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Abstract

The human gut microbiota comprise a complex and dynamic ecosystem that profoundly affects host development and
physiology. Standard approaches for analyzing time-series data of the microbiota involve computation of measures of
ecological community diversity at each time-point, or measures of dissimilarity between pairs of time-points. Although
these approaches, which treat data as static snapshots of microbial communities, can identify shifts in overall community
structure, they fail to capture the dynamic properties of individual members of the microbiota and their contributions to the
underlying time-varying behavior of host ecosystems. To address the limitations of current methods, we present a
computational framework that uses continuous-time dynamical models coupled with Bayesian dimensionality adaptation
methods to identify time-dependent signatures of individual microbial taxa within a host as well as across multiple hosts.
We apply our framework to a publicly available dataset of 16S rRNA gene sequences from stool samples collected over ten
months from multiple human subjects, each of whom received repeated courses of oral antibiotics. Using new diversity
measures enabled by our framework, we discover groups of both phylogenetically close and distant bacterial taxa that
exhibit consensus responses to antibiotic exposure across multiple human subjects. These consensus responses reveal a
timeline for equilibration of sub-communities of micro-organisms with distinct physiologies, yielding insights into the
successive changes that occur in microbial populations in the human gut after antibiotic treatments. Additionally, our
framework leverages microbial signatures shared among human subjects to automatically design optimal experiments to
interrogate dynamic properties of the microbiota in new studies. Overall, our approach provides a powerful, general-
purpose framework for understanding the dynamic behaviors of complex microbial ecosystems, which we believe will
prove instrumental for future studies in this field.
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Introduction

The human gut harbors a dense and complex microbial

ecosystem. Our ability to extensively characterize the microbiota

has greatly increased in the last several years, due to lower costs

and technical improvements in both DNA sequencing [1] and

bioinformatics tools [2,3]. High-throughput sequencing-based

studies of the microbiota generally analyze regions of the

conserved 16S ribosomal subunit gene [4], or use shotgun

sequencing to sample the entire repertoire of genes present in a

complex, mixed population of microbes [5–8]. These studies, of

either human subjects or animal models, have uncovered

intriguing associations between the composition of the gut

microbiota and various diseases, including obesity [8], inflamma-

tory bowel disease [7,9], and multiple sclerosis [10].

Longitudinal studies of the microbiota are particularly impor-

tant for further advancing the field [3,5,6,11–13]. The majority of

such longitudinal studies have been observational, monitoring the

composition of the flora in healthy individuals over time at various

body sites [3,5,6,11]. Such observational studies are valuable for

understanding natural variations in commensal communities, as

well as capturing rarer events such as onset and resolution of acute

disease in the host. Additionally, interventional studies have been

performed, in which subjects were intentionally exposed to agents

that perturb the microflora, with subsequent evaluation of changes

in host ecosystems over time [12,13]. Such interventional studies

hold promise for discovering the mechanisms by which microbes

interact with one another and the host, and to define how sub-

communities of micro-organisms may cause or protect against

disease.

To date, longitudinal studies of the microbiota have largely

employed static analysis techniques that do not adequately capture

the dynamic nature of the data. The most common types of

analyses employed involve either computation of diversity

measures, such as the Shannon-Weaver diversity index [14], at

each data point, or measures such as Unifrac [15] or Bray-Curtis

dissimilarity [16], which characterize pair-wise relationships

between data points. These techniques have proven useful for

uncovering certain trends in longitudinal data [3,6,8,11,12].

However, these techniques treat longitudinal data as a collection

of static snapshots, and ignore inherent ordering and other

temporal dependencies.
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We developed a probabilistic model and inference algorithm,

called Microbial Counts Trajectories Infinite Mixture Model

Engine (MC-TIMME), which provides a unified framework for

analyzing the dynamic behavior of the microbiota captured via

high-throughput sequencing data. Our framework models time-

varying counts of microbial taxausing exponential relaxation

processes. Each relaxation process is characterized by a transient

effect level (the amplitude of the process immediately after a

perturbation), an equilibrium level (the amplitude of the process

approached as time tends to infinity), and a relaxation time constant

(the time required for the amplitude of the process to reach 33% of

the transient effect level plus 67% of the equilibrium level, as

measured on a logarithmic scale).Observed abundances of taxa are

assumed to arise from an infinite mixture of prototype signatures.

Each prototype signature is composed of a set of relaxation

processes that model a response to multiple perturbations. Each

reference operational taxonomic unit (refOTU) in the ecosystem(s)

analyzed is probabilistically assigned to a prototype signature.

Adaptive Bayesian techniques are used to model the dimension-

ality of prototype signatures and the extent of sharing of prototype

signatures among refOTUs within and across ecosystem(s).The

time-series of observed counts for a particular refOTU in an

ecosystem is modeled through a generative process, in which the

prototype signature to which the refOTU has been assigned is

customized to an individual signature by addition of refOTU and

time-point specific offset terms. Data is then generated from a

discrete-valued noise model parameterized by the individual

signature.

MC-TIMME enables several new types of analysis. The first

type, termed Signature Diversity (SD) analysis, measures the

variety of time-dependent microbial responses to perturbations to

the host ecosystem(s). SD utilizes time-varying information, and is

thus distinct from traditional static measures of ecological diversity

[17], which characterize the complexity of a microbial community

in terms of its constituent members at a single point in time. The

second type, Relaxation Time Distribution (RTD) analysis,

estimates the distribution of times required for members of the

host ecosystem(s) to equilibrate after a perturbation event. This

analysis summarizes the kinetics of responses, which is useful for

understanding the phasing of changes within microbial ecosys-

tems. The third type, Consensus Signature Group (CSG) analysis,

identifies sub-communities of microbes within the larger ecosys-

tem(s) that exhibit coordinated responses to a set of perturbations.

This latter analysis provides information about which microbes

may form functional sub-populations that affect the host or other

microbial populations over time. Finally, MC-TIMME enables

automated design of longitudinal studies of the microbiota. Our

method couples information theoretic and Bayesian approaches to

estimate from prior data the optimal sets of time-points to be

sampled in future experiments. In this manner, data from a pilot

study can be leveraged to develop optimized experimental designs

for larger studies.

MC-TIMME has some similarities to previously published

methods for analyzing other types of high-throughput data.

Several studies have employed continuous-time models [18–21]

or infinite mixture models [22,23]to analyze time-series micro-

array data. Methods for optimal experimental design for time-

series microarray data have also been described [24]. However,

methods designed for analyzing gene expression data do not model

dynamics inherent in complex microbial ecosystems, such as

equilibrium reverting behavior. Further, these methods generally

assume observed data are continuously valued and normally

distributed, which is reasonable for microarray data, but not

sequencing data, which consist of counts. Extensive statistical

literature has documented that, for data consisting of discrete

counts, direct modeling of the data yields superior results as

compared to transforming data to continuous values (see e.g., [25–

27]). This issue has been recognized for RNA Seq data, and

several methods have been developed that use discrete-valued

noise models [28–30]. Recently, Holmes et al. [31]presented a

method for modeling microbial metagenomics counts data that

also uses discrete-valued distributions. However, in contrast to

MC-TIMME, these methods for analyzing RNA Seqor metage-

nomics count data use only static models.

To gain new understanding of dynamic changes in the human

gut microbiota caused by antibiotic exposure, we applied MC-

TIMME to data from a longitudinal study by Dethlefsen et al. [12].

Despite the profound effects antibacterial agents presumably have

on commensal species in vivo, remarkably little is known about the

rates at which these complex ecosystems recover or remain altered

after cessation of a course of antibiotics. Further, it remains poorly

understood how antibiotic-induced changes in the microbiota

affect underlying host physiology, including enhanced susceptibil-

ities to other pathogens [32], disease states such as allergic and

auto-immune responses [33,34], and acute or chronic effects on

host diet and metabolism [35].To date, the Dethlefsen et al. study

provides the longest time-series systematically monitoring the

effects of antibiotics on human gut commensals. In this study,

human subjects were given two spaced five day courses of oral

ciprofloxacin, a broad-spectrum antibiotic that targets the DNA

gyrase and topoisomerases of many microbial species [36–40].

Subjects’ gut microbiota was monitored at 50+ time-points over

nearly a year, by sequencing 16S rRNA gene signatures present in

stool samples.

The remainder of the manuscript is organized as follows. First,

we provide additional background on the Dethlefsen et al. dataset

that we re-analyzed. Second, we describe the MC-TIMME

framework, including our model of dynamics, inference algorithm,

and automated experimental design method. Third, we apply

MC-TIMME to the Dethlefsen et al. data to demonstrate the utility

of Signature Diversity (SD), Relaxation Time Distribution (RTD),

Author Summary

Microbes colonize the human body soon after birth and
propagate to form rich ecosystems. These ecosystems play
essential roles in health and disease. Recent advances in
DNA sequencing technologies make possible comprehen-
sive studies of the time-dependent behavior of microbes
throughout the body. Sophisticated computer-based
methods are essential for the analysis and interpretation
of these complex datasets. We present a computational
method that models how human microbial ecosystems
respond over time to perturbations, such as when subjects
in a study are treated with a drug. When applied to a large
publicly available dataset, our method yields new insights
into the diversity of dynamic responses to antibiotics
among microbes in the human body. We find that within
an individual, sub-populations of microbes that share
certain physiological roles also share coordinated respons-
es. Moreover, we find that these responses are similar
across different people. We use this information to
improve the experimental design of the previously
conducted study, and to develop strategies for optimal
design of future studies. Our work provides an integrated
computer-based method for automatically discovering
patterns of change over time in the microbiota, and for
designing future experiments to identify changes that
impact human health and disease.

Inferring Dynamic Signatures of Microbes
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and Consensus Signature Group (CSG) analyses, and experimen-

tal design methods. Our results provide new quantitative insights

into how antibiotic exposures affect the human gut microbiota,

and how these dynamic alterations may influence the host.

Methods

Dataset Summary
Dethlefsen et al. [12] examined the microbiota from stool

samples of three human subjects over a 10 month period, using

Roche 454 high-throughput sequencing of PCR amplicons

spanning the V1, V2 and V3 regions of 16S rRNA genes,

producing a total of approximately 5 million reads. During the

study, each subject received two separate 5 day courses of oral

ciprofloxacin. Stool samples were collected daily during, one week

prior, and one week after the antibiotics courses, but otherwise

were collected less regularly throughout the study. Dethlefsen et al.

combined the sequencing reads from all subjects to produce 2,582

reference operational taxonomic units (refOTUs). However, they

found that only a few hundred refOTUs were present at

consistently detectable levels in at least one sample per subject.

In order to focus our analysis on refOTUs above the threshold of

detection of the sequencing assay, we required that refOTUs have

$5 counts for $10 time-points. This resulted in a total of 218

refOTUs for subject D, 261 for subject E, and 277 for subject F.

Dethlefsen et al. taxonomically labeled refOTUs using the Silva

100 Small Subunit Reference database [41], and UClust [42] with

a minimum best hit similarity of 95%. Data files containing counts

and taxonomic labels for refOTUs were downloaded from the

website linked to the original publication; DNA sequences for each

refOTU were not available.

MC-TIMME
Overview. MC-TIMME uses a Bayesian nonparametric

hierarchical generative probability model as depicted in Figure 1.

The ecosystem(s) analyzed are assumed to be decomposable into

probabilistic mixtures of functions, continuous in both time and

value, termed prototype signatures (Figure 1A). The data generation

process probabilistically assigns each refOTU to a prototype

signature, which induces a clustering of refOTUs into groups that

share similar dynamics. The continuous-time prototype signature is

then sampled at observed time-points (Figure 1B). The prototype

signature is converted to an individual signature(Figure 1C) through

a refOTU specific scaling term, and an experiment-wide normal-

ization term that accounts for the total numbers of sequencing reads

across experiments. Finally, the observed data for each refOTU, a

time-series of counts, is generated from the individual signature

through a discrete-valued noise model (Figure 1D).

MC-TIMME adaptively learns three levels of Signature

Diversity (SD) as depicted in Figure 2. These three levels are:

(SD1) intra-signature (Figure 2A), or the dimensionality of each

prototype signature, (SD2) intra-ecosystem (Figures 2B,2C), or the

diversity of prototype signatures among the taxa within an

ecosystem, and (SD3) inter-ecosystem (Figures 2D,2E), or the

diversity of prototype signatures across multiple host ecosystems.

For SD1 adaptive learning, MC-TIMME employs latent variables

that control the number of parameters that specify each prototype

signature. For SD2, MC-TIMME incorporates Dirichlet Process

infinite mixture models, which effectively adjust the number of

prototype signatures used to model the system. ForSD3, MC-

TIMME maps experiments from different ecosystems to the same

time-scale for simultaneous analysis, facilitated by the continuous-

time model of dynamics.

The MC-TIMME model is fully Bayesian, and we thus seek to

infer the posterior probability distribution of the model variables

given the data. However, the posterior distribution is not

computable in closed form, making exact inference intractable.

Instead, we approximate the posterior distribution using Markov

Chain Monte Carlo (MCMC) methods, and then compute various

summary statistics. Below, we provide further information on the

MC-TIMME model and associated algorithms; see Protocol S1

for complete details.

Sample data, instructions, and GPLv3 licensed MatlabTM

(MathWorks, Natick, MA) source code for MC-TIMME are

available at https://sourceforge.net/projects/mctimme/. The

implementation provided will process datasets with an arbitrary

number of experimental subjects or perturbations, as specified

through user supplied data files.

Dynamical model for antibiotic pulses. Prior longitudinal

studies have qualitatively described several key dynamic properties

of the gut microbiota [3,12]. First, abundances of individual

microbes within a stable ecosystem are constrained around

average levels, despite day-to-day temporal variability. Second,

when the ecosystem is perturbed, individual members exhibit

varied responses. These responses are characterized by transient

components that eventually decay toward an equilibrium state. Of

note, this equilibrium state may differ from the pre-perturbation

state. Third, the responses of micro-organisms within the

ecosystem are dependent on one another. These dependencies

may be multifactorial, including factors such as competition for

nutrients and other essential resources, as well as common

reactions to phases of the host immune response.

To model these phenomena for the Dethlefsen et al. data, we

assume that the dynamics for each refOTU are characterized by

piece-wise defined functions over five intervals delimited by the

antibiotic treatments in the experiment (Figure S1). These five

intervals are: (a) pre-antibiotic, (b) antibiotic treatment one, (c)

post-antibiotic treatment one, (d) antibiotic treatment two, and (e)

post-antibiotic treatment two.

Observed sequencing counts ysot for subject s, refOTUo, and at

time t are assumed to be samples from the negative binomial

distribution (NBD), a two parameter distribution [25]. The density

function of the NBD can be parameterized in terms of its mean m

and inverse shape parameter e. Thus, for ysot the NBD density

function is given by:

NBD(ysot; msot,e)~
C(ysotz1=e)

C(1=e)ysot!
: msot

ysot e{1=e

(msotz1=e)ysotz1=e

Let each prototype signature k be associated with a deterministic

function f(t,hk). We then specify the mean of the NBD msot at time t

for refOTUo in subject s assigned to prototype signature k as:

msot~ef(t,hk )zcsozwst

The variable cso is a subject and refOTU specific offset that scales

the baseline number of counts for refOTUo in subject s. The

variable wst is a subject and time-point specific offset that accounts

for differences in the total number of sequencing reads among

experiments for subject s.

For intervals (a), (b) and (d), we assume f(t,hk) is constant valued,

i.e., fa(N) = mka, fb(N) = Xkb, and fd(N) = Xkd. We assume that dynamics

in interval (c), the period after the first antibiotic treatment and

before the second, are specified by an exponential relaxation

process:

Inferring Dynamic Signatures of Microbes
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fc(t,Xkb,mkc,lkc)~Xkbe{t=lkczmkc(1{e{t=lkc )

This process has initial value Xkb, modeling the transient effect of

the antibiotic treatment, and approaches equilibrium level mkc with

relaxation time lkc.

For interval (e), the period after the second antibiotic treatment,

we also assume an exponential relaxation process:

fe(t,Xkd ,mke,lke)~Xkde{t=lkezmke(1{e{t=lke )

For the NBD inverse shape parameter, we assume it is equal to the

same value, e1, on intervals (a), (c) and (e), and equal to a different

value, e2, on the antibiotic treatment intervals (b) and (d).

To capture behavior of the microbiota that spans multiple

temporal intervals, we model dependencies between interval

parameters using random walks. For instance, the equilibrium

level on interval (c), mkc, for the prototype signature k is given by:

mkc~mkazdka?c

Here, mka is the pre-treatment equilibrium level, and dkaRc is a

random, normally distributed increment. We model relationships

between the other interval parameters similarly, as described fully

in Protocol S1.

To adapt the complexity of the dynamical models for prototype

signatures, we introduce dimensionality changing variables, ckm

and ckl. These variables are discrete-valued, and act as ‘‘switches’’

to control the number of equilibrium levels or relaxation time

parameters utilized by each prototype signature.

Model inference and posterior distribution

summarization. We approximate the posterior distribution of the

MC-TIMME model using Markov Chain Monte Carlo (MCMC)

methods. The DirichletProcess aspects of the model are handled with

Gibbs sampling steps [43]. Updating prototype signature variables is

more involved, because of temporally induced dependencies among

variables, non-conjugacy of prior distributions, and the dimensionality

changing variables. For these updates, we use combined Reversible

Jump/Metropolis-Hastings steps. See Protocol S1 for complete details.

We ran our MCMC algorithm with a burn-in of 10,000 iterations, and

then collected every 10th sample for an additional 5,000 iterations.

Convergence was evaluated using standard techniques as described in

[44]. Eight independent MCMC runs were pooled for our final

analysis. This produced a set of J = 4,000 posterior samples, which

were then used to compute summary measures for Signature Diversity

(SD), Relaxation Time Distribution (RTD), and Consensus Signature

Group (CSG) analysis.

Figure 1. Schematic of the Microbial Counts Trajectories Infinite Mixture Model Engine (MC-TIMME) generative probabilistic
model. Observed data of time-series of sequencing counts for reference operational taxonomic units (refOTUs) are assumed to arise from a multi-
level generative probabilistic mixture model.(A)Infinite mixture over latent prototype signatures (green, red and blue solid lines),which specify
models of dynamics continuous in both time and amplitude. The horizontal axis for each prototype signature represents time, and the vertical axis
represents amplitude. Prototype signatures may adapt their dimensionality, which is shown increasing from left to right. The variables pi and
associated shaded bars represent prior probabilities for choosing among prototype signatures. (B)For each refOTU, a prototype signature is
probabilistically chosen and sampled at discrete observed time-points. (C)Experiment and refOTU specific variables are added to the selected
prototype signature to create an individual signature. (D) Observed data, consisting of sequencing counts, is generated through a discrete-valued
noise model parameterized by individual signatures generated in step C.
doi:10.1371/journal.pcbi.1002624.g001
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We define the Signature Diversity type 1 equilibrium level

score, SD1m, as the expected fraction of refOTUs with greater

than one equilibrium level. We similarly define the SD1 relaxation

time score, SD1l, as the expected fraction of refOTUs with greater

than one relaxation time constant. The SD1 scores are given by:

SD1m(s)~
X

j

X
k

n
(j)
skI(c

(j)
kmw1)=OsJ

SD1l(s)~
X

j

X
k

n
(j)
skI(c

(j)
klw1)=OsJ

Here, I(N) denotes the indicator function, nsk
(j) the number of

refOTUs from subject s assigned to prototype signature k in

MCMC sample j, and Os the number of refOTUs for subject s.

We define the Signature Diversity type 2 (SD2) score as the

expected equivalent number of prototype signatures per 100

refOTUs. Because assignment of refOTUs to prototype signatures

may be non-uniform, we use a measure that standardizes for this

effect. The SD2 score is given by:

SD2(s)~100
X

j

eHs(n
(j)
s )=OsJ

Here, Hs(ns
(j)) represents the entropy with respect to the

distribution over assignments to prototype signatures for sample

j, restricted to subject s. The exponentiated entropy yields the

equivalent number of prototype signatures: the hypothetical

number of prototype signatures, assuming a uniform assignment

of refOTUs, which will yield an entropy equal to Hs(ns
(j)).

We define the Signature Diversity type 3 (SD3) score as a ratio

of SD2 scores: SD2D, which is an SD2 score computed on a

hypothetical combined ecosystem, and SD2I, which is the

weighted average of independent SD2 scores computed on each

ecosystem separately. These scores are given by:

SD2D~100
X

j

eH(n(j))=J
X

s
Os

SD2I~100
X

s

SD2(s)Os=
X

s
Os

Here, H(n(j)) represents the entropy with respect to the distribution

over assignments to prototype signatures for sample j for all

subjects’ ecosystems combined.

To characterize Relaxation TimeDistributions, we estimated

probability density functions for relaxation time constants of all

refOTUs, using the ksdensitykernel density estimation function

in MatlabR2011b with the default options.

To characterize Consensus Signature Groups (CSGs), we used

an agglomerative clustering method as described in [23]. For each

pair of refOTUso and o9 in subjects s and s9 (possibly the same

subject) we computed:

pso,s’o’~
X

j

I(z(j)
so~z

(j)
s’o’)=J

Here, z(j) is a random variable that specifies the assignment of a

refOTU to a prototype signature for MCMC iteration j. The

agglomerative clustering method successively merges CSGs based

on average linkage using pso,s9o9 as the similarity measure. Merging

is stopped when the number of clusters reaches the expected

number of prototype signatures, as calculated from all the MCMC

samples. Consensus signatures and relaxation time constants for a

CSG are then computed from the MCMC samples for all

refOTUs belonging to that CSG.

To test for enrichment of Consensus Signature Groups for

particular taxonomic labels, we used the following procedure. For

each CSG, we computed p-values for the observed configuration

of taxonomic labels of refOTUs at the order, family and genus

levels, under the null hypothesis that configurations followed the

hypergeometric distribution. We computed the false discovery rate

(FDR) using the method of [45], and considered cases with

FDR,0.05 significant.

Experimental Design
Our approach is based on a Bayesian information theoretic

formulation of the experimental design problem (see e.g., [46–48]).

To define notation, suppose we are given a joint probability

distribution p(H,A(T)) over model parameters H and possible data

A(T) collected at a set of time-points T. Suppose we then perform

experiments, which allow us to collect a dataset denoted a. This

results in a gain in Shannon information that is given by:

=fp(H,A(T)~a)g~Hfp(H)g{Hfp(HDA(T)~a)g

Here, H{N} denotes the differential entropy. Thus, we see that the

gain in information is due to the difference in entropy between

prior and posterior distributions.

The objective of our automated experimental design algorithm

is then to choose the sampling times T that maximize the expected

information gain over all possible data that could be observed at

those time-points:

EA(T)½=fp(H,A(T))g�~
ð

p(H,A(T))log

½fp(H,A(T))=p(A(T))gp(H)�dA(T)dH

This is a high dimensional integral that is in general intractable.

However, for a linear model with Gaussian noise, the integral can

be written as [46,49,50]:

ð
logfDIM(H; T)Dgp(H)dH

Here, IM denotes the Fisher information matrix, and |N| the

determinant of the matrix. The integral can be approximated with

a function g(N) of samples H(j) from the priorp(H), yielding:

EA(T)½=fp(H,A(T))g�&g(T ,H(1), . . . ,H(J))

~
X

j

logfjIM(H(j); T)jg=J

In the case of a Generalized Linear Model, a linear approximation

can be calculated to yield a local Bayesian D-optimality measure

[50]. We use this measure, as each prototype signature in MC-

TIMME is a Generalized Linear Model if we condition on the

appropriate parameters (see Protocol S1).

We estimate samples from p(H), the prior probability distribu-

tion over model parameters for future experiments, using a model

learned from previously observed data. Specifically, we use 500

MCMC samples obtained from the posterior distribution of the

MC-TIMME model conditioned on a set of observed data. We

then use a greedy optimization algorithm with the Bayesian D-

optimality function g(N)defined above, to generate experimental

designs. See Protocol S1 for complete details.

Inferring Dynamic Signatures of Microbes
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Results

Algorithm Performance
MC-TIMME analyzed the complete Dethlefsen et al. dataset,

consisting of 3 subjects with 50+ time-points each, in approx-

imately 12 hours on an Intel Xeon E5507 2.27 GHz core. Figure

S2 provides examples of individual signatures for refOTUs

inferred by MC-TIMME. The subsequent sections detail our

biological findings based on these analyses.

We also ran additional analyses to evaluate the sensitivity of our

results to key model assumptions or features of the data. First, we

tested the robustness of the model’s dimensionality adaptation

capability, which is a critical component of Signature Diversity

scores. These tests showed no significant differences in our results

when relevant model parameters were varied. Second, we tested

the robustness of our results to noise. Because an equivalent gold

standard experimental dataset does not exist, we generated

simulated data for use in testing. For these simulations, we used

all prototype signatures estimated by MC-TIMME from the full

Dethlefsen et al. dataset as our gold standard, and then generated

test datasets with varying amounts of added noise. When the

amount of noise equaled that in the original dataset (coefficient of

variation of <60% for counts), MC-TIMME recovered Signature

Diversity scores with ,<10% error, and relaxation time constant

estimates with <25% error for the first post-antibiotic exposure

interval, and <40% error for the second interval; measures of

consistency of assignment of refOTUs to prototype signatures

showed <20% reduction in quality. Third and finally, we tested

the sensitivity of our results to exclusion of each experimental

subject. These tests showed error rates comparable to those from

our simulations when noise levels were equal to those in the

original dataset. See Protocol S1 for complete details. Overall, our

model performance tests demonstrate that our results are robust to

changes in relevant parameter settings, noise, and exclusion of

experimental subjects.

Signature Diversity
To characterize the diversity of responses of the microbiota to

repeated antibiotic treatments, we calculated three types of

Signature Diversity (SD) scores. As shown in Figure 2, each SD

score (SD1 to SD3) measures the dynamic behavior of micro-

organisms in the host ecosystem(s) at a different level of resolution.

These scores take into account the responses over time for

refOTUs, and thus provide new information about dynamic

properties of the ecosystems studied, as compared to traditional

static measures of ecological diversity [17].

The intra-signature diversity (SD1) scores for all three subjects

in the Dethlefsen et al. study were .<50% (Figures 3A, 3B),

indicating that the majority of micro-organisms in these host

ecosystems exhibited changes in equilibrium levels or relaxation

times after one or both antibiotic treatments. As shown in

Figures 3A and 3B, the SD1 score has two components: (1) SD1m,

which measures the expected fraction of refOTUs with changes in

equilibrium levels between pre-treatment and at least one post-

antibiotic treatment interval, and (2) SD1l, which measures the

expected fraction of refOTUs with changes in relaxation time

constants between the two antibiotic treatment intervals. The

intra-ecosystem signature diversity (SD2) score was <8–20

expected equivalent signatures per 100 refOTUs (Figure 3C),

indicating that many micro-organisms within each host ecosystem

exhibited similar responses to the antibiotic treatments. Stated

another way, a typical refOTU in a subject’s gut ecosystems

shared a similar response with <5–12 other refOTUs.

These analyses indicated that subject E’s gut microbiota

exhibited fewer long-term shifts in abundance levels and

responded overall more uniformly to the antibiotic exposures.

That is, subject E had significantly lower intra-signature and intra-

ecosystem Signature Diversity scores, with an SD1mscore of 50%

and SD2 score of 10, as compared with the other two subjects with

SD1m scores .70% and SD2 scores <20. This differential

behavior of subject E’s microbiota was not discernible in the

original analysis performed by Dethlefsen et al., as they did not use

techniques that quantified diversity of temporal responses. Our

Signature Diversity analysis thus provides additional information

about the functional diversity of subject E’s microbiota, suggesting

that this subject may have harbored a more ciprofloxacin-resistant

flora prior to the experiments. Of note, subjects in the study had

not received antibiotics in the past year before the experiments,

but their antibiotic exposure history prior to this point was

unknown.

The inter-ecosystem signature diversity (SD3) score for the 3

subjects was 48%(p-value,1026using a permutation test with null

hypothesis of independent ecosystems), indicating that there were

substantial similarities in the time-dependent responses of the

subjects’ microbiota to the antibiotic treatments. As shown in

Figure 3D, the SD3 score is a ratio of two SD2 scores: (1) SD2D,

which is computed on a hypothetical combined ecosystem, in

which refOTUs from different subjects probabilistically share

prototype signatures, and (2) SD2I, which is a weighted average of

independent SD2 scores computed separately on each subject.

The SD3 score of 48% indicates that approximately as many

prototype signatures were shared among the subjects as were

unique to each subject. Thus, although subjects’ microbiota did

exhibit varied responses to the antibiotic treatments, as reported in

the Dethlefsen et al. study, our findings indicate that there were

substantial commonalities among responses. These commonalities

could not have been found using the analysis techniques of the

original study, which relied on calculations at individual time-

points, in part because different sampling times for each subject

made point-wise comparisons impossible. In contrast, MC-

TIMME uses a continuous-time model of dynamics that leverages

information from multiple time-points to estimate key dynamical

properties, allowing comparisons across subjects on a common

time-scale.

Relaxation Time Distributions and Consensus Signature
Groups

We generated Relaxation Time Distribution (RTD)plots using

data from all three subjects, to investigate common trends in the

rates at which the microbiota attained equilibrium levels after

repeated antibiotic exposures (Figure 4). These plots depict

estimated smoothed probability distributions of relaxation time

constants, in units of days, for all refOTUs across all subjects. As

shown in Figure 4, the Relaxation Time Distribution for the first

post-antibiotic exposure interval is multi-modal. A large peak in

the distribution at <1–3 days indicates that many refOTUs

quickly reached equilibrium levels, while a subsequent broader

peak suggests waves of microbial succession events among

subpopulations that took longer to equilibrate. Interestingly, after

the second antibiotic exposure, the relaxation time distribution

became simpler and more concentrated, with more refOTUs

exhibiting relaxation times around <1–3 days. This finding

suggests that the first antibiotic treatment shifted gut ecosystems

toward more rapidly equilibrating states, possibly by selecting for

more antibiotic resistant organisms or for sub-communities that

more quickly and stably established themselves in relevant niches.

Inferring Dynamic Signatures of Microbes

PLoS Computational Biology | www.ploscompbiol.org 6 August 2012 | Volume 8 | Issue 8 | e1002624



To further our understanding of the differential responses of

microbial sub-communities to antibiotic exposures, we next

generated Consensus Signature Groups (CSGs), which represent

groups of refOTUs that consistently covary in terms of relative

abundances over time. Combining data from all subjects, MC-

TIMME identified 125 CSGs. Interestingly, many of the CSGs

contained refOTUs that are phylogenetically related or are

common to all subjects. To assess the phylogentic relationships

among refOTUs within each CSG, we calculated an enrichment

p-value for taxonomic labels at the order, family and genus levels,

based on a hypergeometric distribution null hypothesis. Approx-

imately 61% of refOTUs belonged to CSGs significantly enriched

for at least one taxonomic label at these levels, with most such

CSGs shared across subjects. These results provide evidence that

MC-TIMME detected biologically relevant sub-communities of

organisms based only on evaluation of time-varying behaviors of

Figure 2. Schematics of microbial ecosystems illustrating Signature Diversity scores at multiple levels of resolution. The panels depict
examples of simplified microbial ecosystems measured over time, to illustrate three levels of Signature Diversity (SD) scores computed by the
Microbial Counts Trajectories Infinite Mixture Model Engine (MC-TIMME) framework. (A) Intra-signature diversity (SD1), characterizes the
dimensionality of each prototype signature. The top panel depicts a prototype signature with a lower SD1 score than the prototype signature in the
bottom panel, which exhibits different equilibrium levels and relaxation time constants on each of the shaded intervals. (B–C) Intra-ecosystem
signature diversity (SD2), characterizes the extent of prototype signature sharing among taxa within a host ecosystem. Host ecosystem (B) has a lower
SD2 score than (C), because all taxa in (B) share the same prototype signature. (D–E) Inter-ecosystem signature diversity (SD3), characterizes the
extent of prototype signatures haring across ecosystems. Each panel depicts two ecosystems. The two ecosystems in (D) have a lower SD3 score than
those in (E), because more prototype signatures are shared between the ecosystems in D.
doi:10.1371/journal.pcbi.1002624.g002
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refOTUs. MC-TIMME additionally discovered refOTUs that

exhibited consistent behavior across all subjects: 88refOTUs were

present in all 3 subjects, and of these 88 refOTUs, <25% were

assigned to common CSGs. These sets of refOTUs, which

consistently covary across all subjects, could serve as candidate

biomarkers in future studies of antibiotic treatments or other

perturbations to the gut flora.

We created a time-line of the largest and best taxonomically

defined Consensus Signature Groups (Figure 5A–M), to gain

insight into the specific responses and successive equilibration of

gut commensal sub-populations after antibiotic exposures. For

purposes of visualization, we ordered the CSGs according to their

relaxation time constants after the first antibiotic pulse, as these

relaxation times exhibited the most variation. To facilitate

interpretation, we included only CSGs containing at least one

refOTU shared among all subjects, and significantly enriched

(false discovery rate,0.05, hypergeometric tests)for at least one

taxonomic label at the family or genus level. These criteria yielded

13 CSGs, containing <50% of all refOTUs. Of the 13 CSGs, 8

exhibited decreases in relative abundance during the first

antibiotic pulse (Figure 5A–H), and 5 respectively exhibited

increases (Figure 5I–M).

Among Consensus Signature Groups showing decreases in

relative abundance during the first antibiotic pulse, those

containing refOTUs in the genus Bacteroides (Figure 5A,C), or

refOTUs in the related family Porphyromonadaceae (Figure 5D),

were among the first groups to equilibrate after cessation of

antibiotics. These groups of refOTUs had relaxation times ,<2

weeks, and returned to the same or higher relative abundances as

compared to those prior to the first antibiotic pulse. The Bacteroides

[51]are obligate anaerobes. Members of this genus, in particular B.

fragilis, are known to have greater resistance to ciprofloxacin,

mediated in part by several bacterial factors, coupled with reduced

activity of the antibiotic under anaerobic conditions [40,52]. The

Bacteroides can also be opportunistic pathogens and are capable of

developing resistance to multiple classes of antibiotics after

repeated exposures [53,54]. These characteristics may explain

why the Bacteroides were among the first genera found by MC-

TIMME to recover post-antibiotic treatment. Interestingly,

another CSG significantly enriched for refOTUs of genus

Bacteroides (Figure 5M) exhibited an increase in relative abundance

during antibiotic treatment, with a very slow return to equilibrium

levels (relaxation time <42 days). This finding suggests that

subjects consistently harbored antibiotic resistant Bacteroides,

echoing concerns that members of this genus could serve as

reservoirs of resistance genes for more frankly pathogenic bacteria

[53,54].

MC-TIMME also identified another quickly equilibrating sub-

community that contained refOTUs belonging to acetate [55] and

butyrate [56] producing genera (Figure 5I). This sub-community

showed increases in relative abundance during antibiotic treat-

ments and was significantly enriched for refOTUs belonging to the

genera Blautia, Faecalibacterium, or Roseburia. Many Blautia species

are acetogens, producing acetate from H2 and CO2 through the

acetyl-CoA pathway [55]. Acetate has known downstream effects

on the microbial production of butyrate [57]. Butyrate, a 4-carbon

short chain fatty acid, has important roles in maintaining colonic

health of the host, providing a luminal source of energy to the

epithelial barrier [57], while limiting the degree of autophagy in

host colonocytes and reducing the host’s susceptibility to agents

that might otherwise promote damage to the colonic mucosa [58].

Members of the genera Faecalibacterium and Roseburia are prominent

butyrate producers in the human gut [56]. Our CSG analysis

suggests that the identified Blautia, Faecalibacterium, and Roseburia

refOTUs may operate as a functional multi-species community in

the gut, one demonstrating relative resilience tociprofloxacin’s

effects. This finding highlights MC-TIMME’s ability to identify

and track over time and across multiple subjects, bacterial sub-

Figure 3. SignatureDiversity scores for gut microbiota of three human subjects treated twice with antibiotics. (A) Intra-signature
diversity scores for equilibrium levels (SD1m), which measure the expected fraction of reference operational taxonomic units (refOTUs) that change
equilibrium levels in response to one or more of the antibiotic treatments. (B) Intra-signature diversity scores for relaxation times (SD1l), which
measure the expected fraction of refOTUs that exhibit different relaxation time constants after the antibiotic treatments. (C) Intra-ecosystem
signature diversity scores (SD2), which measure the expected equivalent number of prototype signatures per 100 refOTUs. (D) The inter-ecosystem
signature diversity score (SD3), which measures the degree of sharing of prototype signatures across host ecosystems, is a ratio of the SD2Dto the
SD2I score. The SD2Dscore is computed on a hypothetical combined ecosystem, in which refOTUs from different subjects probabilistically share
prototype signatures. The SD2I score is a weighted average of SD2 scores computed on each subject separately.
doi:10.1371/journal.pcbi.1002624.g003

Inferring Dynamic Signatures of Microbes

PLoS Computational Biology | www.ploscompbiol.org 8 August 2012 | Volume 8 | Issue 8 | e1002624



communities with potential benefits to the host. Interestingly, MC-

TIMME discovered a second CSG containing Blautia refOTUs,

but not the butyrate producing genera (Figure 5B),and that

exhibited a different response pattern, with a decrease in relative

abundance during the first antibiotic pulse, and relatively rapid

return to pre-antibiotic relative abundances. Of note, certain

Blautia species, such as B. hydrogenotrophica, use a broader range of

substrates for acetogenesis than other species in the genus

[55].The presence of such Blautia species with greater metabolic

flexibility in the CSG depicted in Figure 5B could explain the lack

of butyrate producers in this consensus signature group.

Several Consensus Signature Groups contained refOTUs

belonging to the family Ruminococcaceae (Figure 5F,G,H). These

CSGs showed decreases in relative abundance during the first

antibiotic pulse and equilibrated slowly thereafter. In fact, one

group of these organisms (Figure 5H), become undetectable after

the first antibiotic pulse, and another group (Figure 5F) declined to

very low relative abundance levels after the second pulse. The

Ruminococcaceae are overall obligately anaerobic, fastidious

organisms that may require substrates produced as by-products

of metabolism by earlier colonizers in gut luminal food-webs [57–

59]. Thus, the delay in which these consensus groups of

Ruminococcaceae recovered may be due to high degrees of

dependence on activities of other organisms in the ecosystem.

MC-TIMME also discovered a number of Consensus Signature

Groups containing refOTUs from the family Lachnospiraceae

(Figure 5E,J,K,L). The majority of these CSGs showed increases

during the antibiotic pulses, with fairly long relaxation times to

pre-antibiotic relative abundance levels. The Lachnospiraceae are

a large family of difficult to cultivate organisms, some of which

have been found in close association with the mucous layer over

the distal colonic epithelium [60]. Although little is known about

the antibiotic susceptibilities of these organisms, it has been

hypothesized that they may have evolved special mechanisms to

survive the higher concentrations of endogenously produced host

anti-microbial peptides present in this niche [60]. Our CSG

analysis identified distinct groups of refOTUs from the Lachnos-

piraceae family that exhibited prolonged increases in relative

abundance after ciprofloxacin exposure. These findings provide

new information about this poorly understood bacterial family,

which could be used to guide future studies to evaluate potential

mechanisms of innate antibiotic resistance among Lachnospir-

aceae sub-communities.

Automated Experimental Design
Application of metagenomic techniques to diagnostic medicine

will require human clinical trials across many subjects to ascertain

time-dependent effects and responses of the microbiota relative to

a defined perturbation or clinical course of disease. The

complicated logistics and expense of such trials highlight the need

for computational techniques to optimize sampling across subjects.

We developed an algorithm for automated experimental design,

and applied it to the Dethlefsen et al. dataset to explore how the

experimental design of a longitudinal study of the microbiota

could be improved for future, larger trials. Our algorithm uses the

data from a set of previously performed experiments to estimate an

initial model of prototype signatures. This initial model is used to

find a set of time-points that maximize the information that can be

gained from future, hypothetical experiments. In general, our

algorithm prioritizes time-points for sampling in future experi-

ments around time-points in the original experiment that had the

highest degree of uncertainty in the model. The selected time-

points may differ from those in the original experiments, and thus

indicate when increased sampling could better estimate dynamics

of the ecosystems under study, or when reduced sampling still

yields sufficient information.

Figure 6 depicts the optimized experimental design produced by

our algorithm for each subject. To facilitate comparisons among

designs, we restricted our algorithm to choose the same numbers of

time points as were used in the original design. Our algorithm

generated an optimal design that consistently differed from the

original design, over certain temporal intervals. On the pre-antibiotic

interval, the optimized design required more uniform sampling,

reflecting the modeling assumption that host ecosystems were at

equilibrium prior to antibiotic exposure. For the period immediately

after the first antibiotic exposure, the optimized design required

additional frequent sampling beyond the one week of the original

design. This increased sampling requirement is consistent with the

relaxation time distribution on the first post-antibiotic treatment

interval shown in Figure 4, which indicates the presence of transient

effects beyond one week for many refOTUs. However, the optimal

design required fewer subsequent samples on the first post-antibiotic

treatment interval, suggesting that MC-TIMME can effectively

leverage earlier time-points obtained while the ecosystem is still

equilibrating to estimate later behavior near steady-state. During the

period immediately after the second antibiotic exposure, the optimal

design generally required less frequent sampling than did the original

design. This reduced sampling requirement reflected the shorter

relaxation time distribution on the second post-antibiotic interval as

shown in Figure 4. Finally, the optimal design required considerably

more sampling at the end of the time-series; the original experiments

clearly under-sampled after the second antibiotic exposure, as is

evident from high variability in model parameter estimates on this

interval (see Figure 5 and Figure S2).

To assess the predictive accuracy of our experimental design

algorithm, we evaluated its ability to find a set of experiments to

best estimate a model to predict held-out data (Figure S3). We

used root mean square error (RMSE) to measure predictive

accuracy. RMSE is the square root of the sum of squared

Figure 4. Relaxation Time Distributions for responses of
human gut commensals to repeated antibiotic exposures. Each
relaxation time constant characterizes the time for a reference
operational taxonomic unit (refOTU) to reach an equilibrium relative
abundance level in the ecosystem after an antibiotic pulse. Probability
density functions were estimated for either the first post-antibiotic
exposure interval (solid blue line, ‘‘1st relaxation time’’) or the second
post-antibiotic exposure interval (dashed red line, ‘‘2nd relaxation
time’’). A smoothing kernel algorithm was used to estimate probability
density functions, using relaxation time constants from refOTUs from all
subjects (756 time constants for each post-antibiotic exposure interval).
doi:10.1371/journal.pcbi.1002624.g004
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differences between actual and predicted sequencing counts,

averaged over refOTUs and time-points. Evaluation of predictive

accuracy is important to assess the degree to which a probabilistic

model generalizes to new data, without over-fitting features

particular to one dataset. To perform this evaluation, we estimated

optimal experimental designs for each subject, using three design

strategies. For the first strategy, a sequential design, we gave the

experimental design algorithm data for all refOTUs observed at a

subset of time-points, and asked the algorithm to estimate additional

time-points to sample in the same subject. For the second strategy, a

cross-subject design, we gave the experimental design algorithm all

observed data from one subject, and asked the algorithm to estimate

time-points to sample for a different subject. In the third strategy, a

dispersed design, we did not use the experimental design algorithm,

and simply chose time-points to sample that were as evenly spaced

on the study interval as possible. The dispersed design uses no

information from observed data, and thus served as a baseline with

which to compare the other two design strategies.

The two experimental design strategies (sequential and cross-

subject)that use prior information improved on the uninformative

dispersed strategy by an average of 13%, as measured by reduction

in prediction accuracy (RMSE). Of the two informative strategies,

neither consistently dominated the other. However, the cross-

subject strategy did substantially outperform the sequential

strategy for subject D. This subject exhibited the highest Signature

Diversity equilibrium level (SD1m) score, meaning that many

refOTUs in this subject changed equilibrium levels subsequent to

one or both antibiotic exposures. Consequently, equilibrium levels

for refOTUs in subject D were harder to predict from prior

equilibrium levels. Thus, the sequential design strategy, which uses

only partial time-series data as input to the design algorithm,

suffered in performance. In contrast, the cross-subject strategy that

uses complete data from another subject, performed particularly

well for subject D, because it leveraged prototype signatures

predicted from subject E or F that were substantially similar to

those in subject D.

Figure 5. Consensus Signature Groups of human gut commensals ordered by relaxation time after first antibiotic pulse. Each panel
(A–M) depicts a Consensus Signature Group (CSG), with signatures conformed to a common time-scale and amplitude to facilitate comparison across
subjects and CSGs. Displayed CSGs are those containing at least one reference operational taxonomic units (refOTUs) shared among all subjects, and
significantly enriched for at least one taxonomic label at the family or genus level (false discovery rate ,0.05, hypergeometric tests). The horizontal
axis indicates time in days and the vertical axis indicates normalized signature amplitude. Red dashed lines depict median inferred signatures, and
shaded red areas indicate 95% credible intervals. Horizontal blue lines depict antibiotic exposure windows. Numbers above plots indicate relaxation
time constants in units of days.(A–H) are CSGs showing decreases in relative abundance during the first antibiotic pulse, and (I–M) are CSGs showing
increases in relative abundance during the first antibiotic pulse.
doi:10.1371/journal.pcbi.1002624.g005
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Discussion

We presented MC-TIMME, a unified computational frame-

work for inferring dynamic signatures of the microbiota from high-

throughput sequencing time-series datasets, and applied our

framework to discover new features of the in vivo response of

human gut microbes to antibiotic treatments. Our work represents

both biologically and computationally significant advances. From

the biological perspective, our study provides new insights into the

differential and dynamic effects of antibiotic treatments on

commensal bacteria in the human gut. Antibiotics disrupt the

commensal flora, which can contribute to overgrowth and

pathogenic effects of organisms such as Clostridium difficile, the

cause of pseudomembranous colitis [61]. However, antibiotic

effects have primarily been studied in pathogens; the range of

effects on complex commensal populations remains largely

unknown. Our results provide evidence, consistent across multiple

human subjects, that sub-groups of commensals exhibit distinct

temporal responses to treatment with a broad spectrum antibiotic.

These results illustrate the staged dynamics of responses among

sub-populations of commensals, and will enable future experi-

mental studies to characterize the underlying molecular mecha-

nisms behind these differential responses. From the computational

standpoint, our study provides a robust, general-purpose frame-

work for extracting fundamental information on ecosystem

dynamics from massive sequencing datasets. Our framework

may be applied to types of data other than 16S phylotypes, such as

metagenomics or RNA Seq data, as well as model systems in

animal or plant hosts, or studies in soil or marine environments.

MC-TIMME employs probabilistic models of dynamics and

associated measures of their properties, which yield important

functional information that standard techniques for analyzing

microbial communities cannot. Our use of adaptive Bayesian

methods not only increases the strength of statistical inferences,

but also provides signatures of microbial responses that are robust

across multiple experimental subjects. Additionally, MC-TIMME

enables optimal design of new time-series experiments, which will

provide a strong foundation for future longitudinal studies of the

microbiota.

Our results on automated experimental design strategies have

implications for how future longitudinal studies of the microbiota

should be designed. An automated cross-subject design strategy

generally performed comparably to or better than a sequential

design strategy. A cross-subject design strategy uses all data from

one subject to predict a future experimental design for a second

subject. In contrast, a sequential design strategy uses limited

samples from one subject to predict a future experimental design

for the same subject. In the past, when the costs of experimentally

interrogating samples were high, strategies using automated design

were advocated in which samples would be over-collected, frozen,

Figure 6. Optimized experimental design for studying responses of the human gut microbiota to repeated antibiotic exposures.
Each panel (A–C) depicts an optimized design for one subject in the study. (A) Subject D. (B) Subject E. (C) Subject F. The rows in each panel depict
the time-points from the optimal (‘‘opt’’) and original (‘‘org’’) designs. Times are in days from the start of the experiments. Time-points that overlap in
both designs are shown in green boxes. Time-points that are unique to either of the optimal or original designs are depicted with colored numbers
(optimal = purple, original = orange). The two antibiotic exposure intervals are shown as blue rectangles.
doi:10.1371/journal.pcbi.1002624.g006
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and then sequential design methods would be used to select the

next samples to interrogate [24]. Our findings suggest that, in an

era of plummeting sequencing costs, automated experimental

designs based on pilot studies with small cohorts may prove more

effective, particularly for clinical trials in which sample collection

costs and logistics can be the limiting factors. However,

confirmation of this hypothesis will require larger numbers of

subjects and more detailed information about the heterogeneity of

cohorts, with respect to factors such as demographics and

environmental exposures. Additionally, we used a general-

purpose, information theoretic utility function as a basis for

selecting optimal experimental designs. This utility function has

proven useful in many prior studies (see e.g., [46]), and performed

well in our analyses. However, our framework for experimental

design could readily be extended, by using utility functions that

explicitly include financial or other costs involved in performing

experiments.

Analysis of host microbial ecosystems solely by 16S phylotyping

has inherent limitations. Sequencing based methods suffer from

various biases, due to factors such as the DNA extraction method

and sequencing platform utilized [62]. Additionally, from 16S

phylotyping data, it is only possible to infer abundances of taxa

relative to other members of the microbial ecosystem detected with

sequencing, and not the actual biomasses of individual taxa

relative to the input mass of material analyzed. Thus, from our

relaxation time analysis, one cannot infer the time required for

taxa to equilibrate in terms of their absolute biomasses in vivo.

Nonetheless, many studies have shown that relative abundances of

organisms serve as important ecological indicators [2]. Relative

abundances reflect differential abilities of organisms to compete for

and effectively use limited resources, and thus provide insights into

the roles of sub-communities within larger host ecosystems.

However, the most profound limitation to 16S phylotyping data

is that it is only useful for identifying which bacteria are present,

not what they are doing. Ultimately, targeted or high-throughput

functional studies [63] are essential for following up hypotheses

generated based on 16S phylotyping.

MC-TIMME can be extended with alternate models of

dynamics for analyzing other time-series datasets. The key

components of the model, including the infinite mixture model

for prototype signatures and the noise model for counts data,

employ general-purpose inference techniques that would not need

to be modified to accommodate different models of dynamics.

However, the Reversible Jump MCMC techniques we used for

inference of intra-signature dimensionality changes require model-

specific moves; in future work, more general techniques such as

sparse priors [64,65]could be employed for inference of this

portion of the model. For the experimental system we modeled,

with defined antibiotic administrations, we assumed that pertur-

bations to the microbiota start at known time-points. This model

of dynamics could be extended for analyzing observational studies,

in which naturally occurring perturbations may occur, by adding

latent variables that automatically determine switch-points in

dynamics. Another direction for extension would be building more

elaborate relaxation time models. We used a relaxation time

model based on ordinary differential equations, which assumes

instantaneous transitions to different dynamic regimes and

monotonic exponential decay to equilibrium levels. A more

detailed model could allow smooth transitions between regimes,

and richer kinetics of decay to equilibrium, to capture more subtle

or chronic responses to perturbations. Additionally, more complex

temporal correlations could be captured using a stochastic

differential equation model such as the Ornstein-Uhlenbeck

process [66]. Finally, longitudinal covariates, such as subject diet,

could be added to the model of dynamics to capture exogenous

factors that may affect the microbiota. Such extensions to MC-

TIMME will enable increasingly sophisticated longitudinal studies,

to expand our knowledge of the role of the microbiota in human

health or disease.

Supporting Information

Figure S1 Model of dynamics for prototype signatures.
An example of a prototype signature (solid blue line) is depicted.

The model of dynamics for each prototype signature is a function

continuous in both time and values, which is used to

parameterize the mean of the negative binomial distribution

(NBD). The function is defined piece-wise on 5 intervals: (A) pre-

antibiotic exposure, (B) first antibiotic pulse, (C) first post-

antibiotic exposure, (D) second antibiotic pulse, and (E) second

post-antibiotic exposure. The function is constant on intervals A,

B and D. On intervals C and E, the function follows an

exponential relaxation process with initial value X, equilibrium

value m, and relaxation time constant l; an equation for the

corresponding relaxation process is shown above intervals C and

E. Equilibrium levels for each interval are depicted at the right of

the figure.

(TIF)

Figure S2 Representative individual signatures of
human gut commensals perturbed by antibiotic
pulses. Panels (A–F) depict normalized individual signatures

for reference operational taxonomic units (refOTUs) from a

single human subject. The vertical axis represents sequencing

counts per 10,000 total reads normalized across experiments.

The horizontal axis represents time in days since the start of

the experiment. Vertical blue lines depict the two windows of

antibiotic exposure (56 to 60 and 238 to 242 days). Dashed red

lines depict median inferred individual signatures, and shaded

red areas depict 95% credible intervals. Each refOTU is

labeled with its number from the original dataset and its

taxonomic assignment at the family and genus levels. The

symbol lc denotes the inferred median relaxation time constant

on the first post-antibiotic interval, and le denotes the

corresponding relaxation time constant on the second post-

antibiotic interval. The symbols ma, mc, and me denote the

equilibrium levels on pre- and first and second post-antibiotic

intervals. The five probabilities shown indicate the probability

that: 1) the relaxation times on both post-antibiotic intervals

are equal, and 2–5) the three equilibrium levels on the pre-

and first and second post-antibiotic intervals have a particular

pattern.

(TIF)

Figure S3 Predictive performance of the experimental
design algorithm using different design strategies.
Predictive performance was evaluated on held-out time-points,

with accuracy assessed using root mean square error (RMSE). (A)

The sequential design strategy used data for all reference

operational taxonomic units (refOTUs) observed at a subset of

time-points in a subject, to estimate additional time-points to

sample in the same subject. (B) The cross-subject design strategy

used all observed data from refOTUs in one subject, and

estimated time-points to sample in a different subject. A dispersed

design strategy was used as a baseline for comparison. The

dispersed design did not use the experimental design algorithm,

and chose time-points to sample that were as evenly spaced on

the study interval as possible.
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(TIF)

Protocol S1 Detailed methods.
(PDF)
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