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Abstract: A simple approach to the multiscale analysis of a plain weave reinforced composite made
of basalt fabrics bonded to a high performance epoxy resin L285 Havel is presented. This requires
a thorough experimental program to be performed at the level of individual constituents as well
as formulation of an efficient and reliable computational scheme. The rate-dependent behavior
of the polymer matrix is examined first providing sufficient data needed in the calibration step
of the generalized Leonov model, which in turn is adopted in numerical simulations. Missing
elastic properties of basalt fibers are derived next using nanoindentation. A series of numerical
tests is carried out at the level of yarns to promote the ability of a suitably modified Mori–Tanaka
micromechanical model to accurately describe the nonlinear viscoelastic response of unidirectional
fibrous composites. The efficiency of the Mori–Tanaka method is then exploited in the formulation
of a coupled two scale computational scheme, while at the level of textile ply the finite element
computational homogenization is assumed, the two-point averaging format of the Mori–Tanaka
method is applied at the level of yarn to serve as a stress updater in place of another finite element
model representing the yarn microstructure as typical of FE2 based multiscale approach. Several
numerical simulations are presented to support the proposed modeling methodology.

Keywords: polymer matrix; basalt fibers; woven composite; Leonov model; Mori–Tanaka method;
multiscale computational homogenization

1. Introduction

Ever-increasing special demands on structural components employ researchers in
material engineering in search for material systems with exceptional properties. In particu-
lar, their mechanical and physical properties must be continuously improved to compete
with the related technological progress. This also includes economical as well as ecological
aspects. Textile composites appear as a suitable candidate to meet these requirements
in a variety of engineering areas. Plain weave textile composites, where fibers are lo-
cated in two perpendicular directions, guarantee high stiffness, strength and durability [1]
together with relatively simple manipulation when large scale composite products are
prepared [2]. Modifying the mechanical properties of the matrix by adding inorganic
fillers from recycled materials [3] may considerably improve the weight to stiffness ratio
eventually leading to economically admissible designs with a sufficient bearing capacity.
Exploiting green matrices would then allow us to design products which also meet the
ecological requirements.

An appropriate choice of individual components opens the door for creating products
with entirely unique characteristics. This calls for considerable activity in both experimental
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and computational research as finding an optimal material composition is not an easy
task [4]. Carbon fibers in various forms of reinforcement embedded in a polymer matrix are
widely spread in constructions and products in many different branches such as aviation,
shipbuilding, space industry, automotive engineering, sport equipment etc. However, the
final product is generally financially demanding, which impels both manufacturers and
researchers to seek for other less expensive solutions. In this regard, the basalt fibers seem
to offer a promising alternative in some applications owing to their acceptable mechanical
and physical properties, while considerably reducing the price of a particular product.

Basalt fibers as reinforcing material of composites have recently been exploited in the
production of composites. The mechanical properties of such a composite are similar to the
properties of composites reinforced with S-glass fibers and appear better than those with
E-glass fiber reinforcement. Experimental results presented in [5] showed basalt reinforced
epoxy composites as a material with higher tensile, flexural and compressive Young’s
modulus in comparison to E-glass fiber-based systems. The same has been observed also
for compressive and bending strength, impact force and energy. Owing to better bonding
between basalt fibers and epoxy resin and high interlaminar shear strength they seem to
be a good option in many applications [5,6]. Therein, a higher stiffness in tension, flexure
and compression has also been proposed for laminates. With respect to fatigue behavior,
Dorigato and Pegoretti in [7] marked the basalt fiber-based laminate as a structural element
with a high capability of sustaining progressive damage. The tensile strength was found
again higher than that of the glass fiber-based laminate and comparable to that of lami-
nates reinforced with carbon fibers. When discussing the properties of basalt fiber-based
composites the curing temperature is worth mentioning as this may have a great impact on
the composite mechanical response [8,9].

Although the strength and stiffness of the composite are merely driven by the re-
inforcement, the overall behavior of a structural product including its durability might
significantly be influenced by the choice of the matrix phase. The most common matrix
material used in the production of composites is epoxy resin for its specific properties,
such as hydrophobic properties, temperature, UV, and ozone resistance, and resistance to
oxidation by atmospheric oxygen. Furthermore, it is inert with respect to other materials,
biologically inert, non corrosive and has good electric-insulating properties [10]. The
market offers a relatively large variety of epoxy resins to serve as matrices in the production
of composite materials. Among others, the L285 epoxy resin has recently been the subject
of research aimed at potential improvement of its properties by adding a suitable filler [3].

In general, the mechanical response of various epoxy resins may considerably vary.
Apart from common viscoelastic or nonlinear viscoelastic behavior, one may observe a
transition to brittle-viscous or even brittle response with no viscose effects [11]. Obviously,
such a different response not only influences the behavior and thus the range of applications
of the corresponding composite material, but also drives the choice of the numerical method
when we wish to make any predictions computationally. The geometrical complexity of the
reinforcement as well as the inability to represent the overall behavior of the composite by
the same constitutive model as adopted for individual components often requires a fully
coupled homogenization. This is traditionally achieved with the help of FE2 approach [12].
With reference to textile composites the finite element homogenization [13] is carried out
both at the level of yarns and textile ply adopting a suitable computational model on each
scale, e.g., the periodic unit cell extracted from the composite on a given scale [14]. However,
this approach might prove computationally demanding suggesting the application of more
efficient methods. These fall within the category of classical micromechanical models such
as the Self-consistent and Mori–Tanaka methods [15]. The Mori–Tanaka method [16,17]
in particular enjoys considerable attention as being fully explicit and easy to implement,
see, e.g., [18–20] for some recent applications. It also allows for a simple extension in the
framework of Dvorak’s transformation field analysis [21] to incorporate various sources of
nonlinearities arising once loading the composite beyond the elastic regime.



Polymers 2022, 14, 3301 3 of 24

These opening paragraphs motivated the content of the paper. The current interest in
basalt fibers influenced the choice of textile reinforcements. Their potential exploitation in
advanced structural elements such as wind turbine blade [22] called for the application of
high-performance synthetic epoxy resins. Expecting good physiological compatibility and
superior mechanical properties the L285 epoxy resin has been found worthy of investigation.
While experimental research of the resulting composite at the structural level is crucial,
the initial designs are often based on numerical predictions. In light of this, an efficient
computational model providing a reliable macroscopic response plays an important role.
To this end, we propose a general methodology outlined within the following steps:

• Identifying and calibrating a suitable constitutive model of the matrix phase.
• Providing a remedy of the Mori–Tanaka (MT) micromechanical model to yield the

yarn response comparable to that delivered by the finite element method (FEM). In
this regard, the finite element (FE) predictions are taken as a sufficiently accurate
representation of the composite response substituting the actual measurements in the
framework of virtual experiments.

• Developing an efficient computational scheme based on a two-scale modeling strat-
egy where the Mori–Tanaka method is adopted as a stress updater at the level of
macroscopically homogeneous yarns.

The last two items are described in detail in Section 3 clearly identifying the novelty
of this work seen in the reformulation of the original format of the Mori–Tanaka method
and its application in the multi-scale computational framework of basalt babric reinforced
composites.

2. Materials

The present section introduces the basic properties of individual phases including
their elastic parameters, geometrical details of the basalt fabric, and computational models
taken from the authors’ previous work, see, e.g., [14,23] for details.

2.1. Matrix Phase

As pointed out in the introductory part, the L285 epoxy resin [24] supplied by Havel
Composites CZ s.r.o., Přáslavice, Czech Republic [25] was selected as a representative of
a low-viscosity laminating resin. The process of lamination is characterized by a very
short curing time, even at low temperatures. The optimum processing temperature ranges
between 15 and 25 ◦C, while different temperatures and humidities do not have a significant
effect on the strength of the curing product. The mixing ratio as recommended in the
technical sheet should be preserved to avoid incomplete curing. Two particular hardeners
H500 and H508 with the same mixing ratio by weight of 100:40 (resin:hardener) were
examined. Chemical specifications of the epoxy resin and individual hardeners are taken
from the company technical sheets and summarized in Table 1 for the sake of completeness,
see also [11] for further details.

Table 1. Chemical specification of epoxy resin and hardeners (25 ◦C), see [11,25].

Parameter L285 Resin H508 Hardener H500 Hardener

Viscosity [Pa·s] 0.6–0.9 0.007–0.011 0.2–0.35

Density [g/cm3] 1.18–1.23 0.93–0.96 1.0–1.06

Molecular weight [g] 182–192 - -

Amine value
[mgKOH/g] - 450–500 350–400

Average EP-Value 0.63 - -

All tested specimens, see Figure 1, were produced in a standard way by first mixing
the epoxy resin at room temperature for about 10 min with a corresponding hardener via
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magnetic stirrers. The mixture was then cured in a mold for about 24 h at room temperature
and subsequently post-cured for additional 15 h at higher temperature of 60 ◦C. Chemical
composition of the resulting polymer matrices thus differed only in the type of the adopted
hardener. Potential differences in the material response within a given set of samples can,
therefore, be attributed to geometrical variability of the tested specimens only, see Table 2.

(a) (b)

Figure 1. Specimens used in tensile and creep tests: (a) prior to testing, (b) after testing.

Table 2. Geometry of specimens.

Parameter (H508) Width [mm] Thickness [mm] Cross-section area
[mm2]

Mean 5.04 2.76 13.90
Standard deviation 0.02 0.05 0.28

Parameter (H500) Width [mm] Thickness [mm] Cross-section area
[mm2]

Mean 4.11 2.95 12.13
Standard deviation 0.28 0.14 0.98

The matrix phase is assumed isotropic and its properties were estimated from the
results of the calibration process outlined in detail in Section 3. Here we only note in
advance that the elastic shear modulus of the matrix phase used in all numerical simulations
was found based on the adopted generalized Leonov model as

Gel
m =

N

∑
µ=1

Gµ, (1)

where subscript m stands for the matrix and Gµ represent the shear stiffnesses of the
Maxwell chain model. In accord with the generalized Leonov model the bulk modulus Kel

m
is kept constant and follows from Gel

m as

Kel
m =

2Gel
m(1 + νm)

3(1− 2νm)
, (2)

assuming the initial value of Poisson’s ratio νm = 0.34.

2.2. Basalt Fibers

Figure 2a provides an illustrative example of an eight-layer basalt fabric/epoxy matrix
based composite [23]. A sufficiently large representative binary image of the yarn cross-
section is then plotted in Figure 2b.
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(a) (b)

Figure 2. (a) Example of laminate made of basalt fabric bonded to epoxy matrix, (b) example of
yarn cross-section.

The actual image analysis device used for structural image acquisition and analysis to
arrive at Figure 2b consisted of NIKON ECLIPSE E 600 microscope (Nikon Instruments, Inc.,
New York, United States), Märzhauser motorized scanning stage, and digital monochrome
camera VDC 1300C. The resulting gray-scale image seen in the left bottom corner of
Figure 2b was then directly converted into its binary counterpart. However, this image
suffered from a large number of flaws and was thus used to estimate the fiber volume
fraction and a radius of an ideal fiber only. This information together with the knowledge of
fiber centers served to create the final binary image (black and white segment in Figure 2b)
suitable for further processing. This image clearly suggests an irregular distribution of
fibers in the yarn cross-section. Various types of imperfections of a random type attributed
merely to the manufacturing process can also be identified in Figure 2a.

A number of approaches are available in the literature to incorporate the random
nature of geometrical details on both the mesoscale (level of textile ply) and microscale
(level of yarn) into the formulation of a suitable computational model typically in terms
of a statistically uniform periodic unit cell (SEPUC), see e.g., [23,26–28] to cite a few. This,
however, goes beyond the present scope. Instead, we accept a considerably more simple
formulation. On microscale, we rely on the findings presented in [29] promoting systems
with a sufficiently large number of fibers exceeding 50% of their volume fraction to be
represented by the periodic hexagonal array (PHA) model displayed in Figure 3.

(a) (b)

Figure 3. (a) Hexagonal arrangement of unidirectional fibers in yarn transverse direction (computa-
tionally generated image), (b) PHA model.

On mesoscale, a single-ply periodic unit cell (PUC) of a plain weave textile composite
evident in Figure 4 is considered. The geometrical details are taken from the literature [14]
and the present material system is summarized in Figure 4d for the sake of completeness.

The binary image in Figure 2b and geometrical parameters in Figure 4d resulted in
the fiber volume fraction in the yarn c f = 0.56 and the volume fraction of yarn within the
textile ply cy = 0.54.

The elastic Young moduli E of the fiber phase were estimated from nanoindenta-
tion. The load-controlled quasi-static indentation was performed with the load function
consisting of “loading” and “unloading” segments lasting 5 s each with an in-between
300 s segment of “holding” time. The maximum applied force of 2500 µN was used. This
procedure was applied to several positions on the sample. The resulting reduced moduli,
corresponding to longitudinal and transverse indentations into the fibers, were derived
from the unloading part of the indentation curve. Next, the required Young moduli were
calculated based on the contact mechanics of colliding solid bodies [30,31] assuming the
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Poisson ratio ν = 0.24 and a diamond tip with material parameters E = 1140 GPa and ν = 0.07.
Taking into account all indents gave the average values of the Young modulus equal to
69.68 GPa and 64.82 GPa for the longitudinal and transverse fiber directions, respectively.
Further details including basic statistics are available in Table 3. Unlike the matrix phase,
the basalt fibers are assumed transversely isotropic as evident from Table 4. Point out that
subscripts L and T stand for the longitudinal and transverse directions, respectively.

(a) (b)
Z

Xbh

g
a
2a

Y

(c) (d)

Figure 4. Example of periodic unit cell of a single ply textile composite: (a) plain weave arrangement
of yarns, (b) plain weave PUC, (c,d) basic geometrical data.

Table 3. Indentation results of basalt fibers.

Direction Reduced Mod.
Er [GPa]

Young’s Mod. E
[GPa]

Hardness H
[GPa]

Indentation
Depth hc [nm]

Longitudinal 69.94 ± 7.80 69.68 ± 7.40 5.58 ± 0.68 160.51 ± 10.00

Transverse 65.18 ± 7.32 64.82 ± 7.03 5.29 ± 1.19 114.52 ± 14.15

Table 4. Phase elastic properties. Elastic moduli are in [GPa].

Material Gel Kel EL ET GL νL νT

Matrix 1.42 3.96 - - - - -

Fibers - - 69.7 64.8 28.1 0.40 0.24

3. Methods

The present section summarizes the theoretical background needed for a nonlinear
viscoelastic modeling of plain weave textile reinforced polymer matrix composites. We
begin with the formulation and calibration of the L285 epoxy resin. Essential steps to
perform two-step homogenization are outlined next.

3.1. Formulation and Calibration of Generalized Leonov Model

It has been experimentally observed that polymers show, in general, a negligible
volumetric strain during plastic flow. This is supported in [32] where the application of the
generalized Leonov model proved useful in the modeling of such materials. This is also
why this constitutive model is exploited in the present work. As details of the model can
be found in a number of contributions, see, e.g., [33,34], we address the theoretical grounds
of the model only shortly.

The stepping stone in the formulation of the Leonov model is the Eyring flow equation
representing the plastic component of the shear strain rate in the form

dep

dt
=

1
2A

sinh(τ/τ0). (3)
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The total shear strain rate combining the elastic and plastic strain rates then becomes

de
dt

=
dee

dt
+

dep

dt
=

dee

dt
+

τ

η(dep/ dt)
, (4)

which is the one-dimensional Leonov constitutive model [35] with the shear-dependent
viscosity η given by

η(dep/ dt) =
η0τ

τ0sinh(τ/τ0)
= η0aσ(τ), (5)

where τ is the shear stress and A, τ0 are the model parameters, η0 is the viscosity correspond-
ing to a linear viscoelastic response and aσ is the stress-dependent shift factor. Notice that
Equation (4) represents a single Maxwell unit with variable viscosity. To describe the mate-
rial response sufficiently accurately, the generalized Maxwell chain model is typically used.
Extension to multidimensional behavior introduces an equivalent deviatoric stress τeq as

τeq =
√

J2 =

√
1
2

sTQ−1s, Q = diag
[

1, 1, 1,
1
2

,
1
2

,
1
2

]
, (6)

where s is the deviatoric stress vector. The viscosity of the µth unit is then provided by

ηµ = η0,µaσ(τeq) =
η0,µτeq

τ0sinh(τeq/τ0)
. (7)

Admitting material isotropy, small strain theory, and the bulk response to be linearly
elastic we arrive at the complete set of constitutive equations defining the compressible
generalized Leonov model

σm = Kεv, (8)

ds
dt

=
M

∑
µ=1

2GµQ

(
de
dt
−

dep,µ

dt

)
, s =

M

∑
µ=1

sµ, (9)

sµ = 2ηµQ
dep,µ

dt
= 2η0,µaσ(τeq)Q

dep,µ

dt
, (10)

where σm =
1
3
(
σx + σy + σz

)
is the means stress, εv =

(
εx + εy + εz

)
is the volumetric

strain, K is the material bulk modulus, Gµ is the shear modulus, associated with the µ-th

unit, e = ε− 1
3
mεv stores the components of the deviatoric strain and mT = {1, 1, 1, 0, 0, 0}.

3.1.1. Tensile Tests at Different Strain Rates

The most straightforward calibration of the stress shift factor aσ is to construct an
Eyring plot [33,36] assuming that at plastic yielding the plastic strain rate equals the total
strain rate. The yield stress is then defined as a stress level, which remains constant at
further straining. With reference to the Leonov model, we recognize the analogy with an
elastic perfectly plastic von Mises material. Thus, beyond the yield point, the material
behaves as a generalized Newton fluid

σ = mσm + 2η(Ėd)ėp = mσm + 2η(Ėd)ė, (11)

where the notation ė =
de
dt

was introduced for the sake of conciseness and Ėd =
√

2ėTQė
is the rate of equivalent deviatoric strain. In simple tension and at plastic yielding (σx = fy)
we get

ε̇v = 0, Ėd =
√

3ε̇x, τeq =
1√
3

fy. (12)
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With reference to Equation (3) and realizing that 2ėp = γ̇p is equivalent to Ėd in plastic
yielding and multidimensional space we may write

fy = τ0
√

3arcsinh(A
√

3ε̇x), (13)

which for large values of AĖd simplifies as

fy = τ0
√

3 ln(2A
√

3) + τ0
√

3 ln ε̇x. (14)

Equation (14) thus suggests that parameters of the Eyring flow model A, τ0 can be
found through a linear regression in the fy × ε̇x diagram.

The specimens in Figure 1 were loaded in the displacement control regime at a specific
strain rate until failure using the MTS Alliance 30 kN (MTS, Eden Prairie, Minnesota,
United States) electromechanical testing machine equipment with 30 kN load cell. The
evolution of strain εx was measured using a clip on extensometer with an initial gauge
length of 25 mm tightly mounted on the surface of the tested specimen, see Figure 5b.
The corresponding stresses were derived by dividing the chamber force by the average
cross-section area obtained from several measurements along the specimen length, recall
Table 2.

(a) (b)

Figure 5. (a) MTS Alliance 30 kN electromechanical testing system, (b) MTS Mini Bionix 858.02
testing system.

3.1.2. Creep Tests at Different Stress Levels

We open this section by assuming that the creep compliance function J(t) can be well
approximated by the Dirichlet series as

J(t) =
M

∑
µ=1

Jµ

[
1− exp

(
− t

τµaσ(t)

)]
, (15)

where τµ are the selected retardation times. Note that the first term is typically assumed
sufficiently small to represent in the limit τ → 0 an elastic solid. The compliances Jµ of
the Kelvin units with nonlinear viscosities ηµ(τeq) = τµ Jµaσ(τeq) are derived by matching
Equation (15) with the experimentally derived Master curve.

The required data are provided by standard creep tests performed at different stress
levels thus exploiting the time—stress superposition principle consistent with the Eyring
flow model. In the present study, the MTS Mini Bionix 858.02 testing system equipped
with 1000 N load cell was used, see Figure 5b. The specimens of the same geometry as
used in the tensile tests were loaded by a constant force corresponding to stresses in the
range of 10 to 60 MPa. The specimen preload was carried out at a constant loading speed
of 500 Ns−1. The strains were then recorded for two hours using again the 25 mm gauge
length extensometer. To construct the creep compliance function from the above tests we
adopted the following steps:
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(1) Transform t× εx data into t× ex plots where t is the time in [s] and ex is the deviatoric
normal strain provided by

ex = εx −
1
3

εv = εx −
σm

K
, σm =

1
3

σx, K =
E

3(1− 2ν)
, (16)

where εv is the volumetric strain and σm is the mean stress, recall Equation (8). The
bulk modulus K is calculated from the elastic modulus E estimated from the elastic
part of the stress–strain curve when preloading the specimen to the desired stress
level. The Poisson ratio ν is assumed to be known.

(2) Transform the t× ex curves into t× τeq data where τeq is provided by

τeq =
2ex

sx
, sx = σx − σm =

2
3

σx. (17)

(3a) Shift the t × τeq data along the t-axis using the corresponding shift factor aσ(τeq)
obtained previously from tensile tests, recall Section 3.1.1. This is achieved by mul-
tiplying the original time by aσ(τeq). This way we arrive at the creep compliance
curve (Master curve) we would obtain for a sufficiently low stress that produces a
viscoelastic response and is maintained for a long time.

(3b) Alternatively, as will yet be proven useful, the Eyring flow model parameter τ0
and thus the shift factor aσ can be estimated directly from the creep tests. To this
purpose, a simple optimization algorithm was implemented in MATLAB (vr. R2021b)
software. In particular, the search for τ0 defining the shift factor aσ via Equation (5)
amounts to finding a minimum of a single-variable function of aσ on a fixed interval.
When formulating the objective function to be minimized we remember that the creep
compliance functions, when shifted horizontally based on a given value of aσ, partially
overlap. In light of this, the objective function was defined as the square root of the
sum of squares of deviations between the experimental data points, corresponding
to consecutive load levels, over the current overlapping region. All curves were
exploited at once. The minimization was performed with the help of the MATLAB
function fminbnd .

As already mentioned the search for the compliances Jµ represents the second mini-
mization problem written again in the framework of the least square method. To that end,
we compare a certain set of experimentally measured values of the compliance function
J(t) with those provided by Equation (15). To arrive at meaningful results, the first term in
the Dirichlet series expansion J1 was constrained to represent the elastic limit estimated
from the initial slope of the creep test. It should be mentioned that the approximation of
creep compliance function using Equation (15) is valid only for the time range specified by
the retardation times τµ.

Application of Equation (9) calls for the transformation of creep compliance function (15)
to relaxation function R(t) given by

R(t) =
M

∑
µ=1

Gµ exp
(
− t

θµaσ(t)

)
. (18)

Typically, the Laplace transformation is employed to obtain the relaxation times θµ

and the shear stiffnesses Gµ of the Maxwell units, see, e.g., [37].
The theoretical formulation of the constitutive model of the matrix phase can be now

completed by integrating Equation (9) in time. For simplicity, the most simple, those only
conditionally stable, fully explicit forward Euler scheme is employed. Provided that the
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total strain rate is constant during the integration of a new state of stress in the matrix
phase at the end of the current time step, ∆t assumes the form

σm(ti) = σm(ti−1) + K∆εv, (19)

s(ti) = s(ti−1) + 2Ĝ(ti−1)Q∆e + ∆λ(ti−1), (20)

where ti is the current time at the end of the i-th time increment. In light of Equation (18)
the instantaneous shear modulus Ĝ and the increment of eigenstress ∆λ read

Ĝ =
M

∑
µ=1

Gµ
θµaσ(ti−1)

∆t

[
1− exp

(
− ∆t

θµaσ(ti−1)

)]
, (21)

∆λ = −
M

∑
µ=1

[
1− exp

(
− ∆t

θµaσ(ti−1)

)]
sµ(ti−1). (22)

Further details can be found, e.g., in [38].

3.2. Computational Homogenization

To introduce the subject we consider a representative volume element (RVE) of a
single-ply balanced plain weave composite plotted in Figure 4 with a potential distribution
of fibers in the transverse cross-section being represented by a periodic hexagonal array
model as plotted in Figure 3. These simple geometrical representations allow for a standard
periodic homogenization to be exploited on the mesoscopic (ply) as well as microscopic
(yarn) scales.

When limiting attention to elasticity, a simple bottom-up fully uncoupled homoge-
nization can be used to predict the macroscopic effective properties of a single-ply textile
composite. This, however, is no longer possible when loading the composite beyond the
elastic limits as the material anisotropy precludes derivation of the homogenized nonlinear
constitute law at the level of yarn. A two-step, fully coupled homogenization, is therefore
needed. Two options are typically available:

1. Analysis in the framework of FE2 approach. In this case, the finite element homog-
enization is carried out both at the level of yarns and textile ply adopting a suitable
computational model on each scale, e.g., the periodic unit cells in Figures 3b and 4b. In
this approach, the ply RVE (mesoscale) is typically loaded by the prescribed macroscopic
strains or stresses, while the yarn RVE (microscale) is subjected to strains developed at
an integration point of a finite element located in the yarn. Upon return, the updated
stress averages and potentially the modified yarn effective properties are transferred
back to the mesoscale.

2. The FE2 approach might be computationally too demanding. This suggests a combi-
nation of the finite element method at the level of textile ply and the computationally
efficient Mori–Tanaka method which replaces the finite element analysis at the level
of yarns. This approach in particular is examined in the present study. A graphical
representation of this two-step modeling strategy, where ∆ε is the mesoscopic strain at a
given point of the mesoscopic finite element mesh and ∆σ is the corresponding meso-
scopic stress increment provided by the Mori–Tanaka method, is shown in Figure 6. The
eigenstrain ∆µ might be associated with many physical sources, but only the viscoelastic
effects are considered hereinafter.

Both homogenization approaches, FE and MT method based, will be now briefly
reviewed. Only the most relevant formulations will be outlined. Thus, for more details, the
interested reader is referred to [14,15].
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Figure 6. Graphical representation of two-scale computational scheme combining FEM at the level of
textile ply and the MT method at the level of yarn.

3.2.1. First Order Homogenization Using Finite Element Method

The presented first-order homogenization grounds on the formulation developed
in [13]. To this end, suppose that a periodic unit cell Y, representing all the geometrical and
material details of the whole composite, is loaded on its outer boundary by the prescribed
displacements or tractions that produce the macroscopically uniform strains E or stresses Σ

in an equivalent homogeneous medium. The macroscopic constitutive equations then read

∆Σ = Lhom∆E + ∆Λ, ∆E = Mhom∆Σ + ∆Υ, (23)

where Lhom and Mhom are the instantaneous effective (homogenized) stiffness and compli-
ance matrices, respectively, and ∆Λ, and ∆Υ are the corresponding eigenstresses and
eigenstrains. We choose an incremental format in view of the nonlinear viscoelastic
model described by Equations (20)–(22). The macroscopic strains and stresses are re-
lated to volume strains and stress averages of local fields developed in individual phase
r = f (fiber,yarn), m(matrix) as

∆E = 〈∆ε(x)〉 =
2

∑
r

cr∆εr, ∆Σ = 〈∆σ(x)〉 =
2

∑
r

cr∆σr, (24)

where 〈·〉 stands for volume averaging, cr is the volume fraction of a given phase r and
∆εr and ∆σr are increments of piece-wise uniform phase strains and stresses, respectively,
see [14] for further details. Similar to Equation (23), the local fields can be written in terms
of the phase material stiffness Lr and compliance Mr matrices as

∆σr = Lr∆εr + ∆λr, ∆εr = Mr∆σr + ∆µr, (25)

where ∆µr and ∆λr = −Lr∆µr are increments of local phase eigenstrains and eigenstresses. In
the present study, only the viscoelastic strain ∆µm developed in the matrix will be considered.

Equation (23) follows directly from Hill’s lemma [39]. Hill proved that for the assumed
uniform loading conditions the volume average of the internal work (virtual work) done by
local fields equals the internal work (virtual work) done by their macroscopic counterparts.
This statement is mathematically written as〈

δε(x)T∆σ(x)
〉
= δET∆Σ. (26)

Because in the displacement-based finite element method the primary unknowns are
the nodal displacements, we continue by decomposing the local displacements, while taking
into account the periodicity of the unit cell, into a homogeneous ∆E · x and fluctuations
∆u∗ parts as

∆u(x) = ∆E · x + ∆u∗(x), ∆ε(x) = ∆E + ∆ε∗(x), (27)
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where Equation (27)2 follows from standard strain-displacement relations. Next, substitut-
ing from Equation (27)2 into Equation (26) and realizing that

∆σ(x) = L(x)∆ε(x) + ∆λ(x), (28)

provides Hill’s lemma in the form

δET〈L(x)(∆E + ∆ε∗(x)) + ∆λ(x)〉+
〈

δε∗T[L(x)(∆E + ∆ε∗(x)) + ∆λ(x)]
〉
= δE∆Σ. (29)

Because the variations δE and δε∗ are independent, Equation (29) can be split into
two equalities

δET∆Σ = δET(〈L(x)〉∆E + 〈L(x)∆ε∗(x)〉+ 〈∆λ(x)〉), (30)

0 =
〈

δε∗TL(x)
〉

∆E +
〈

δε∗TL(x)∆ε∗(x)
〉
+
〈

δε∗T∆λ(x)
〉

. (31)

Equations (30) and (31) are to be solved for unknown increments of macroscopic ∆E
and fluctuation ∆ε∗ strain fields. When deriving this set of equations we explicitly assumed
that the macroscopic stress increment ∆Σ is prescribed thus considering the stress-based
approach [14]. However, the strain based formulation is often needed. In such a case,
the unit cell is loaded by the prescribed macroscopic strain ∆E. The virtual change of the
prescribed quantity then vanishes (δE = 0) and Equation (29) simplifies to〈

δε∗TL(x)∆ε∗(x)
〉
= −

〈
δε∗TL(x)

〉
∆E−

〈
δε∗T∆λ(x)

〉
. (32)

In the framework of FEM the fluctuation displacements u∗ rather than the total dis-
placements u will be considered as the primary unknowns. Standard finite element dis-
cretization then reads

∆u∗(x) = N(x)∆r, ∆ε(x) = ∆E +B(x)∆r, (33)

where matrix N stores the shape functions for a given partition of the unit cell, B is the
corresponding geometrical matrix and r is the vector of unknown nodal degrees of freedom.
Introducing the fluctuation strains from Equation (33) into Equation (32) provides the final
set of discretized equations of equilibrium in the form∫

Ω
B(x)TL(x)B(x)dΩ∆r = −

∫
Ω
B(x)TL(x)∆E dΩ−

∫
Ω
B(x)T∆λ(x)dΩ, (34)

where Ω represents the volume of the unit cell Y. It is worth mentioning that the fluctuation
displacements u∗ must satisfy certain conditions so that the following relations hold

〈∆ε(x)〉 = ∆E, 〈ε∗(x)〉 = 0. (35)

Point out that Equation (35)2 is for example satisfied when enforcing homogeneous
displacements r on the entire boundary of the unit cell. Usually, better predictions are
obtained when considering periodic boundary conditions which for a rectangular PUC
amounts to enforcing the same fluctuation displacements on opposite faces of PUC. To
avoid writing any master–slave type of constraints it is preferable to consider periodic
meshes. The periodicity condition is then enforced simply by assigning the same code
numbers to the corresponding degrees of freedom on opposite faces of PUC.

3.2.2. Homogenization Based on Mori–Tanaka Method and Transformation Field Analysis

The Mori–Tanaka method belongs to the class of micromechanical models that ground
on the Eshelby solution of an ellipsoidal inclusion problem where a single inclusion is
imagined in an unbounded homogeneous body loaded at infinity by a uniform stress or
strain [40] fields. Eshelby showed that in such a case the distribution of inclusion strains and
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stresses is also uniform and derived a localization tensor that identifies the inclusion strain
and stresses in terms of the applied far fields, material properties of the two phases and
geometry of the inclusion. A number of existing micromechanical models take advantage
of this result and attempt to extend the Eshelby solution to a composite with a large number
of interacting inclusions. In his reformulation of the original Mori–Tanaka method [16],
Benveniste [17] showed that the MT method accounts for the interaction of inclusions by
introducing a single inclusion into an infinite matrix, but unlike the Eshelby solution this
system is loaded by yet unknown average strains or stresses found in the matrix phase. This
method is therefore explicit and for that reason enjoys popularity. As there is a voluminous
literature on this subject, we do not attempt to present all the details of the method but
provide just the relations needed in the context of this paper. To become more familiar with
this method we point the interested reader to the following two monographs [14,15].

To be consistent with the previous section we consider again a two-phase fiber-matrix
composite and write the local constitutive Equation (25)1 assuming elastic response of the
fiber phase and viscoelastic response of the matrix as

∆σ f = L f ∆ε f , ∆σm = L̂m∆εm + ∆λm, (36)

where Lr (r = f , m, subscripts f , m stand for the fiber and matrix phase) is the phase
material stiffness matrix and ( ·̂ ) represents the dependence on the current viscoelastic
shear modulus, recall Equation (21). The local strains in individual phases follow from the
application of Dvorak’s transformation field analysis [21] and are provided by

∆ε f = Â f ∆E + D̂ f m∆µm, ∆εm = Âm∆E + D̂mm∆µm, (37)

where Âr and D̂rm are the mechanical strain localization factors and strain and stress
transformation influence functions, respectively. It can be shown [15,21] that for a two-
phase composite the transformation influence functions are readily provided in terms of
the localization factors as

D̂ f m =
(
I− Â f

)(
L̂m − L f

)−1
L̂m, D̂mm =

(
I− Âm

)(
L̂m − L f

)−1
L̂m. (38)

It remains to determine the mechanical strain localization factors Ar. To do so, we
consider, in light of the MT method, a single inclusion of an elliptical shape being embedded
into an unbounded matrix, which is loaded at infinity by the average strain in the matrix
phase. In the absence of viscoelastic contribution, the strain increment in the fiber phase
can be then written with the help of partial strain localization factor T̂ f as

∆ε f = T̂ f ∆εm. (39)

With reference to Equation (24)1 it is now possible to express the average matrix strain
increment ∆εm in the form

∆εm =
[
cmI+ c f T̂ f

]−1
∆E = Âm∆E, (40)

where I is the identity matrix. Substituting the right hand side of Equation (40) back to
Equation (39) finally gives

∆ε f = T̂ f

[
cmI+ c f T̂ f

]−1
∆E = Â f ∆E. (41)

Without derivation, see for example [40] for details, we provide the particular form of T̂ f ,
the result of the Eshelby transformation inclusion problem, as

T̂ f =
[
I− P̂(L̂m − L f )

]−1
. (42)
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The matrix P depends on the properties of the matrix phase and geometry of the in-
clusion and for the case of infinite longitudinal fibers, the only type of inclusion considered
in this study, is given by [41]

P =



0 0 0 0 0 0

0
k + 4m

8m(k + m)

−k
8m(k + m)

0 0 0

0
−k

8m(k + m)

k + 4m
8m(k + m)

0 0 0

0 0 0
k + 2m

2m(k + m)
0 0

0 0 0 0
1

2p
0

0 0 0 0 0
1

2p



(43)

where k, m, l, n, p are the Hill moduli of the matrix phase and can be written in terms
of Young’s moduli and Poisson’s ratios of transversely isotropic material, remember the
material parameters of the basalt fiber listed in Table 4, in the form

k = −
[
1/GT − 4/ET + 4ν2

A/EA

]−1
, m = GT,

l = 2kνA, n = EA + 4kν2
A = EA + l2/k, p = GA.

The homogenized stiffness matrix, the overall stress and eigenstress vectors associated
with a lower scale, here being represented by the level of yarn (microscale), are finally
provided by substituting the local stress increments from Equation (36) into Equation (24)2
and using relations (37) together with ∆λm = −L̂m∆µm to get

∆Σ = c f ∆σ f + cm∆σm = c fL f ∆ε f + cmL̂m(∆εm − ∆µm)

= c fL f (Â f ∆E + D̂ f m∆µm) + cmL̂m(Âm∆E + D̂mm∆µm)− cmL̂m∆µm

= (c fL f Â f + cmL̂mÂm)∆E + (c fL f D̂ f m + c f L̂mD̂mm − cmL̂m)∆µm. (44)

Comparing Equation (44) with Equation (23)1 finally gives the homogenized stiffness
matrix LhomMT and the increment of mesoscopic eigenstress ∆ΛMT

LhomMT = c fL f Â f + cmL̂mÂm, (45)

∆ΛMT = (c fL f D̂ f m + c f L̂mD̂mm − cmL̂m)∆µm. (46)

3.2.3. Modification of Original Format of Mori–Tanaka Method

The literature offers solid evidence regarding the inability of the original format of the
Mori–Tanaka method (piece-wise uniform distribution of strains and stresses in individual
phases) to provide results comparable to detailed numerical simulations using FEM for
loading conditions exceeding the elastic limit, see [42–44] (for illustration).

A much stiffer response predicted by the MT method is typically observed. This can
be attributed to the way the stresses are localized into the fiber phase as the matrix response
is assumed to be controlled solely by the constitutive law. In FEM simulations the stress
transfer between individual phases is most probably affected by the formation of shear
bands in the matrix. Here, we attempt to address this issue by suitably modifying the local
constitutive model of the fiber phase. Being inspired by [45,46] we suggest to reduce the
stresses taken by the fibers through a damage-like parameter ω and write the fiber stress
increment as
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∆σ̃ f = L f ∆ε f , (47)

∆s f ,ij = (1−ω)(∆σ̃f ,ij − δij∆σ̃f ,m), ∆σ̃f ,m =
1
3

∆σ̃f ,ii, (48)

∆σf ,ij = ∆s f ,ij + δij∆σ̃f ,m, (49)

where ∆s f , ∆σ̃f ,m represent the deviatoric and mean components of the fiber stress incre-
ment ∆σ f , respectively. The tensorial notation in Equations (48) and (49) is adopted just
for the sake of convenience. Point out that stress reduction applies to the deviatoric stress
components only.

The evolution of damage parameter ω is assumed similar to that proposed in [46] but
replaces the equivalent stress τeq with the viscoelastic equivalent deviatoric strain in the
matrix Eve

d,m =
√

2eve
mQeve

m . Considering only the viscoelastic part of the total strain allows
us to write

ω = N

{
1−

[
Eve,t

d,m

E0
d,m

/sinh

(
Eve,t

d,m

E0
d,m

)]}M

, (50)

where M, N are the model parameters. These parameters are found by matching the FEM
predictions of the homogenized response by comparing the PHA model predictions and
the MT two-phase estimates given by Equation (44). Note that the stiffness matrix of the
fiber phase L f must be suitably modified by introducing a reduced shear modulus

Ĝ f = (1−ω)G f . (51)

The scaling parameter E0
d,m is written in terms of τ0 and the elastic shear modulus Gel

m,
recall Equation (1), as

E0
d,m =

τ0

Gel
m

. (52)

4. Results

Following the general structure of the previous section, we begin with the results
concerning the calibration process of the matrix phase. The results of numerical simulations
starting from the level of yarns and followed by the level of textile ply are summarized next.

4.1. Parameters of Leonov Model from Tensile Tests

At the initial stage of our experimental program the attention was accorded to the L285
epoxy resin cured with the H508 hardener. Six specimens in particular were examined.
Figure 7a shows the resulting stress–strain curves confirming a strong strain rate dependency
and nonlinear viscous behavior over the whole range of the applied strain rates, which is
manifested by variation of both the initial shear stiffness and yield stress fy. The latter quantity
is defined as the maximum stress attained in the experiment. The corresponding Eyring plot
is presented as a dashed line in Figure 7d resulting in τ0 = 1.7 MPa.
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Figure 7. Tensile tests: (a) Hardener 508, (b) Hardener 500, (c) All tests, (d) Eyring plot.

4.2. Parameters of Maxwell Chain Model from Creep Tests

Expecting the lack of H508 hardener on the Czech market we performed this particular
set of experiments using the same L285 epoxy resin but cured with H500 hardener as a
recommended substitute. Fourteen specimens were examined. Each test, except for tests
at 40 and 45 MPa, was run twice. As seen in Figure 8a, the results at low stress levels
(10–30 MPa) are comparable thus supporting the measurement credibility. Negligible
deviations are attributed to the evaluation procedure as an average cross-sectional area
calculated from all tested samples, recall Table 2, was used to convert the measured force-
displacement curve into the correspondent stress–strain curve. The maximum stress level
was suggested based on the maximum yield stress observed in the tensile tests. It is evident
that particularly at high stress levels the acquired measurements were greatly affected by
the quality of the specimen as well as the type of hardener, compare the curves for 50 and
60 MPa. The latter influence will yet be discussed. In addition, for stress levels exceeding
40 MPa the tertiary creep can easily be identified. Exploiting these measurements would
thus require a large strain formulation. Because of that, only the measurements up to
40 MPa were adopted in further processing.
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Figure 8. L285/H500: (a) Creep experiment, (b) Master curve derived from experiments.
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When deriving the Master curve the procedure described in Section 3.1 was persuaded.
However, we were not able to employ the step (3a) to simply shift the measured curves
horizontally using aσ calculated on the basis of τ0 = 1.7 MPa found originally from tensile
tests on L285/H508 material. Therefore, the step (3b) was eventually adopted and a
significantly different value of τ0 = 5.3 MPa pertinent to L285/500 material was derived
directly from creep tests. The resulting approximation of the Mater curve is plotted in
Figure 8b. It is clearly seen that at t → 0 the curve approaches the elastic asymptote
as required.

To partially reconcile the discrepancy in the material response of the two material
systems we carried out an additional set of measurements of the L285/H500 system in
tension at the same strain–strain rate as originally used for the L285/H508 matrix. These
results are shown in Figure 7b. An essentially brittle response at higher strain rates is
evident. The Eyring plot constructed from two points only appears as a solid line in
Figure 7d and with τ0 = 7.3 MPa significantly deviates from that of L285/H508 material.
This is also why the Eyring flow parameter τ0 obtained from creep tests was adopted in all
the remaining calculations thus also in the derivation of both the creep compliance function
J(t), Equation (15), and the relaxation function R(t), Equation (18). For nine Kelvin units
of the Maxwell chain model the values of the compliances Jµ are listed for the selected
retardation times τµ in Table 5 together with the corresponding shear stiffnesses Gµ and
relaxation times θµ. It is worth mentioning that the elastic modulus of the L285/H500
matrix provided by Equation (1) closely matches the one estimated from the initial slopes
of the creep tests.

Table 5. Parameters of Maxwell chain model—L285 epoxy resin.

µ τµ [s] Jµ [MPa−1] θµ [MPa·s] Gµ [MPa]

1 1× 10−5 7.047033 × 10−4 9.655035 × 10−2 4.915541 × 101

2 0.1 2.507001 × 10−5 9.672027 × 10−1 4.501054 × 101

3 1 2.469968 × 10−5 9.569420 × 10+0 5.732147 × 101

4 10 3.377764 × 10−5 9.321383 × 10+1 8.651850 × 101

5 100 5.703039 × 10−5 9.312438 × 10+2 8.338651 × 101

6 1000 6.067732 × 10−5 9.073146 × 10+3 1.324220 × 102

7 10,000 6.906896 × 10−5 3.361408 × 10+4 7.832536 × 102

8 100,000 8.026744 × 10−4 1.565791 × 10+5 1.294026 × 102

9 1,000,000 1.724650 × 10−2 7.293674 × 10+5 5.256629 × 101

To support the applicability of the adopted generalized Leonov model we performed
the creep tests numerically. The results are available in Figure 9a. The dashed lines corre-
spond to stress levels not used in the experimental part. Figure 9a shows the numerically
derived Master curve. A relatively good match with experimental data is evident.

For illustration, we also reproduced the tensile test numerically. The analysis was
performed in the plane stress regime using 4-node quadrilateral elements. Similarly to
experimental measurements, the analysis was carried out in the displacement control
regime. The geometry of the computational model was selected such as to represent the
part of the specimen covered by the extensometer. The resulting finite element meshes
together with boundary and loading conditions is available in Figure 10a. The com-
parison of numerical predictions (dashed lines) with experimental measurements (solid
lines) is plotted in Figure 10b. A reasonable agreement is observed. A higher value of
τ0(H500-tension) = 7.3 MPa (tensile tests) in comparison to τ0(H500-creep) = 5.3 MPa
(creep tests) used in simulations is reflected in a higher value of the yield stress fy obtained
experimentally. For completeness, the Eyring plots were constructed from tensile tests
(τ0(tension)) and calculated numerically (τ0(creep)) are compared in Figure 10.
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Figure 9. (a) Simulation of creep experiment, (b) Master curve derived from simulations.
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Figure 10. (a) Finite element mesh, (b) Simulation of tensile experiment, (c) Eyring plot.

4.3. Composite Response at Level of Yarn

The first set of experiments aims at verifying the implementation of the generalized
Leonov model and the Mori–Tanaka method in our in-house finite element code. Figure 11a
provides the results of finite element simulations of the L285 matrix phase subjected to
variable macroscopic stress rates. Although a homogeneous material is assumed the
analysis is carried within the framework of first-order homogenization method in the stress
control regime using Equations (30) and (31). Both in-plane tension and transverse shear,
recall Figure 3, show a significant rate dependency predicted by the Leonov model. Unlike
in Figure 10b, the response in tension is presented here in terms of deviatoric stress and
strain ex × sx components. It appears considerably stiffer in comparison to the pure shear
loading scenario. Given also the much higher stiffness of fibers in tension compared to the
polymer matrix, we limited attention in all the remaining simulations at the level of yarns
to pure transverse shear so to better address the nonlinear behavior of the matrix phase.
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Figure 11. Nonlinear viscoelastic response of L285 (a) Stress–strain diagrams for two different strain
rates provided by FEM (stress control loading); (b) Stress–strain diagrams for two different strain
rates provided by FE and MT methods (strain control loading).
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Considering the strain control regime, Equation (32), we first compare in Figure 11b
the response predicted by both the FE and MT method for two different shear strain rates.
As seen, for purely isotropic material the predictions are identical. This result together
with negligible computational demands of the MT method seems appealing. However, the
stress–strain diagrams plotted in Figure 12 make the general applicability of the MT method
less certain. We notice a relatively strong mismatch between the macroscopic response
(Σxy × Exy diagram) provided by the FE and MT methods, while this is not so significant
for the matrix phase owing to the elastic-perfectly plastic character of the Leonov model
with the rate-dependent yield stress, an inadequate transition of the macroscopic stress into
the fiber phase is clearly seen regardless of the applied strain rate.
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Figure 12. Local response (comparing FE and MT methods): (a) Ėxy = 10−2s−1, (b) Ėxy = 10−3s−1.

A remedy is offered in Section 3.2.3 through Equations (47)–(50). To adopt this new for-
mulation, we first fitted the model parameters M, N by matching the macroscopic response
derived by FEM and the MT method for the selected shear strain rate Ėxy = 10−3 s−1. The
composite was then subjected to another two different strain rates while keeping the values
of parameters M, N unaltered. The result is shown in Figure 13a suggesting the ability of
the present formulation to successfully address the strain rate effect with a unique set of
parameters, which would not be possible with a similar formulation presented in [46] on
the basis of the current equivalent stress instead of strain. Partial explanation is provided
in Figure 13b showing the delay in damage evolution, which arises naturally with the
evolution of equivalent viscoelastic strain.
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Figure 13. (a) Evolution of stress Σxy for different strain rates with model parameters fitted to
Ėxy = 0.001 s−1: comparison of MT and PHA predictions, (b) Evolution of damage parameter ω for
different strain rates.

The evolution of local phase stresses is evident in Figure 14a. As expected, the
distribution of stress σm

yx in the matrix phase remains the same as the new formulation has
an influence on the fiber and overall stresses only. On the other hand, the prediction of
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fiber stress σ
f
xy has considerably been improved, recall Figure 12b. To further support the

new formulation we examined the effect of a variable strain rate on relaxation. It is seen
in Figure 14b that not only the loading branch but also the relaxation phase is captured
satisfactorily.
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Figure 14. (a) Comparison of MT and PHA predictions for Ėxy = 1 × 10−3 s−1: evolution of stresses
within individual phases, (b) Relaxation test: time evolution of macroscopic strain Exy.

It is fair to mention that here we accepted the prediction provided by FEM as suf-
ficiently accurate to play the role of a virtual experiment, therefore replacing the actual
laboratory measurements. These, however, are still needed to validate both computational
strategies. However, this goes beyond the present scope. Furthermore, as the model is
generally isotropic it remains to check whether a single set of parameters will still be
sufficient to account for other, more general, loading scenarios. In this regard, a recently
proposed modeling strategy, see [44], might prove to be more robust.

4.4. Composite Response at Level of Textile Ply

A suitably tuned new version of the MT method now opens the door to the desired
multiscale modeling of a single plain weave textile ply. Such an approach should prove
efficient making possible to perform an extensive parametric study for a variety of loading
conditions and types of reinforcements. This would certainly be appreciated particularly at
the initial stage of design of a given structural element. Nevertheless, the validity of such
simulations should be checked. At this point, however, no experimental measurements
performed directly on a textile ply under study are available. Therefore, we propose
two simple loading scenarios enabling us to evaluate the performance of the basalt fabric
reinforced polymer matrix at least qualitatively.

In particular, we compare the macroscopic response of the composite to in-plane
tension and in-plane and out-of-plane shear by loading the unit cell in Figure 4 in turn
by the macroscopic in-plane tensile ĖXX , in-plane shear ĖXY, and out-of-plane shear ĖXZ
strain rates. Two specific values of 10−2 and 10−4 s−1 are examined. Because of the adopted
fully explicit forward Euler integration scheme, each value requires a different size of the
minimum integration time step. In general, the higher the strain rate the smaller the time
step to avoid oscillations of the computed stresses. In the present study ∆t = 0.01 s for
10−2 s−1 and ∆t = 1 s for 10−4 s−1 strain rates are considered. We remind different time
steps already used to generate the results in Figure 12.

Henceforth, the macroscopic stress–strain curve, the response at the level of textile ply,
is denoted as Σ× E, while σm denotes the average stress in the matrix and σy the average
stress in the yarn. Notice that ∆σy = ∆σ in Figure 6 and is provided by the MT method for
a given increment of the yarn strain ∆εy = ∆ε. Similarly, the instantaneous yarn effective

stiffness matrix L̂
hom
y corresponds to LMT in Figure 6. Clearly, each element of the yarn

is treated as a two-phase unidirectional fibrous composite loaded by the increment of a
mesoscopic strain ∆εy computed in turn for a given increment of the macroscopic strain
∆E (strain control regime) or stress ∆Σ (stress control regime).
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With the above specification, we first address the tensile loading along the X direction.
Point out that this is the case of a unidirectional strain where ∆EXX 6= 0 while all other
strain components vanish. Such a constrained problem inevitably generates transverse
stresses as seen in Figure 15a. In this direction the response is driven by the stiffness of
the fiber phase where the matrix contribution is minor. This is also why the response is
more or less elastic. Figure 15a also confirms a perfect symmetry in the weft and warp
directions of the selected balanced plain weave composite and transverse isotropy of
the yarns. To confirm the expected elastic bulk response of the composite caused by the
property of the generalized Leonov model, we plot in Figure 15b the evolution of the

macroscopic mean stress Σm =
1
3
(ΣXX + ΣYY + ΣZZ) and the macroscopic equivalent

stress τeq =

√
1
2

SijSij, Sij = Σij − δijΣm.
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Figure 15. Plain weave composite loaded in tension by prescribed macroscopic strain rate
ĖXX = 10−4s−1: (a) macroscopic stress strain curves, (b) evolution of macroscopic mean stress
Σm and equivalent deviatoric stress τeq.

The piece-wise uniform evolution of these quantities in individual phases is displayed
in Figure 16. Clearly, in accordance with the Leonov model, the volumetric response of the
matrix phase is fully elastic. A slight deviation of the macroscopic volumetric stress from
linearity is caused by the nonlinearity evolving in the homogenized yarn. We also notice a
relatively mild effect of the applied strain rate even with the difference chosen on purpose
by two orders of magnitude.
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Figure 16. Plain weave composite loaded in tension by prescribed macroscopic strain rates
ĖXX = 10−2s−1 and ĖXX = 10−4s−1: (a) mean stress, (b) equivalent deviatoric stress.

As expected, the effect of the applied strain rate is more pronounced for shear loading
conditions which is evident in Figure 17. A slightly stiffer response in in-plane shear is in
accord with the homogenized elastic moduli summarized for the sake of convenience in
Table 6. These were extracted from the homogenized stiffness matrix provided by strain-
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based homogenization, Equations (32) and (34). The listed values confirm the macroscopic
orthotropy of the balanced plane weave composite, which makes no difference between
the warp and weft directions.
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Figure 17. Plain weave composite loaded by prescribed macroscopic in-plane and out-of-plane shear
strain rate ĖXi = 10−2s−1 and ĖXi = 10−4s−1: (a) ΣXY × EXY , (b) ΣXZ × EXZ.

Table 6. Textile ply effective properties from FEM homogenization. Elastic moduli are in [GPa]
(νXY = νYX , νXZ = νYZ, νZX = νZY).

EXX EYY EZZ GYZ GXZ GXY νXY νXZ νZY

12.4 12.4 6.6 2.1 2.1 2.6 0.19 0.41 0.22

5. Conclusions

Since gaining notable popularity, the basalt fabric/polymer matrix based composites
should be thoroughly studied both experimentally and computationally, for only then new
improved designs would be broadly accepted in structural applications. The present study
partially contributes to this subject by offering an efficient fully coupled two-scale compu-
tational procedure to address both the geometrical complexity of basalt reinforcement and
nonlinear behavior of the matrix.

The proposed approach advocates the use of the Mori–Tanaka micromechanical model
to substitute a computationally expensive finite element method when estimating local
stresses and strains on the yarn scale. The fact that only the overall macroscopic response is
usually of an engineering interest supports this approach as the MT method generally obvi-
ates the local details by considering the piece-wise uniform stress and strain averages only.
However, even such a simplification should be reliable and generally comparable to more
accurate FE predictions. This is why we introduced a certain reformulation of the original
format of the MT method to closely match the mesoscopic response generated by FEM.
In this context, the presented results seem promising so to accept the MT method for the
stress update on the microscale (unidirectional fibrous composite representing yarn) within
the multiscale analysis. In this regard, some specific features of the macroscopic response
of a textile ply with reference to the adopted local constitutive laws have successfully
been illustrated.

While this study is only computational and should be experimentally validated, the
analysis concerning the material behavior of individual phases, the basalt fibers and L285
polymer matrix, integrated both experimental and computational components of research.
A complex experimental program was executed to provide data for the calibration of the
generalized Leonov model chosen to represent the nonlinear viscoelastic response of the
matrix phase. Within this step, a calibration procedure for tuning the model parameters
of the Eyring flow was developed solely on the basis of creep tests. The calibrated model
was validated computationally by reproducing the laboratory measurements numerically.
The reported results highlight the importance of properly addressing the whole system



Polymers 2022, 14, 3301 23 of 24

resin/hardener as the results derived for one particular hardener can hardly be transplanted
to another one albeit using the same epoxy resin.
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