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Abstract: RNAs have been shown to exhibit differential enrichment between nuclear, cytoplasmic,
and exosome fractions. A current fundamental question asks why non-coding RNA partition into
different spatial compartments. We report on the analysis of cellular compartment models with
miRNA data sources for spatial-mechanistic modeling to address the broad area of multi-scalar
cellular communication by miRNAs. We show that spatial partitioning of miRNAs is related to
sequence similarity to the overall transcriptome. This has broad implications in biological informatics
for gene regulation and provides a deeper understanding of nucleotide sequence structure and RNA
language meaning for human pathologies resulting from changes in gene expression.
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1. Introduction

Much focus in biology is directed toward explaining the regulation of protein-coding genes,
but lately, interaction networks with non-coding RNAs (ncRNAs) have been under particular
scrutiny [1]. There is a suggestion that broad communication networks concerning competitive
endogenous RNAs (ceRNAs) exist whereby ncRNAs could modulate regulatory RNA by binding and
titrating from sites of protein-coding messenger RNAs [2]. Generally, RNA molecules and proteins
undergo constrained diffusion largely limited by spatial constraints of other molecules and move by a
stop-and-go mechanism where free diffusion is interrupted by random association and collision with
other cellular structures [3]. Most importantly, the dynamic nature of RNAs is emerging as a means to
control physiologic cellular responses and pathways [4]. Brownian motion effects are ubiquitous and
play a pivotal role when one infers macroscopic functions from the mesoscopic level of description,
a route commonly utilized in the study of complex systems. Dynamics at such mesoscopic level is
dictated by a set of Langevin processes or equivalently by the associated N-particle Fokker–Planck
equation [5]. We apply that conceptual model basis in the present work to examine miRNAs diffusing
in a fluid medium that exhibits global RNA interaction resulting from nucleotide motifs or sequence
words. We seek to determine if miRNAs with sequence words in common with the whole transcriptome
have enhanced mobility since their transport can be facilitated by common transcript pathways, and,
due to their small size of 22 nucleotides (nt), could have an influence on transport to the extracellular
space, in the form of exosomes.
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2. Results

2.1. Whole Transcriptome as an Information Cloud of Sequence Words

We propose that miRNA localization in cellular compartments is an emergent property from
interactions of a cloud of RNA-binding proteins and RNA sequences composed of nucleotide words.
Here, words are extracted from sliding windows over all transcript sequences with some functional
window size. An emergent consequence of this cloud model is that anomalous diffusion can occur
if random-walk target RNA transcripts interact with surrounding protein scaffold as a cloud, and if
the cloud relaxation time is long [6]. This would be similar to what can be observed with falling
objects clustering or trailing in a fluid [7]. We propose that RNAs with sequences similar to the whole
transcriptome will exhibit enhanced transport compared to RNA sequences without similar sequences.
Thus, miRNAs should partition into different cellular compartments based on word compositions
from their sequence. We can determine the frequency of all words in the transcriptome as a matrix
composed of RNA sequences and copy levels. For each transcript, we count the number of words in
common with all others in the cloud list or dictionary as a similarity measure to the transcriptome,
and we were also able to compare them to randomized sequence words.

RNA molecule diffusion initially in nuclear then cytoplasmic compartments would lead to
extracellular export of RNA if the transcript half-life is greater than its transit rate. Calculations
at arbitrary transit distances could be determined from a dynamic systems model with a large set
of partial differential equations modeling RNA mobility as in the Fick’s equation, but this would
be computationally prohibitive [8]. Instead, we pursue a thermodynamic approach based on the
Fokker–Planck equation [5]. Consider that each transcript is affected by local protein scaffolds with an
effective interaction window of some sequence length w. The closer the word set of the target (miRNA)
to the whole transcriptome, the more canonical its diffusion. As such, the mobility displays consistent
patterns with the whole transcriptome. Anomalous RNA diffusion can give rise to emergent and
patterned behavior in the cell [9]. Some transcripts will have specialized transport modes, which will
show up as outliers in this algorithmic treatment. The transcriptome cloud dictionary is built as a
collection of transcriptome word sets along with expression levels that depend on the cell state. Model
parameters like optimum word size can be estimated from RNA datasets obtained from public data
sources. Assume that the smallest reasonable word in the cloud is four nt long, this corresponding to
the lower limit of size for a seed sequence in miRNA [10]. In this case, there are only 44 = 256 different
words so that the transcriptome dictionary would have high expression values for the many duplicate
words. The upper limit for word size is set at 22 nt, corresponding to the size of a typical mature miRNA.
This is the same as the MRE size in the similarly related ceRNA hypothesis by [11]. We determine the
frequency of all words in the transcriptome with a matrix composed of RNA sequences and copy levels
(e.g., normalized reads or RPKM). For each miRNA target transcript, count the number of words in
common with the cloud dictionary as a similarity measure (“tCount”) to the transcriptome, or multiply
each word count (tCount) by its expression value to derive “tWord” measure.

The maximal size for all possible 22 nt words would be 422 = 1.76 ˆ 1013 since there are four
possible nucleotide letters at each of the 22 nt positions. The actual transcriptome contains much fewer
than that number of possibilities (Table 1). Assume there are 5 ˆ 104 tRNA, rRNA, mRNA, and ncRNA
different transcripts in a cell, with an average length of 2 ˆ 103 nt, then counting all overlapping words,
there are 1 ˆ 108 possible words in a whole transcriptome matrix. This data set can fit on a big data
scale computer system for analysis.
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Table 1. Gross properties of typical Human Transcriptome.

Transcript Molecule Size (nt) Abundance (Copies) Distinct Types Notes

28S rRNA 5070 3.5 ˆ 106 1 Subunit in 80S ribosome
18S rRNA 1869 3.5 ˆ 106 1 Subunit in 80S ribosome
5.8S rRNA 156 3.5 ˆ 106 1 Subunit in 80S ribosome
5S rRNA 121 3.5 ˆ 106 1 Subunit in 80S ribosome

tRNA ~85 3 ˆ 107 ~100 497 genes in 40 families, tissue specific
mRNA 2 kb 4 ˆ 105 4 ˆ 105 Tissue specific, many isoforms
ncRNA >200 variable >35,000 Complex isoforms [11]
miRNA 22 variable 1000

2.2. Simple Transcriptome Model

As an approximation, we develop a transcriptome model version (simple model) using real
highly expressed genes, and for comparison separately, randomized sequences of the transcriptome.
The simplest realistic model is composed of 8 real human RNA transcripts as a simple representation of
the transcriptome in a cell (Model 1). It is comprised of four of the most prevalent tRNAs with lengths of
71–73 nt (which happens to be slightly smaller than an average tRNA in Table 1), and four of the major
subunits of the ribosome with sizes from 121 to 5034 nt. For this simple transcriptome, the total number
of nucleotides is the sum of the nucleotides in each transcript, or 7470 nt. A program (TIC-generator)
was written in C++ that calculates the frequency of words of length W that are contained in each
transcript. For a RNA transcript of length L, the number of possible words would be L ´ W + 1.
In the simple model, for each word length from W = 4 to 22, word count was calculated along with the
sum of the frequencies of those words corresponding to the simple eight transcripts RNA = 1 to 8 labels
(see Section 4). The output from TIC-generator is a listing of all words contained in each transcript,
together with its frequency of occurrence. The lists of words from the eight transcripts were combined,
and then duplicates removed. The number of duplicates and unique words resulting from duplicate
removal is listed in Figure 1a. The total possible words of length W are 4W, shown as orange boxes in
Figure 1a. The fraction of the possible words presents in the simple model transcriptome decreases
for increasing word size. It is interesting that the peak in unique and total duplicate (blue diamonds
in Figure 1b) words are maximal at the same size as the miRNA “seed” sequence. This peak seen in
Figure 1a for duplicate words in a transcriptome construction would increase for increasing numbers
of transcripts.
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2.3. miRNA Datasets Examined with Simple Model Transcriptome

Experimental validation of the simple model transcriptome examined various functions of word
similarity using published data sets. Functions tested include tWord for transcriptome words in
common with target multiplied by word frequency in the transcriptome. Four studies below examined
miRNA where data sources were grouped into high and low study parameter sets and mean values
and t-test calculated with 2-tail t-test values under two-sample equal variance assumption models.

2.3.1. Exosome Enriched miRNAs

The Villarroya-Beltri [12] study performed microarrays on cellular and exosome fractions from
resting and activated human T lymphocytes. They assessed whether certain RNAs are specifically
classified into exosomes, and performed a microarray analysis of activation-induced variations in the
miRNA and mRNA profiles of primary T lymphoblast and their exosomes. We used that data found
in their Supplementary Data and data publicly available at Gene Expression Omnibus through GEO
Series accession number GSE50972. Their microarray analysis showed that in most cases miRNAs
modulated upon activation are different in cells and exosomes, either for upregulated or downregulated
miRNAs. This shows that miRNA and mRNA loading into exosomes remains not a passive process.
Certain miRNAs were more highly expressed in exosomes than in cells and in most circumstances
this difference is preserved under resting and activated conditions. Similarly, most miRNAs that are
more highly represented in cells than in exosomes keep this tendency free from the activation state of
the cell. Then they classified some miRNAs as thus specifically sorted into exosomes (EXOmiRNAs),
whereas others are specifically retained in cells (CLmiRNAs). We calculated the tCount of raw counts of
words in common with the simple transcriptome and tWord, which factors the expression level of that
word. Other measures compared tCount and tWord to a randomized transcriptome (RAN). We used
a word size w = 7 roughly equal to the seed sequence length as shown in the peaks in Figure 1a,b.
Figure 2 shows a clear tendency for the EXOmiRNA cluster on the right (average Log FC of 2.70)
to be greater in value (average tCount of 6.80) than the CLmiRNAs (average Log FC of ´1.62) in
the left cluster of the data points with an average tCount of 4.32. A t-test between the two clusters
gives a p-value of 3.2 ˆ 10´7, indicating a significant difference between exosome and cytoplasmic
miRNAs as measured with the tCount measure calculated from a simple transcriptome. To allow
comparison with other classes of RNA, we can normalize the transcript size by dividing by sequence
length. Transforming the tCount measure in Figure 2 increases the correlation coefficient to R2 = 0.185
with y = 0.0236x + 0.242, where x is log FC and y is tCount/Len for word size w = 7.
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For miRNAs with a resting LogFC, which was positive (average 2.70), values of tWord (mean 12.45)
were higher than miRNAs with negative LogFC (average ´1.62) for tWord (mean 5.47), and hence
tWord was greater with miRNAs enriched in exosomes compared to cytoplasmic miRNAs in Figure 3.
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Trendline added.

A common pattern with tCount and tWord seen in Figures 2 and 3 is the greater variance with
exosomal miRNAs. Standard deviation of tCount is 32% greater in exosomal mrRNAs (S.D. = 2.9)
compared to cytoplasmic (S.D. = 2.2). For the measure tWord, the difference is greater, with exosomal
miRNAs having 168% greater standard deviation, 10.7 vs. 4.0. The greater variance with tWord
compared to tCount is most likely due to the multiplier of expression level in the tWord calculation,
as tCount is a simple count of occurrences of words in common between target miRNA and the
transcriptome model.

With eight outliers removed which had tWord scores above 25 in Figure 3, the new regression
gives y = 0.85x + 6.88 and R2 = 0.182. This relationship is closely maintained even for activated cells,
as with eight outliers removed gives y = 0.82x ´ 7.71 and R2 = 0.164. With six outliers removed for the
function tWords-RAN, regression improves to y = 0.89x ´ 0.92 and R2 = 0.166 from the whole data set
shown in Figure 4.
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2.3.2. Nuclear Enriched miRNAs

The Park (2010) study [13] compared nuclear and cytoplasmic fractions in hct116 colon cancer
cells also by microarray. They recognized various miRNAs that existed in isolated nuclei from human
colon cancer HC T116 cells. MicroRNA profiles were correlated between cytoplasmic and nuclear
fractions of the HC T116 cell line by multiple microarray analyses. Nuclear confinement of the mature
form of miRNAs was validated by controlling RT-PCR excluding the exposure of precipitate forms
of miRNA, such as pri-miRNA or pre-miRNA. They established elevated levels of representative
miRNAs in purified nuclei that support the notion that notable numbers of mature miRNAs survive
not only in the cytoplasm but also in the nucleus.

Again we calculated tCount of raw counts of words in common with the simple transcriptome.
The tWord factors the expression level of that word and other measures, comparing them to a
randomized transcriptome (RAN). Their data was sorted by N/C ratio and partitioned into two
groups: N/C > 0.47 which was nuclear enriched (n = 45), and N/C < 0.47 which are preferentially
found in the cytoplasm (n = 33). tCount was 4.02 for nuclear enriched, and 5.00 for cytoplasmic, with a
t-test p-value of 0.116 between the groups; while tWord was 4.73 for nuclear and 10.58 for cytoplasmic
miRNAs, with a significant t-test p-value of 0.023 between nuclear and cytoplasmic groups. With this
Park data set, dividing tCount and tWord by miRNA length yields improved t-test p-values of 0.094
and 0.022. Together this data suggests that nuclear-enriched miRNAs share fewer common words with
the overall transcriptome than cytoplasmic miRNAs.

2.3.3. Other miRNA Studies

The Huang (2013) study used RNA/seq on exosomes from human plasma [14]. The top 100
exosomes abundant miRNAs had tCount (mean 4.80) and tWord (mean 6.72) measures compared to
those lower 100 with low “rcmm” reads (mean 4.64 and 7.41 respectively). Again, exosome transcripts
have more similarity to the simple model transcriptome. Similar results are found with the Cheng
(2014) study of exosomes in human blood [15]. There, the 50 most abundant miRNAs in exosome
sampled labeled “Plasma UC Exo” had tCount and tWord values of 4.56 and 6.00 compared to 5.58
and 8.80 for low abundance transcripts. Related results also found with Guduric-Fuchs (2012) data
on exosomes from HEK293 T cells showed that the ratio of EV to cell reads was significant whereas
using read counts “rpmm” was not [16]. These data suggest that the relatedness of tCount and
tWord measures to spatial partitioning are a function of enrichment factor and not abundance in
the compartment.

As a step towards in-depth understanding the mechanism of selective exportation of miRNAs to
EVs, Guduric-Fuchs (2012) employed deep sequencing to discriminate the global expression pattern of
small RNAs in HEK293T cells and the EVs that they release [16]. Enrichment of overexpressed miRNA
in EVs has been manifested by RT-qPCR in HEK293T cells, mesenchymal stem cells, macrophages
and immune cells. Using data from Guduric-Fuchs that was sorted by EV/cell ratio, we compared
the 10 top (exosome-enriched) and bottom (cytoplasmic enriched) miRNAs and listed tCount and
tWord computed values in Table 2 as the mean and standard deviation in parenthesis. From Table 2
for the various measures examined across the studies, tCount, tWord and their difference (tW–tC),
values progress from lower for nuclear, higher for cytoplasmic, and highest for exosomal miRNAs.
Thus, under transitivity, EXO > CL > NUC for these transcriptome measures. This suggests that
miRNAs with sequence similarity to the overall transcriptome transit furthest from their points of
transcription. These conclusions are most significant with the tCount measure, with a p-value close
to zero for the Villarroya-Beltri study, and 0.016 for the Guduric-Fuchs study, while the Park study
showed little difference (p-value = 0.122) for tCount between nuclear and cytoplasmic enrichment.
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Table 2. Various measures of word similarity to simple model transcriptome from 4 data sources.

Transcriptome Measures for Published Data Sets of miRNA

Data Set tCount RANtCount tWord RANtWord tW–tC tC–RAN tW–RAN tC Z tW Z N

has-miR- 5.3 (2.9) 5.7 9 (10.9) 7.1 (1.9) 3.7 (9.0) ´0.4 (3.2) 1.9 (1.1) ´0.2 (2.4) 1.1 (7.3) 2588
V-B All 5.5 (2.9) 6.1 (1.3) 8.9 (8.8) 7.8 (1.9) 3.4 (6.8) ´0.6 (3.1) 1.1 (9.0) ´0.3 (2.0) 0.6 (4.6) 151

V-B EXO 6.8 (2.9) 6 12.5 (10.7) 7.7 5.7 (8.8) 0.8 (2.9) 4.8 (10.7) 0.4 (2.2) 2.2 (5.8) 75
V-B CL 4.3 (2.2) 6.3 5.5 (4.0) 8 1.2 (2.6) ´2.0 (2.7) ´2.4 (4.6) ´1.1 (1.5) ´1.0 (1.9) 76

Park All 4.4 7.2 2.8 ´1.7 ´0.4 ´1.3 ´0.3 78
Park NU 4.0 (2.0) 4.7 (2.6) 0.7 (1.1) ´2.3 (2.3) ´3.2 (2.9) ´1.6 (1.8) ´1.4 (1.4) 45
Park CL 5.0 (3.3) 10.6 (16.4) 5.6 (13.7) ´1.0 (3.7) 3.2 (16.8) ´0.8 (2.4) 1.1 (6.2) 33
G-F All 5.4 (3.5) 8.5 (8.6) 3.1 (6.0) 27

G-F EXO 7.9 (4.1) 13.5 (11.5) 5.6 (8.7) 10
G-F CL 4.0 (2.2) 6.1 (4.9) 2.1 (3.2) 10

Public database of miRNAs extracted 2588 human sequences. V-B from [12] with EXO exosome enriched or CL cytoplasmic miRNAs. Park from [13] with NUC nuclear enriched or
CL cytoplasmic miRNAs. G-F from [16] with EXO exosome enriched or CL cytoplasmic miRNAs. Values in parenthesis are standard deviations. RANtCount and RANtWord are
calculated from average of 4 randomized simple transcriptome words. tW-tC = tWord minus tCount and is a measure of the influence of frequent words in transcriptome. tC-RAN and
tW-RAN are differences between tCount or tWord minus RANtCount or RANtWord, respectively. Z-scores from tCount and tWord calculated from RAN mean and SD of randomized
simple transcriptome.
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3. Discussion

Much focus in RNA research is directed toward understanding the regulation of protein-coding
genes [17]. However, ncRNAs also form well-orchestrated regulatory interaction networks [1].
For example, computational modeling of miRNA target sites suggests a broad network of
miRNA-lncRNA interaction [18]. Recently, there have also been reports inferring the feasibility
of a broad interaction network comprising competing endogenous RNAs (ceRNAs) where ncRNAs
could change regulatory RNA by binding and titrating them off the corresponding binding sites on
protein coding messengers [2].

We suggest that miRNA sequence delineates the molecular mechanisms underlying Brownian
motion as a broad class of RNA with the transcriptome composed as an RNA language with interactions
between transcripts and protein molecules at the same location. Recently, the attention of the relevant
research community has been focused on non-coding RNAs and their physiological/pathological
implications [19]. As the number of RNA experiments reported rapidly increases and transcriptional
units are better annotated, databases indexing RNA properties and function from transcriptome
measures become essential tools in this process. This early stage software development effort makes
use of a sandbox-oriented software development environment [20] that enables development for
miRNA physiology study. This work is generalizable to different sequence technologies, RNA/seq,
microarray, etc., and is scalable to different organisms [21], organs, or sub-cellular compartments
depending on sample preparation for the libraries. Caution must be exercised with reported studies
not adequately controlling for the source of extracellular particles, not differentiating between lipid
coated RNAs, exosomes, microparticles, or apoptotic bodies.

4. Materials and Methods

4.1. Sliding Window Word Generator

A sliding window variable size word generator (TIC-generator) from input sequences was written
in C++. A workflow functional diagram is shown in Figure 5. The output from TIC-generator is a listing
of all words contained in each transcript, together with its frequency of occurrence. The lists of words
from the eight transcripts were combined, and then duplicates removed. The number of duplicates
and unique words resulting from duplicate removal is listed in Table 3. We provide program listing for
the dissemination of software from the project in Supplementary Materials, including software, tools
and related resources, to the relevant research and user communities using open source resources.
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Table 3. Construction of transcriptome cloud for word size of 7 and 8.

w = 7 Transcript 1 2 3 4 5 6 7 8 Total Unique Duplicates

Transcript nt length 73 73 71 71 156 121 5034 1871 7470

Word size

Total words w = 7 67 67 65 65 150 115 5028 1865 7422
Unique words w = 7 67 67 65 65 149 114 3355 1742 5625 4934 691

Duplicates w = 7 0 0 0 0 1672 123 1797

Word size

Total words w = 8 66 66 64 64 149 114 5013 1864 7400
Unique words w = 8 66 66 64 64 149 114 4085 1831 6439 6439 288

Duplicates w = 8 0 0 0 0 0 0 928 33 961

Simple transcriptome model 1 based on 4 tRNAs (transcripts 1-4) and 4 subunits of the ribosome (transcripts 5–8).

4.2. Duplicate Words in Cloud

Eight transcripts were selected as representative of the most abundant RNAs in a cell. Four were
tRNAs with lengths 71 and 73, and four were rRNAs with sizes 121, 156, 1871 and 5034 nucleotides.
Individually within these eight transcripts, there is a total of 7470 nucleotides, which collectively have
7422 total words of length w = 7, with 1797 duplicate words leaving 5625 unique words describing the
transcriptome as a simple model. If we combine the unique words of these eight transcripts, we find
691 duplicates, leaving a total of 4934 unique words in the simple model in Table 3. The combined
total number of duplicates would be 1797 + 691 = 2488 while for the random transcriptome (average of
four randomized transcriptomes) total duplicates are 840 + 659 = 1499. If instead we examine words of
length w = 8, there are a total of 7400 words with 961 duplicates leaving 6439 unique words in the simple
model. The combined total number of duplicates would be 961 + 288 = 1249 while for the random
transcriptome (average of four randomized transcriptomes) total duplicates are 199 + 195 = 394.

5. Conclusions

miRNAs that are enriched in exosomes share greater similarity to the overall transcriptome than
miRNAs found preferentially in the cytoplasm or nuclear compartments. Nuclear enriched miRNAs
share less similarity to the transcriptome than cytoplasmic miRNAs. From the various measures
examined in this study, tCount values progress from lower for nuclear, higher for cytoplasmic, and
highest for exosomal miRNAs with the greatest significance.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/6/
830/s1.
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