99.7% and does not contain any energy-generating cycles,
dead-end metabolites, nor orphan metabolites.

Seventeen different databases are cross-referenced in the
model’s instances, yielding a MEMOTE annotation score of 84%

for reactions, 84% for metabolites, and 49% for genes. Genes
include cross-references to the three databases KEGG (Kanehisa
et al., 2019), NCBI genes (Maglott et al., 2005), andNCBI proteins
(Pruitt et al., 2005). Metabolites and reaction annotations contain
cross-references to 13 and seven different databases, respectively.
The databases BiGG (Norsigian et al., 2019), BioCyc (Karp
et al., 2019), KEGG (Kanehisa et al., 2019), MetaNetX (Moretti
et al., 2021), Reactome (Croft et al., 2010), and ModelSEED
(Henry et al., 2010) are referenced for metabolites and reactions.
Reactions also have cross-references to the RHEA database
(Lombardot et al., 2019) and EC numbers. Metabolites have
additional cross-references to the ChEBI database (Hastings et al.,
2016), the Human Metabolome Database (HMDB) (Wishart
et al., 2007), BioPath (Brandenburg et al., 2004), InChIKey
(Heller et al., 2015), UniPathway (Morgat et al., 2011), lipid
maps structure database (Sud et al., 2007), and the University
of Minnesota Biocatalysis/Biodegradation Database (UM-BBD)
(Ellis et al., 2003).

All model instances were further annotated using SBO
terms (see Figure 2). While genes and metabolites received
general SBO terms for genes and simple chemicals, the model’s
reactions were annotated with 23 different SBO terms. The
most prominent ontology group is “biochemical reactions”:
313 reactions in the model hold the general SBO term for
reactions. The number of biochemical reactions is followed by
the group of exchange reactions with 181 reactions. The transport
reactions are described more precisely by the SBO terms for
active, passive, co-, symporter-mediated, antiporter-mediated, or
general transport. For all other reactions, we identified SBO terms
that describe the occurring biochemical reaction more precisely.
In terms of ontology, these SBO terms are child nodes of the SBO
term for biochemical reactions. These terms include, for example,
redox reactions, the transfer of a chemical group, hydrolysis,
or phosphorylation. The SBO terms for ATP maintenance and
biomass production occur only once in the model. Figure 2
gives an overview of all 23 added reaction SBO terms and their
occurrence in the model.

The plugins fbc (Olivier and Bergmann, 2018) and groups
(Hucka and Smith, 2016) are enabled in iCGB21FR, thus allowing
information such as metabolic charges, chemical formulas, or
gene products to be stored. All identified KEGG pathways
(Kanehisa et al., 2019) were added as a group to the model, with
all reactions participating in the pathway as group members.
In total, 102 groups were added to the model. The group
with the most members is the “metabolic pathways” group
with 563 members, followed by the “biosynthesis of secondary
metabolites” group with 297 members. Other groups with more
than 100 members are the “biosynthesis of amino acids” with
104 associated reactions, the “biosynthesis of cofactors” with 151
members, and the group of reactions associated with “microbial
metabolism in diverse environments” with 171 members. With
the help of these groups, reactions of a particular pathway can
easily be extracted and analyzed.

The biomass objective function (BOF) created by CarveMe
was refined in several steps to obtain realistic growth rates for
the tested media. With the help of BOFdat and the nucleotide
sequence of C. glutamicum ATCC 13032, the stoichiometric
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FIGURE 2 | Prevalence of SBO terms in iCGB21FR. SBO terms for reactions were defined as precisely and specialized as possible. As many models only annotate

their metabolic reactions with the most general SBO term for biochemical reactions (SBO:0000176), we further refined the SBO annotations. Thus, the model’s

reactions were annotated with 23 different SBO terms. They ranged from different transport reactions, including active, passive, or co-transport, to specific

biochemical processes, like deamination, glycosylation, or isomerization. This fine-grained reaction annotation with SBO terms easily allows for subsequent analysis

regarding reaction classes.

coefficients of the DNA nucleotides were adapted. The following
seven metabolites were added as coenzymes and inorganic ions
to the biomass objective function: NADH, NADPH, adenosine
monophosphate (AMP), pyruvate, ammonium, sodium, and
nickel. The stoichiometric coefficients of 16 further coenzymes
and inorganic ions were adapted using BOFdat. The inorganic
ion cobalt was removed from the BOF based on the elemental
composition of C. glutamicum ATCC 13032 cells, as described by
Eggeling and Bott (2005, p.16, 18). After including these changes,
the simulated biomass production is in the range of a reasonable
growth rate with no blocked biomass precursors in both the
default and the complete medium.

3.2. Simulations of iCGB21FR Are
Consistent With Experimental Data
We simulated the growth of iCGB21FR in different media
under aerobic and anaerobic conditions, and with access to
different carbon sources (see Figure 3). Growth was tested on
the two minimal media, M9 and CGXII, and the complete

LB medium. The heat map in Figure 3A gives an overview
of the growth behavior of C. glutamicum in the three
different media under aerobic and anaerobic conditions. With
1.0266mmol gDW−1 h−1 the biomass consistency of iCGB21FR
is close to 1mmol gDW−1 h−1. Consequently, it is approximately
possible to directly compare the in-silico growth rate to
an experimentally obtained growth rate given in 1 h−1. The
simulated aerobic model growth on the minimal medium M9
with glucose as a single carbon source resulted in a maximal
growth rate of 0.57mmol gDW−1 h−1. A maximal realistic
aerobic growth rate of 0.57mmol gDW−1 h−1 on CGXII was
obtained using the simulation tools COBRApy (Ebrahim et al.,
2013) and confirmed with the Systems Biology Simulation Core
Library (SBSCL) (Panchiwala et al., 2021). The simulated value
is only slightly lower than the growth rate of 0.61 h−1 that
Unthan et al. (2014) could experimentally obtain. The model
simulates growth on the complex LB medium with a growth rate
of 1.0214mmol gDW−1 h−1 under aerobic conditions without
further adjustments or refinements. As expected, the growth rate
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FIGURE 3 | Specific growth rates of C. glutamicum under different conditions. Growth rates are given in mmol gDW−1 h−1. The darker the color, the higher the

simulated growth rate under the given conditions. For the laboratory experiments, black indicates growth, and white indicates no growth on the given carbon source.

(A) The in silico growth of iCGB21FR was simulated in the following three chemically defined media: the M9 minimal medium, the CGXII minimal medium, and the

lysogeny broth (LB) complete medium. The growth was simulated under aerobic and anaerobic conditions. (B) Michel et al. tested the growth of C. glutamicum in

CGXII minimal medium under aerobic conditions with different carbon sources in laboratory experiments. All tested compounds could serve as the sole carbon source

under aerobic conditions (Michel et al., 2015). The different carbon sources were also evaluated with iCGB21FR. The model simulated growth on all given carbon

sources. (C) The different carbon sources were also evaluated under anaerobic conditions. Michel et al. experimentally identified only glucose, pyruvate, sucrose, and

ribose as carbon sources under anaerobic conditions. The model iCGB21FR was able to simulate growth on most of these sources as well except for ribose, but

additionally showed growth on gluconate.

in the complex medium (LB) is approximately twice as high
as in the two minimal media (M9 and CGXII). The aerobic
growth conditions in all three media show a higher simulated

growth rate compared to the anaerobic conditions, as anticipated.
All growth rates are within a realistic range (Unthan et al.,
2014).
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FIGURE 4 | Metabolic cost of amino acid production. The ATP requirement depicted vs. CO2 production and the in silico amino acid production were determined

using flux balance analysis (FBA). Glucose served as a sole carbon source under aerobic growth conditions. The availability of glucose was restricted by an uptake

rate of 10mmol gDW−1 h−1. The growth rate was fixed to 0.4mmol gDW−1 h−1 to ensure the organisms’ viability. Each square represents the result of a single FBA with

the objective to maximize the corresponding amino acid production. The color indicates the amino acid production rate in relationship to the glucose uptake rate. In

this simulation, L-aspartate and L-alanine, result in the highest amino acid production rate with 11.77mmol gDW−1 h−1 and 13.73mmol gDW−1 h−1, respectively. A

trade-off exists between the yield of amino acid production and the energy expenditure and CO2 production: the more ATP is required, the more CO2 and lower amino

acid production rates are yielded.

The growth of C. glutamicum in CGXII minimal
medium under aerobic and anaerobic conditions with
varying carbon sources was tested. Under aerobic
conditions, the model simulated biomass production
on all carbon sources. Aerobic growth was possible
on all carbon sources. The growth rates varied
between 0.8437mmol gDW−1 h−1 on sucrose and
0.2401mmol gDW−1 h−1 on acetate. In our anaerobic in
silico experiments, biomass production was also possible on
three of the experimentally validated carbon sources, but
not on ribose. Additionally, gluconate can be used as carbon
sources. The biomass production on gluconate yielded a
rate of 0.0945mmol gDW−1 h−1.

The new model of C. glutamicum can simulate the production
of all 20 canonical amino acids while growing on the CGXII
medium with D-glucose as the carbon source under aerobic
conditions. In Figure 4, each square represents the result of a

single FBA with the objective to maximize the corresponding
amino acid production. The color indicates the amino acid
production rate with respect to the glucose uptake rate.
The positioning represents the ATP requirements and CO2

production in relation to the amino acid production rate.
The two amino acids, L-aspartate (asp) and L-alanine (ala),
have the highest absolute amino acid production rates with
11.77mmol gDW−1 h−1 and 13.73mmol gDW−1 h−1, respectively
(see also Zelle et al., 2015). In contrast, the amino acids L-
histidine, L-arginine, and L-tryptophan have the lowest amino
acid production rate and the highest ATP requirements. A
relationship exists between the yield of amino acid production,
energy expenditure, and CO2 production: The more ATP is
required, the more CO2 produced and the lower is the amino
acid production rate. L-glutamate is of particular interest for
metabolic engineering in C. glutamicum. Its total production rate
under the selected conditions yields 8.7mmol gDW−1 h−1.
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FIGURE 5 | Trade-off between L-glutamate production and growth. The sink reaction for L-glutamate was set as the objective function to investigate the relation

between the production of L-glutamate and growth. The growth rate was varied between 0 and the maximum growth rate of 0.57mmol gDW−1 h−1 with glucose as

the sole carbon source on CGXII. A dependency between growth and L-glutamate production is expected, as L-glutamate is part of the growth function with a

stoichiometric coefficient of 0.0149. For growth rates between 0 and up to 0.4mmol gDW−1 h−1, the L-glutamate production only decreases slightly (from 12 to

approximately 7mmol gDW−1 h−1. In contrast, the production of L-glutamate decreases drastically for higher growth rates.

3.3. Pointers to Metabolic Engineering for
the L-glutamate Production
C. glutamicum is a well-known L-glutamate producer. However,
L-glutamate is also required for the growth or maintenance
function. L-glutamate accounts for the growth function with a
stoichiometric coefficient of 0.0149. Thus, a trade-off between
growth requirement and the production of L-glutamate is
expected. This trade-off is depicted in Figure 5. For growth
rates between 0mmol gDW−1 h−1 and 0.4mmol gDW−1 h−1, the
L-glutamate production rate remains comparably high. It only
decreases by 5mmol gDW−1 h−1. With increasing growth rates
greater than 0.4mmol gDW−1 h−1, the L-glutamate production
rate decreases rapidly.

The PC plays a pivotal role in L-glutamate production (Peters-
Wendisch et al., 2001). The effect of a knock-out of the PC
on the flux distribution is depicted in Figure 6. Knocking out
the PC decreases the L-glutamate production only to a small
extent (from 7.31mmol gDW−1 h−1 to 7.26mmol gDW−1 h−1).
The limiting factor in L-glutamate production is the availability
of a carbon source (in this example, D-glucose) and, as
shown above, the growth rate. The PC in silico knock-out
experiment indicates that C. glutamicum can compensate for the
knocked-out reaction.

Performing FVA helps to identify potential the ranges of
each flux. Reactions relevant for optimizing the objective
function can be identified by filtering for reactions with
almost identical minimal and maximal flux values. With
loopless FVA, we identified six highly relevant reactions for
L-glutamate production in C. glutamicum. Among these six
reactions were two pseudo-reactions: the exchange reaction of
D-glucose and the sink reaction for L-glutamate. Glucose is
the sole carbon source in the in silico experiment. Therefore,
its strong influence on L-glutamate production is apparent.

The same holds for the sink reaction that was used as
the objective function in the FVA. The other four relevant
reactions include the aconitate hydratase (ACONT), which
converts citrate to isocitrate, the citrate synthase (CS), which
converts acetyl-CoA and oxaloacetate to citrate and coenzyme
A, the glucose transport via phosphoenolpyruvate, and the
isocitrate dehydrogenase (ICDHyr), which converts isocitrate
to 2-oxoglutarate (see also Table 1). The reactions ACONT, CS,
and ICDHyr represent the fragile connection between glycolysis
and L-glutamate biosynthesis. This connection can additionally
be seen in Figure 6, where the three mentioned reactions are
also illustrated.

4. DISCUSSION

An updated genome-scale metabolic model iCGB21FR of
C. glutamicum ATCC 13032 was reconstructed and validated
using newly available specialized reconstruction tools. Using
recent tools, the phenotypic prediction of themodel’s metabolism
allows a more accurate depiction of the metabolic capabilities of
C. glutamicum. This GEM was created using current community
standards for high-quality reconstructions. The new in silico
model reproduces experimentally validated data. In addition,
we also curated iCW773 to meet systems biology standards
(see also Carey et al., 2020). Initially, the model iCW773 was
only available as a spreadsheet in Microsoft Excel format.
According to the profound debate within the systems biology
community (see Ebrahim et al., 2015), using this format is no
longer recommended because it does not support unambiguous
interpretation and direct reuse in further model analysis,
especially for non-computational scientists. Generally, models in
spreadsheet files do not fully support the principles of findable,
accessible, interoperable, reusable data in science (Wilkinson
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TABLE 1 | Reactions of particular relevance for the production of L-glutamate in C. glutamicum.

Reaction ID Reaction name Reaction

ACONT aconitate hydratase Citrate ⇋ Isocitrate

CS citrate synthase Acetyl-CoA + H2O + Oxaloacetate −→ Citrate + Coenzyme A + H+

EX_glc__D_e D-glucose exchange D-Glucose ⇋ ∅

GLCpts D-glucose transport via PEP:Pyr D-Glucose + Phosphoenolpyruvate −→ D-Glucose 6-phosphate + Pyruvate

ICDHyr isocitrate dehydrogenase (NADP) Isocitrate + NADP ⇋ 2-Oxoglutarate + CO2 + NADPH

sink_glu__L sink reaction for L-glutamate L-glutamate −→ ∅

Reactions identified by flux variability analysis (FVA) to be highly relevant for L-glutamate production.

FIGURE 6 | Pyruvate carboxylase and the glutamate production. As the pyruvate carboxylase (PC) was discovered to be the bottleneck of glutamate production

(Peters-Wendisch et al., 2001), its knock-out effect on the metabolic model was analyzed. For the simulation, the growth rate was fixed to 0.4mmol gDW−1 h−1, and

the glutamate production was set as the objective function. The PC reaction was knocked out. The predicted flux distribution under maximal L-glutamate production

resulting from the flux balance analysis (FBA) was plotted on the metabolic map, which was drawn using Escher (King et al., 2015). (A) shows the predicted flux

distribution of the knock-out of the PC under maximal L-glutamate production. (B) depicts the predicted flux distribution of the wild-type model. In both cases,

L-glutamate is produced. The maximal glutamate production rate only decreases by 0.05mmol gDW−1 h−1 when the PC is knocked out. Thus, the model iCGB21FR

can compensate for the loss of the PC reaction.

et al., 2016) because using them in computational analyses
requires converting these files to a standardized format. After
converting iCW773 to SBML Level 3 Version 1 and performing
several curation steps, it now contains SBO terms and has
a MEMOTE score that was increased from initially 29% to
70%. However, precaution is advised when using iCW773
as it contains reconstruction inconsistencies and incorrect
metabolites. The curated iCW773 is available in SBML Level 3
Version 1 on the BioModels Database (Malik-Sheriff et al.,
2020) under the accession number MODEL2110010001 (see
Availability below).

4.1. Reconstruction Is of High Quality
The comprehensive annotations of all model components,
including metabolites, reactions, and genes, contribute to the
high quality of the reconstruction of iCGB21FR. Each instance
is uniquely referenced to at least one database, thus providing
a permanent link to clearly and uniquely identify this instance
with its attributes (Juty et al., 2012). Almost all model instances
are annotated with references to a minimum of one database,
allowing more precise cross-referencing and interoperability
between different databases. This high level of annotations
is advantageous, as findable, accessible, interoperable, reusable
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(FAIR) data principles allow fellow scientists to conduct
research on and with this model continuously (Dräger and
Palsson, 2014; Wilkinson et al., 2016). Erroneous or missing
information, incompatible data formats, or missing annotations
significantly hamper the reuse of GEMs (Ravikrishnan and
Raman, 2015). Missing annotations can lead to identification
problems of compounds and reactions. GPRs are added for
different reactions, and all instances are equipped with SBO
terms, facilitating FAIR data principles.

Generally, the high degree of annotations in iCGB21FR is
confirmed by the high MEMOTE scores within the different
categories. In terms of the presence of annotations, almost all
MEMOTE scores of the annotation categories rank close to 100%.
This high score implies that almost all suggested standards
concerning annotations are met for this GEM (see also Carey
et al., 2020). The current version of MEMOTE does not include all
C. glutamicum-specific databases, while other organism-specific
databases with less relevance for ourmodel are incorporated. One
example can be found in the annotations section of the genes,
where cross-references to different Escherichia coli databases are
checked. In iCGB21FR, the MEMOTE score for the presence
of SBO terms for biochemical reactions sticks out due to its
comparatively low value. The current version of MEMOTE checks
every reaction for the annotation with the most general SBO term
(SBO:0000176), “biochemical reaction.” This check implies
that MEMOTE can not yet capture the fine-grained description
of biochemical reactions in this model. Thus, the score of the
metabolic reactions of 33.4% diminishes the overall MEMOTE

SBO term annotation score.
Two typical ways exist to calculate the biomass objective

function (BOF) of an organism. These are the macromolecular-
based and the sequence-based approach. A typical biomass
objective function (BOF) comprises the cell’s primary
macromolecules, essential coenzymes, inorganic ions, and
species-specific metabolites, including the cell wall components.
Additionally, the energy requirements for growth and non-
growth associated maintenance costs are included (Lachance
et al., 2019). Using an experimentally derived biomass
composition implies that its cellular composition depends
on the experimental conditions under which it was obtained. For
example, the availability of nutrients and the resulting growth
rate influence the ratio between DNA, RNA, and proteins (Scott
et al., 2010). It thus represents a biased approach to compute
the biomass. When no species-specific experimental data for
the sequence-based approach is available to calculate a species-
specific biomass function, a universal bacterial biomass function
is included. Adapted biomass composition of a highly developed
and curated GEM of E. coli is often used (Orth et al., 2011;
Xavier et al., 2017). The new model possesses a biomass function
adapted specifically to C. glutamicum. This conceptual approach
differs from previous works by Kjeldsen and Nielsen (2009)
and Zelle et al. (2015). For the BOF of Kjeldsen and Nielsen
(2009), a biomass equation and the corresponding energy
consumption associated with each reaction were formulated for
each macromolecule. No C. glutamicum-specific data for the
energy requirement of the polymerization of macromolecules
was available; thus, E. coli data was used instead. The BOF of

iEZ482 is based on the BOF of Kjeldsen and Nielsen (2009).
Using species-specific data forms the basis for models with high
predictive value. BOFdat enables the curation and refinement of
a species-specific BOF by incorporating various -omics data into
its calculation. In this study, genomics data were available and
applied to refine the species-specific BOF.

4.2. iCGB21FR Reproduces Experimentally
Obtained Data
The model iCGB21FR was validated by simulating growth on
three different media under aerobic and anaerobic conditions.
C. glutamicum is also known to grow in the brain heart infusion
(BHI) medium. Modeling requires chemically defined media for
growth simulations. We could not test the growth of iCGB21FR
in BHI as no exact composition of the chemical definition of
this medium exists. Simulating aerobic growth on LB complete
medium was possible without any additional refinement of
the model. Aerobic growth on the two minimal media was
only possible by adapting the biomass function for growth on
CGXII and adding missing reactions to the model for growth
on M9. Missing reactions were identified by literature research.
Anaerobic growth was enabled after adding six reactions. By
this, the model was refined step by step to simulate and confirm
already known growth conditions.

In silico growth rates were higher on the complete medium
compared to the two minimal media. The aerobic growth
rates were higher than the anaerobic growth rates, with all
growth rates within a realistic range (Unthan et al., 2014;
Michel et al., 2015). Both findings are expected, as complete
media provide more nutrients and biomass precursors than
minimal media. As their name suggest, minimal media only
provide minimal required nutrients for the organism to grow.
C. glutamicum uses oxygen and the more efficient aerobic
respiration. It is even often regarded as aerobe (Takeno et al.,
2007). However, as C. glutamicum is facultatively anaerobe, it can
also switch to fermentation and anaerobic respiration if oxygen
is absent. Anaerobic growth by nitrate respiration is limited, as
nitrate accumulates and inhibits growth. Additionally, glucose is
converted to L-lactate and succinate without the growth of the
organism (Inui et al., 2004b; Koch-Koerfges et al., 2013).

Two observations stick out from these growth results. First,
the current tools for the reconstruction of GEMs still demand
subsequent manual refinement. Even though automated tools,
such as CarveMe (Machado et al., 2018), reduce the amount
of time spent on the reconstruction dramatically, manual
refinement remains a pivotal part of the reconstruction process.
The necessity of manual curation becomes particularly apparent
when comparing the growth predictions of our model for
the different media. The draft model created by CarveMe
enabled growth on the complete medium without further ado.
However, manual refinement was essential for the simulation
of growth on the two minimal media. The second interesting
observation is the organism-specific gap-filling, which appears
to be more fruitful when applied to media that specifically
compensate for certain physiological or metabolic oddities of the
organism. In our case, knowledge gap-filling was most fruitful
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on the CGXII medium which, for example, compensates for
the limited ability of C. glutamicum to synthesize and excrete
siderophores (Budzikiewicz et al., 1997). This makes sense, as
the minimal medium provides the microbe’s bare necessities to
grow. Potentially lacking compounds could be compensated by
the composition of the complete medium.

We validated our model by testing the growth rate on
the CGXII minimal medium under aerobic and anaerobic
conditions using different experimentally validated carbon
sources. Aerobic growth was possible on all experimentally
validated carbon sources. In addition to the experimentally
confirmed anaerobic growth on glucose, fructose, sucrose as
carbon sources, our in silico model also grew on gluconate. We
verified that all genes required to utilize gluconate as carbon
sources exist in C. glutamicum. The rate of NADPH reoxidation
could be a potential explanation for the in silico growth
on the additional anaerobic carbon source. The enzyme 6-
phosphogluconate dehydrogenase oxidizes 6-phosphogluconate
to ribulose 5-phosphate. This enzyme is inhibited by NADPH,
which is essential for the cellular control of the NADPH
synthesis (Moritz et al., 2000). The rate of NADPH re-oxidation
represents a critical element of this process. Gluconate is
phosphorylated after uptake and then catabolized in the pentose
phosphate pathway. If NADPH re-oxidation was too low under
anaerobic conditions, NADPH could accumulate and result
in complete inhibition of 6-phosphogluconate dehydrogenase
activity. This accumulation would lead to a stop in growth
on gluconate, as was shown by experimental data (Michel
et al., 2015). If, however, NADPH re-oxidation is sufficiently
fast and no NADPH accumulates, the activity of the 6-
phosphogluconate dehydrogenase could remain active and allow
anaerobic growth on gluconate by simulation studies with this
in silicomodel.

As a final validation step of the metabolic model, its
ability to produce amino acids was examined. In complex
bacterial systems, amino acid production co-occurs with
growth (Marx et al., 1996). The biosynthesis of amino acids
requires a lot of the carbon source’s total budget, usually
used for bacterial growth (Neidhardt et al., 1990). The
growth rate was fixed to 0.4mmol gDW−1 h−1 to ensure
the microbe’s viability while producing amino acids. With
increasing CO2 production rate and ATP requirements,
the amino acid production yield decreases. Especially
smaller amino acids with only a few carbon atoms, like
L-alanine with only three carbon atoms, or glycine with
two carbon atoms, have a low CO2 production and ATP
requirement rate.

In contrast, amino acids with more carbon atoms, such as

L-tryptophan, have a much higher ATP requirement and CO2

production rate, while the amino acid yield is relatively low.

This leads to the conclusion that building more extensive and
more complex amino acids needs more energy. An increasing
proportion of the consumed sugar will be used to produce more
energy, is then lost as CO2, and cannot be used for amino acid
formation (Gourdon et al., 2003).

4.3. L-glutamate Production: New Insights
for Metabolic Engineering
One might expect a linear correlation between the L-glutamate
production and the growth rate, where the slope is related
to the amino acid’s stoichiometric coefficient in the biomass
function. The trade-off between the production of L-glutamate
and the growth rate was investigated by fixing the growth
rates and maximizing the L-glutamate production (see Figure 5).
The system moves between these two boundaries: the maximal
possible growth rate and the maximal possible production of
L-glutamate. The closer the values get to either maximum, the
greater is the influence on the respective other value. When
ceasing growth, the theoretical production of L-glutamate would
reach a maximum since the available metabolic capacity is
invested in the L-glutamate production. The reverse situation
occurs with ceasing L-glutamate production and maximizing
growth where all energetic demand is invested. L-glutamate
production reaches its maximum when no growth occurs, and
the available glucose is completely used to produce L-glutamate.
Thus, the growth rate is the limiting factor for our in silicomodel,
independent of the L-glutamate production.

The PC was first investigated to study relevant reactions
for L-glutamate production (see Figure 6). The PC has been
described as the bottleneck in the production of L-glutamate
(Peters-Wendisch et al., 2001). Knocking out the PC in laboratory
experiments leads to ambivalent results: Both drastic decrease
(Peters-Wendisch et al., 2001) and increase (Sato et al., 2008)
in L-glutamate production were reported after a disruption of
the PC. Pyruvate is part of the complex network responsible
for carboxylation and decarboxylation reactions, which connect
the glycolysis and TCA cycle (Becker and Wittmann, 2020).
In C. glutamicum, the PC represents one of the carboxylation
enzymes, the other being the phosphoenolpyruvate carboxylase
(Eikmanns, 2005). The carboxylation and decarboxylation
enzymatic complex in C. glutamicum is a highly flexible network
that enables several pathways to respond to varying metabolic
circumstances (Möllney et al., 2000; Becker et al., 2008; Becker
and Wittmann, 2020)—knocking out the PC in our model still
allowed L-glutamate production. We also found that the amount
of produced L-glutamate does not vary significantly with the PC
being knocked. According to our simulation, the limiting factors
in L-glutamate production are access to carbon sources and the
growth rate.

Four reactions were identified that play a pivotal role in
the production of L-glutamate in our model. The first is a
glucose transporter, which uses the phosphoenolpyruvate (PEP)-
dependent sugar phosphotransferase system. The L-glutamate
yield decreased with sugar consumption rates in laboratory
experiments (Gourdon et al., 2003). This seems reasonable, as
glucose is the sole carbon source and starting point for glutamate
production. Increasing glucose availability is only expedient if the
glucose transporters’ capacity is given to take up the enhanced
supply of glucose. The three remaining reactions, aconitase,
citrate synthase, and isocitrate dehydrogenase, are all part of
the tricarboxylic acid (TCA) cycle. The TCA cycle is a complex
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regulated amphibolic pathway with L-glutamate and L-lysine as
derived intermediate products (Bott, 2007).

The aconitase gene is regulated by four transcriptional
regulators, indicating a tight control of this enzyme. A
C. glutamicum mutant lacking the aconitase gene was glutamate
auxotrophic in the CGXII minimal medium with glucose as the
carbon source (Baumgart et al., 2011). The model iCGB21FR
could replicate the finding that aconitase is essential for L-
glutamate production. It remains to be further experimentally
validated how the interplay between the aconitase within the
TCA cycle in terms of L-glutamate production can be optimized.

The citrate synthase catalyzes the initial reaction of the
TCA cycle. Overexpression of the citrate synthase can redirect
more carbon flux into the cycle and result in higher L-arginine
production (Man et al., 2016). L-arginine is synthesized from
the precursor L-glutamic acid (Utagawa, 2004). Thus, higher
production of L-glutamate might also be dependent upon the
activity of the citrate synthase. The role of the citrate synthase
in L-glutamate production might be an interesting topic to
investigate since it might represent a target for metabolic
engineering of C. glutamicum’s TCA cycle. Since the citrate
synthase is the initial reaction of the TCA cycle with L-
glutamate and L-lysine as intermediates, its activity might prove
particularly fruitful.

Isocitrate dehydrogenase catalyzes the oxidative
decarboxylation of isocitrate. Becker et al. (2009) found in
their investigation of the effects of the isocitrate dehydrogenase
on L-lysine production that decreased activity of the isocitrate
dehydrogenase improves the L-lysine production. This decrease
induced a flux shift from the TCA cycle to anaplerotic
carboxylation (van Ooyen et al., 2012). However, the PC
functions as an anaplerotic enzyme in L-glutamate production
(Peters-Wendisch et al., 1997). In other words, the isocitrate
dehydrogenase has different functions in L-glutamate production
than in L-lysine production. This differing function becomes
more apparent when looking at the effects of isocitrate
dehydrogenase inactivation in C. glutamicum: Inactivation of the
NADP-dependent isocitrate dehydrogenase in C. glutamicum
leads to L-glutamate auxotrophy (Eikmanns et al., 1995). This
connection between the PC and the isocitrate dehydrogenase
in L-glutamate production might be an interesting target for
metabolic engineering.

5. CONCLUSION AND OUTLOOK

The new model iCGB21FR represents an GEM of high quality of
the biotechnologically relevant microorganism Corynebacterium
glutamicum ATCC 13032. We reconstructed this metabolic

model with an adapted, species-specific biomass composition
and realistic growth rates in different environments, which
were validated using experimentally derived data. Furthermore,
alternative metabolic pathways for the production of L-glutamate
were shown in our in silico model. Particularly, these alternative
pathways could be of interest for further investigation in terms
of metabolic engineering. Biotin is a key player for the L-
glutamate production in C. glutamicum since its limitation
triggers L-glutamate production. Despite the inclusion of biotin
in iCGB21FR and its participation in five biochemical reactions,
its role in L-glutamate production is currently not included.
The influence of biotin on the PC and the reactions involved
in the alternative pathway for L-glutamate production with the
pyruvate carboxylase knocked-out should be further investigated
in subsequent GEMs of C. glutamicum.
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