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High-Throughput Architecture for 
Discovering Combination Cancer 
Therapeutics

INTRODUCTION

Next-generation sequencing is becoming less 
expensive, which is promoting its application in 
routine genomic analysis of clinical samples. The 
enormous amount of data generated by gene se-
quencing in recent years, along with progress in 
related molecular network signaling and clinical 
information databases, is making it challenging 
to store, integrate, analyze, and interpret the re-
lationships among such data. Big data initiatives, 
like the Genomic Data Commons,1 ORIEN,2 and 
GENIE,3 have been proposed and implemented 
to help store and analyze large datasets, and  
the analysis platforms of these databases are be-
ing developed. As of today, most of the available 
software is either web-based and limited by data 
transfer challenges, or is not easy to install and 
use, preventing scientists and clinicians from 
working directly with such databases and tools. 
Thus, there is a significant and unmet need for 

applications that provide more sophisticated 
analyses of next-generation sequencing and re-
lated data in a high-throughput manner.

Because monotherapy seldom leads to cure in 
oncology, combination therapies are warranted. 
One of the major challenges in cancer drug dis-
covery and development is to identify effective 
combination-therapy strategies. To predict drug 
response, multiple computational tools have 
been developed using genome-wide molecular 
data; however, predictions for drug combina-
tions are not optimal or the number of cancers 
or drugs included is limited.4 Although several 
regimens including multiple approved clini-
cal agents have been tested in clinical trials to 
identify synergistic activities of therapeutics, de-
termining predictive biomarkers for establishing 
combination drugs remains a critically important 
obstacle.5 Current drug selection for combina-
tion therapies is often limited to drugs that have 
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recently achieved widespread clinical use. Fur-
thermore, various noncancer drugs may have 
potential for the treatment of cancers, but those 
drugs are rarely tested in combination with can-
cer therapeutics. Current use of “big data” ana-
lytics methods to identify potentially synergistic 
targets for developing combinations is limited.

To address these issues, we leveraged a user- 
friendly distributed system architecture, Spark,6 
that bundles a variety of tools and techniques 
originally developed for at-scale distributed pro-
cessing, including meta-scheduling of multiple 
dependent applications for optimized queries 
and workflows, rapid in-memory processing for 
large data volumes, and graph processing. Spark 
also continues to provide support to several visual-
ization and analysis tools and languages, such 
as the R programming language, that are fre-
quently used in biomedical research. Spark is 
flexible with respect to data import/export and 
data management, and it also has tools for visu-
alizing results, while making the work accessible 
between collaborators in an open and reproduc-
ible framework. To demonstrate the power of this 
approach, we also show how other databases, 
like Human Genome Organization (HUGO) and 
Reactome, can be included in our analyses.

In summary, we created a system that allows 
users to efficiently analyze large amounts of 
sequencing and clinical data from thousands 
of patients to identify combinational biomark-
ers to aid the discovery of potential targets for 
combination cancer therapeutics. We show how 
big databases can be integrated and visualized 
to allow quick selection of the most promising 
candidate targets. The source code of our appli-
cation is publicly available on GitHub for use and 
further development.

METHODS

Spark

Initially developed by researchers at the Univer-
sity of California, Berkeley, Apache Spark6 is an 
open-source parallel processing framework for 
large-scale data analytics. Spark was originally 
designed to provide similar scalability and fault 
tolerance to Hadoop but with better memory use 
to deliver higher performance supporting itera-
tive machine learning and interactive data an-
alytics.7 Spark developers report that programs 
execute up to 100 times faster than Hadoop 

MapReduce in memory or 10 times faster on 
disk. Spark’s key data abstraction, the resilience 
distributed dataset (RDD), insulates developers 
from complexity of distributed, in-memory an-
alytics by providing an easy-to-use application 
programming interface delivered through a vari-
ety of language bindings, including Java, Scala, 
Python, and R.

Resource Description Framework /Triplestore

The Resource Description Framework (RDF) 
is a World Wide Web Consortium specification 
(https://www.w3.org/TR/2014/REC-rdf11- 
concepts-20140225/) that was designed as a 
framework for representing information in the 
Web and it is commonly used in knowledge man-
agement applications. The fundamental unit of 
data in RDF is the triple (https://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/#d-
fn-rdf-triple), consisting of three components: 
subject, predicate, and object. A triple can be 
conceptualized as an edge in a directed graph 
in which the subject and object identify the nodes, 
and the predicate represents a labeled edge 
connecting them. An RDF graph is a set of RDF 
triples. RDF’s graph abstraction provides a  
powerful framework for representing the rela-
tionships in highly connected datasets such as 
pathways databases.

An RDF store or triplestore is a database system 
specifically designed to store and explore RDF 
triples using semantic queries. Much like SQL  
(structured query language) for relational da-
tabase systems, triplestore typically supports a  
standard query language called SPARQL. Like 
RDF itself, SPARQL was also standardized by the 
World Wide Web Consortium (http://www.w3.org/
TR/2008/REC-rdf-sparql-query-20080115/).

Cray Graph Engine

The Cray Graph Engine (CGE) is an RDF triple-
store that leverages high-performance hardware 
and parallel software design expertise to accel-
erate graph analytics at scale. CGE provides 
semantic pattern matching and filtering cou-
pled with custom graph algorithms and anal-
ysis tools that allow scale to graphs to billions 
of edges, while maintaining interactive query 
performance. We used CGE to identify and de-
pict relevant pathway targets by organizing our 
results as a graph and labeling each of the  
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candidate gene pairs with their respective Re-
actome pathway categories. We were then able 
to query and visualize this network to illuminate 
how the candidate genes are connected in terms 
of their pathway categorizations.

We built our graph from our results and two pub-
licly available datasets, HUGO and Reactome. 
The HUGO dataset allowed us to translate be-
tween The Cancer Genome Atlas (TCGA) gene 
symbols and Reactome’s gene identifiers. We 
used European Bioinformatics Institute’s Reac-
tome for the pathway ontology, which allowed us 
to connect genes to their respective pathways.

We used CGE to build a single graph from all 
three data sources. Using CGE’s SPARQL inter-
face to query/update this integrated graph, we 
were able to label each of our candidate genes 
with its associated top-level Reactome pathway 
category. CGE also allowed us to export these 
networks and visualize them using standard 
graph visualization tools like Cytoscape.

Datasets

Gene expression and clinical data from 33 
TCGA cancer projects were obtained from pub-
lic TCGA repositories (https://tcga-data.nci.nih.
gov and http://gdac.broadinstitute.org/). Cancer 
types, with TCGA abbreviations, and total input 
RNA-sequencing sample counts in parentheses, 
are as follows: adrenocortical carcinoma (ACC;  
n = 79); bladder urothelial carcinoma (BLCA; n =  
427); breast invasive carcinoma (BRCA; n = 
1212); cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC; n = 309); 
cholangiocarcinoma (CHOL; n = 45); colon adeno-
carcinoma (COAD; n = 191); lymphoid neoplasm  
diffuse large B-cell lymphoma (DLBC; n = 33); 
esophageal carcinoma (ESCA; n = 196); glioblas-
toma multiforme (GBM; n = 166); head and neck 
squamous cell carcinoma (HNSC; n = 566);  
kidney chromophobe (KICH; n = 91); kidney 
renal clear cell carcinoma (KIRC; n = 606); 
kidney renal papillary cell carcinoma (KIRP;  
n = 323); acute myeloid leukemia (LAML; n = 
173); brain lower grade glioma (LGG; n = 530); 
liver hepatocellular carcinoma (LIHC; n = 423); 
lung adenocarcinoma (LUAD; n = 576); Lung 
squamous cell carcinoma (LUSC; n = 552); me-
sothelioma (MESO; n = 87); ovarian serous cysta-
denocarcinoma (OV; n = 307); pancreatic adeno-
carcinoma (PAAD; n = 183); pheochromocytoma 

and paraganglioma (PCPG; n = 187); prostate ad-
enocarcinoma (PRAD; n = 550); rectum adenocar-
cinoma (READ; n = 72); sarcoma (SARC; n = 265); 
skin cutaneous melanoma (SKCM; n = 473); 
stomach adenocarcinoma (STAD; n = 409); tes-
ticular germ cell tumors (TGCT; n = 156); thyroid 
carcinoma (THCA; n = 568); thymoma (THYM; 
n = 122); uterine corpus endometrial carcinoma 
(UCEC; n = 381); and uterine carcinosarcoma 
(UCS; n = 57); uveal melanoma (UVM; n = 80). 
TCGA normal tissues were not used in the survival 
analyses. To analyze normal-tissue gene expres-
sions we used mRNA expression data from the 
Genotype-Tissue Expression project (GTEx, http://
www.gtexportal.org).8 We used the transcripts 
per million9 unit to compare mRNA expressions 
from RNA sequencing. Cell-line expression and 
drug-sensitivity data were obtained from the web-
site of the Cancer Cell Line Encyclopedia (CCLE) 
project.10

The pathway data from the Reactome dataset 
were obtained from European Bioinformatics 
Institute’s RDF Platform (https://www.ebi.ac.uk/
rdf/services/reactome/). An RDF version of HUGO 
was also used in the knowledge graph and was 
obtained from https://bioportal.bioontology.org/
ontologies/HUGO.

Survival Analyses

We used the “survival” R package (https://cran. 
r-project.org/web/packages/survival/index.html) 
to perform Kaplan-Meier analyses and calculate 
log-rank P values. To compare two groups, we 
used two-tailed Student t tests. Differences were 
considered significant when P < .05.

Description of Scala Classes

Algorithm 1: Calculate survival statistics. Input: 
survival times per patient, gene expression flags

1. Read survival data from distributed cache

2. Read incoming gene expression flags from 
standard input line by line (produced from 
algorithm 2)

a. Parse standard input to identify gene pairs, 
median expression values, and flags

b. Filter out gene pairs that do not have all  
four expression-flags groups represented

c. Calculate survival statistics using R sur-
vival package (https://cran.r-project.org/
web/packages/survival/citation.html)

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 3

https://tcga-data.nci.nih.gov
https://tcga-data.nci.nih.gov
http://gdac.broadinstitute.org/
http://www.gtexportal.org
http://www.gtexportal.org
https://www.ebi.ac.uk/rdf/services/reactome/
https://www.ebi.ac.uk/rdf/services/reactome/
https://bioportal.bioontology.org/ontologies/HUGO
https://bioportal.bioontology.org/ontologies/HUGO
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/citation.html
https://cran.r-project.org/web/packages/survival/citation.html
http://ascopubs.org/journal/cci


d. Emit(Type, Gene1, Gene2, p-value,  
MedianExp1, MedianExp2, Quantile1, 
Quantile2, Quantile3, Quantile4)

Algorithm 2: Data preparation and permutation 
method. Input: patient survival and gene expres-
sion data file

Output: RDDflags, survival data file

1. Extract R-Script from JAR file

2. Distribute R-Script to compute nodes

3. RDDraw = Map(Expression Text File): 
Emit(Barcode, Status, Months, Expression1, 
…, Expressiong)

4. RDDsurv = Map(RDDraw): Emit(Barcode, 
Status, Months)

5. Extract RDDsurv to the file system as survival 
data file

6. Distribute survival data file to all the 
compute nodes

7. RDDexprot = Map(RDDraw): Emit(Expression1, 
…, Expressiong)

8. RDDexp = Transpose(RDDexprot)

9. RDDflags = Map(RDDexp):

a. For each Geneg: Calculate MedianExpg 
across all patients

b. Emit(Key: Geneg, Value: list<character 
flag indicating whether the patient’s ex-
pression value for Geneg is greater than 
or equal to the MedianExpg or less than 
this median>

10. RDDperm = Cartesian(RDDflags, RDDflags)

11. RDDcartesian = RDDperm.Filter(G1 < G2)

12. RDDprepared = Map(RDDcartesian): 
Emit(Gene1, Gene2, Median1, Median2, 
List<Flags>)

13. RDDresult = Map(RDDprepared): Emit(Algorithm 
#1)

Building the Pair Hunter Program

The source code for the Pair Hunter program 
is available on GitHub at https://github.com/
jasonr1/pair-hunter. Pair Hunter is built using 
sbt.11 Executing the “sbt assembly” command 
builds the application. Testing whether the ap-
plication build process completed successfully 
can be performed by executing the “run_test.
sh” command. Before building the application, 
the following software needs to be installed: SBT 
(we used version 0.7.0), Apache Spark (we have 
tested 1.5.2 and 2.0.0), and R (we used version 
3.1.0).
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Fig 1. The high-
throughput computing 
architecture. Clinical and 
gene expression data are 
distributed and permuted 
as RDDs and used to 
calculate the survival 
statistics (see algorithms 1 
and 2 in the text) that make 
up the primary results. 
These primary survival 
results are then filtered and 
merged, using the CGE, 
into a knowledge graph 
built from publicly available 
databases representing 
known protein associations. 
This knowledge graph was 
used to explore and identify 
interesting relationships 
between genes and 
pathways that showed 
significant association 
with survivability. Tableau 
Desktop and Cytoscape 
were used to visualize these 
data and their relationships. 
CGE, Cray Graph Engine; 
HDFS, Hadoop Distributed 
File System; LUAD, lung 
adenocarcinoma; MESO, 
mesothelioma; OV, ovarian 
serous cystadenocarcinoma; 
RDD, resilient distributed 
dataset; SKCM, skin 
cutaneous melanoma.
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Fig 3. Predicted combinations to target the MAPK/ERK pathway in melanoma. Median survival in months is shown for the following four groups 
of patients with melanoma: expression of both genes are above the median expression levels (high-high group), the expression of one gene is above 
while the other is below median expression (high-low group), the expression of the first gene is below while the second is above median expression 
(low-high group), and the expression of both genes are below the median expression levels (low-low group). One of the combination partners is 
always MAPK1, and the other gene is shown on the x-axis. (A) Color represents gene expression. MAPK1–PKN3 survival analysis is shown as an 
example. (B) Blue: MAPK1 low, PKN3 low; red: MAPK1 low/PKN3 high; yellow: MAPK1 high/PKN3 low; gray: MAPK1 high/PKN3 high, together 
with (C) expression analysis of these genes, and (D) a correlation analysis of sorafenib concentration achieving half-maximal response and MAPK1 
and PKN3 expression in the Cancer Cell Line Encyclopedia database. BRCA, breast invasive carcinoma; LGG, brain lower grade glioma; MESO, 
mesothelioma; PAAD, pancreatic adenocarcinoma; SKCM, skin cutaneous melanoma; TPM, transcripts per million.
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RESULTS

Construction of the High-Throughput Computing 
Architecture

To analyze survival correlations of all possible 
combinations of all 20,531 genes with expres-
sion data in TCGA, we constructed a computa-
tional architecture (Fig 1) to efficiently process 
data from 10,395 samples of 33 cancer types 
in the TCGA. Importantly, this approach can 
be readily applied to any other datasets. Clini-
cal and gene expression data were loaded into 
Spark RDD and overall survival (OS) and gene 
expression correlations were calculated for all 
possible gene pairs, using four patient groups: 
(1) the expression of both genes is above the 
median expression levels of each gene (high-
high group), (2) the expression of the first gene is 
above whereas the second gene is below median 
expression (high-low group), (3) the expression 
of the first gene is below whereas the expres-
sion of the second is above median expres-
sion (low-high group), and (4) the expression 
of both genes is below the median expression 
levels (low-low group). This combination analy-
sis shows that expression of two genes together 
shows a stronger association with prognosis and 
those genes may be good combinatory predic-
tion makers for prognosis and may be tested as 
combination targets. Survival correlation results 
were integrated with the analyses of Reactome 
pathway and the HUGO databases. The results 
were visualized using the Tableau Desktop soft-
ware12 (Tableau Software, Seattle, WA) and the 
Cytoscape13 network analysis tool (http://www.
cytoscape.org/).

Combination Predictions for Approved Targeted 
Therapeutics

To identify gene pairs that potentially synergis-
tically affect patient survival, we used a list of 
38 genes (ALK, AR, BTK, CD19, CD38, CD52, 
CDK4, CDK6, CTLA4, EGFR, ERBB2, ESR1, 
HDAC1, HDAC2, HDAC3, HDAC6, IL2RA, IL6, 
JAK1, JAK2, MEK1 [MAP2K1], MEK2 [MAP2K2], 
MET, MS4A1, MTOR, PARP1, PDCD1, PIK3CD, 
ROS1, RXRA, RXRB, RXRG, SLAMF7, SMO, 
TNFSF11, VEGFA, VEGFR2, and VEGFR3) that 
encode proteins targeted by therapeutics ap-
proved by the US Food and Drug Administration 
(FDA).14 Taking advantage of gene expression 

(mRNA levels) and OS data from the TCGA, our 
analysis tool allowed us to systematically exam-
ine the correlation of expression levels of two 
specific genes with patient outcome. Figure 2A 
shows examples of predictions for all gene pairs 
of 36 of 38 FDA-approved targets that correlated 
significantly with patient survival for five selected 
cancers in the TCGA: BRCA, LAML, LGG, MESO, 
and PAAD. As expected, targets that correlated 
well with survival showed significant associations 
with multiple combination partners. Specifical-
ly, MAP2K1 in all five cancers; RXRB in PAAD; 
HDAC2 in BRCA, HDAC6 in MESO and PAAD; 
and VEGFA in LGG.

Kaplan-Meier analyses of a selected combination 
pair in LGG show significant survival correlation 
with VEGFA (Fig 2B) and BTK (Fig 2C) expres-
sion; however, the survival difference becomes 
very large when the expression of both these 
genes is low in comparison with when they are 
both high (Fig 2D), suggesting that these genes 
could be efficient targets in a combination ther-
apy. The MAP2K1 (MEK1) and CDK4/6 combi-
nation, which has been shown to be synergistic15 
and has been tested in the clinic in solid tumors 
(ClinicalTrials.gov identifier: NCT02065063), 
shows significant correlations in all five can-
cers (Fig 2A, blue boxes). As shown by surviv-
al curves for BRCA (Fig 2E), MESO (Fig 2F), 
and PAAD (Fig 2G), the OS of patients with high 
levels of MAP2K1 and CDK4/6 was significantly 
lower than the OS of patients with low levels of 
MAP2K1 and CDK4/6. These data further vali-
date the rationale for combining drugs targeting 
MAP2K1 and CDK4/6 in various cancers.

New Targets to Combine With MAPK/ERK 
Pathway Inhibition to Enhance Survival of 
Patients With Melanoma

The components in the MAPK/ERK pathway are 
known important targets in various cancers, in-
cluding cutaneous melanoma, and several ther-
apies combining MAPK/ERK inhibition with other 
therapeutics are being tested in clinical trials for 
the treatment of advanced solid tumors.16 To iden-
tify novel combination therapies to enhance MAPK 
inhibition in cutaneous melanoma, we applied 
our tool to discover potential genes or targets that 
show strong correlation with patient survival when  

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 7

http://www.cytoscape.org/
http://www.cytoscape.org/
https://www.clinicaltrials.gov/
http://ascopubs.org/journal/cci


combining with MAPK1 inhibition. As shown in 
Figure 3, synergistic effect was predicted for sever-
al MAPK1 combinations evidenced by short OS in 
the high (ie, more than the median) MAPK1–high 
other gene-expression group and significantly bet-
ter OS within the cohort in which expression of both 
of these genes is low (ie, below median).

As a detailed analysis example, we show that ex-
pression of protein kinase N3 (PKN3), which has 
been identified as a metastasis regulator in mel-
anoma,17 is associated with OS when analyzed 
together with MAPK1 (P < .01; Fig 3B). MAPK1 
is also overexpressed in melanoma (P < .001),  
and whereas PKN3 expression was lower (P < .001)  
in melanoma than in normal skin samples (which 
are not optimal controls for melanoma), it 
showed increased expression in sun-exposed 
skin compared with non–sun-exposed skin  
(P < .05; Fig 3C). To provide further validation 
of the MAPK1–PKN3 combination, we analyzed 
how expression of these genes correlates with 
drug response in the CCLE10 database, using the 
tool we recently developed.18 We found that high  
MAPK1 levels correlated with lower concentration  

achieving half-maximal response of the sorafenib 
BRAF/MAPK inhibitor, as expected (Fig 3D). In-
terestingly, high PKN3 levels were associated 
with worse efficacy (ie, higher concentration 
achieving half-maximal response), suggesting 
that targeting or lowering of PKN3 may help in-
crease efficacy of inhibitors of the MAPK path-
way.

Pathway Analysis of Predicted MAPK/ERK 
Combination Partners Points to Targeting 
Metabolic Pathways

To show the power of our architecture in inte-
gration and visualization of results with pathway 
analysis tools, we converted our survival cor-
relation results to RDF format and integrated 
them with the HUGO gene symbol and Reac-
tome pathway databases. The predicted MAPK1 
combination partners and associated Reactome 
pathways are shown in Figure 4. Importantly, we 
found that multiple potential combination targets 
are associated with the metabolism and metabo-
lism of proteins pathways.
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DISCUSSION

Integration and analysis of large amounts of in-
formation from next-generation genomics plat-
forms present challenges. To be able to make 
a meaningful impact, we need computational 
tools that scientists and clinicians can use to 
analyze data in an efficient and straightforward 
way.19 Because the analytical load is very high, 
stand-alone analytical systems may provide ad-
vantages to the website-based approaches.19  
The price of supercomputer systems is de-
creasing and they are becoming available to 
many laboratories and clinics; however, analyz-
ing large sequencing datasets and integration 
of genomic data with other molecular and clin-
ical information is challenging to researchers 
and clinicians with limited supercomputer and 
bioinformatics knowledge.

Recent advances in information technology 
help make precision medicine a reality through 
applying massive amounts of genetic, clinical, 
and other data.20 These advances include the 
rapid development of next-generation sequenc-
ing technologies, including RNA sequencing, 

which may provide information on expression of 
target genes and on associations with outcome 
and other clinical variables. Overexpression of 
the target on tumor cells is important for spec-
ificity and reduced toxicity in healthy tissues. 
Combining targeted and immune therapies is 
also a promising strategy in precision medicine 
and may help significantly improve outcomes 
for patients with cancer.20 Multiple immuno- 
and targeted therapy combinations are being 
tested in the clinic; however, every possible 
combination of the currently available thera-
pies is not feasible, and new approaches are 
needed to prioritize combination therapies for 
experimental testing.21 This study is intended to 
support prioritization and provide justification 
for further experimental and clinical testing. 
However, the results from this study should be 
interpreted with caution, because this study is 
not discovering combination cancer therapeu-
tics. The study identifies associations of genes 
upregulated in a single tumor type with known 
combinations of FDA-approved agents shown 
to improve outcome. Furthermore, overexpression 
of the target gene is the basis for the association 
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with existing, FDA-approved agents that have 
been shown to increase outcome and other 
clinical variables. In solid tumors, many target 
genes associated with disease are mutated but 
not upregulated and, therefore, would not be 
detected through this method.

Furthermore, testing already approved noncan-
cer drugs in combination with novel cancer treat-
ments is also limited, although using these might 
provide the quickest way to the clinic. To address  
these challenges, we created a software archi-
tecture that allows the user to integrate and  
analyze large datasets, including sequencing, 
clinical, pathway, and other data to efficiently 
predict potential combination drug targets that 
can be tested in preclinical and clinical mod-
els. Our system provides efficient parallelization, 
quick analysis and visualization of large datasets, 
and inclusion opportunity for additional databas-
es. To show the power of our architecture, we an-
alyzed all possible combinations of FDA-approved 
cancer therapeutics and identified potentially syn-
ergistic target pairs for cancers in the TCGA proj-
ect. Although in the current study we used data 
from samples in 33 TCGA cancer projects, cancer 
subtypes and more refined gene sets can similar-
ly be studied using this approach.

To study novel targets, we have identified mul-
tiple targets that could potentially be synergis-
tic with MAPK/ERK inhibitors for the treatment 
of skin cutaneous melanoma, for which se-
quencing data are available for many patients 
in the TCGA.22 Specifically, we have shown 
that targeting PKN3 may increase efficacy of 
MAPK/ERK inhibition. ERK inhibitors are be-
ing tested in the clinic for the treatment of tu-
mors with aberrant MAPK pathway signaling16; 
however, combination therapies will probably 
be necessary to achieve durable tumor con-
trol. Furthermore, in the RAF-MEK-ERK path-

way, ERK inhibitors seem to be more effective  
than MEK inhibition at reducing MAPK activ-
ity and they are also superior at inhibiting the  
proliferation of BRAF inhibitor-resistant mel-
anoma cells.23 ERK inhibition may also be 
the best way to disrupt this pathway in other 
RAS-driven tumors.24

Our results show that expression of multiple 
novel targets might synergistically affect pa-
tient survival, and inhibition of these genes 
may increase the efficacy of ERK inhibitors. 
We demonstrate that expression of MAPK1 
and PKN3 both have to be low to predict  
better OS, and PKN3 inhibition may increase 
efficacy of the MAPK inhibitor sorafenib. Of 
note, it was recently shown that PKN3 is a 
key regulator of angiogenesis and metasta-
sis in melanoma.17 This further supports that 
our predictions aid the discovery of potentially  
relevant combination targets. We have also 
shown that graph analytics and visualization 
can help identify relevant pathways to target. 
Specifically, we found that targeting metabo-
lism pathways is of potential importance in skin 
cutaneous melanoma, supporting the current 
view that exploiting metabolic vulnerabilities 
may be helpful to overcome MAPK pathway in-
hibitor resistance.25 Although these results are 
promising, we note that the potential benefi-
cial effect of FDA-approved drug combinations 
identified by using this architecture remains 
theoretical. There is potential for serious, un-
foreseen adverse effects between previously 
untested drug combinations. In addition, drug 
combinations may lead to feedback effects on 
the pathways of interest or other pathways.
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