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Abstract
Climate change is a driver for diverse impacts on global biodiversity. We investigated its

impacts on native landcover distribution in South America, seeking to predict its effect as a

new force driving habitat loss and population isolation. Moreover, we mapped potential

future climatic refuges, which are likely to be key areas for biodiversity conservation under

climate change scenarios. Climatically similar native landcovers were aggregated using a

decision tree, generating a reclassified landcover map, fromwhich 25% of the map’s cover-

age was randomly selected to fuel distributionmodels. We selected the best geographical

distributionmodels among twelve techniques, validating the predicted distribution for cur-

rent climate with the landcover map and used the best technique to predict the future distri-

bution. All landcover categories showed changes in area and displacement of the

latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to

expand its distributional range. The range contractions predicted for other categorieswere

intense, even suggesting extirpation of the sparse vegetation category. The landcover ref-

uges under future climate change represent a small proportionof the South American area

and they are disproportionatelyrepresented and unevenly distributed, predominantly occu-

pying five of 26 South American countries. The predicted changes, regardless of their direc-

tion and intensity, can put biodiversity at risk because they are expected to occur in the near

future in termsof the temporal scales of ecological and evolutionary processes. Recognition

of the threat of climate change allows more efficient conservation actions.

Introduction
Native landcover alterations have reached alarming rates in the last four decades [1,2] and
changes are expected to increase in the near future, exacerbating threats to biodiversity. How-
ever, most of our current attention is directed toward losses of native landcover due to agricul-
tural or urban expansion, overlooking other causes of reduction. Human-induced climate
change can be a new driver of losses in native landcover because native vegetation distributions
are related to climatic variables and, consequently, they may be affected by future climate
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change [3–7]. So, while native vegetation conversion might be the main anthropogenic change
currently threatening biodiversity, climate change could be equally or even more influential in
the near future [8], exacerbating the negative consequences of native vegetation losses.

Landcover alteration mediated by future climate change could become a direct threat to bio-
diversity due to its potential to change habitat availability for species, reducing or displacing
them [9].There are also indirect consequences because landcover categories correspond to dif-
ferent habitat structures and, when unfavorable, these latter can act as barriers to speciesmove-
ment [9]. In this way, landcover changes through space and time can define boundaries of
present and future ecological regions suitable for species [10]. Recognition of these boundaries
can promote new perspectives on management of anthropogenic climate change impacts
[11,12], since we can identify future refuges in which species can persist. Consequently, under-
standing the loss or displacement of landcover types is a high priority for research and for sup-
porting conservation actions [13,14].

The conceptual and methodological framework to study effects of climate change on biodi-
versity has been advancing in recent years, driven by the importance and complexity of the
topic [14–18]. These approaches involve a diversity of subjects, which include forest dynamics
and threatened and specialist species. One of the main approaches employed to study climate
change impacts has typically consisted of a technique known as species distributionmodeling.
It is also known as ecological niche modeling because it aims to predict the potential distribu-
tion of species through their fundamental niches [19]. As a result, species distribution patterns,
mediated by climate change, are one of the most studied themes in climate change science [20–
22].

However, the species distributionmodels can be used to target predictions beyond species
ecological niches because, in a simplified view, thesemethods consist of correlatives approaches
between occurrence and environmental data (frequently climatic variables). In this way, species
distributionmodels identify a multi-dimensional environmental space, which is projected in a
two or three-dimensionalmap, showing the expected geographic distribution based on the
environmental conditions [19]. Therefore, the possibilities of using species distributionmodels
concern the investigation of environmental mediated patterns beyond the ecological attributes
of species, which permitted the use of these techniques even in other research areas (in social
science [23], reconstructing Late Quaternary vegetation [7], mapping the malaria risk in Africa
[24], investigating the distribution of archeological sites [25]). Because we adopted a non-spe-
cies-specific approach in our study, we term our approach geographic distributionmodelling.

The use of native landcover as a focus of analysis brings somemethodological advantages,
which increase analytical robustness. Unlike species distributions, landcover distributions are
well known, which improves at least two methodological steps of geographical distribution
modeling. One of the main problems of studies using geographical distributionmodeling is the
sampling bias associated with species occurrences (the basic information used to estimate a
species’ fundamental niche), which lead to biased predictions of distribution [26,27]. The sec-
ond is that validation data usually consist of a subset of the entire dataset, so that the validation
of predicted distributions is also biased (an essential step of geographical distributionmodel-
ing) [28,29]. As an alternative approach, the known landcover distribution enables part of the
data to be used to generate the prediction (calibration) and the remaining data can be used to
validate the distribution essentially bias-free. These methodological advantages confer benefits
in terms of applicability to conservation because planning for the future must be based on the
most reliable results, which infers predictions with reduced uncertainty and distribution errors.
Therefore, investigation of native landcover changes in future climate scenarios has crucial
applicability for public policy on biodiversity conservation because of the methodological
robustness with which predictions can be generated.

Landcover Change under FutureClimate

PLOSONE | DOI:10.1371/journal.pone.0162500 September 12, 2016 2 / 20



Therefore, we study the effects of future climate scenarios on native landcover distribution
in South America using the geographical distributionmodeling approach and infer the conser-
vation implications of our findings. The study area includes at least sevenmajor terrestrial
biomes depending on the classification adopted (tropical forest, deciduous forest, shrubland,
grassland, savanna, desert, and mountain), which are distributed in 13 countries (Argentina,
Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname,
Uruguay, and Venezuela). Even though ecological patterns do not respect sociopolitical bound-
aries, many conservation strategies are undertaken at this scale, highlighting the importance of
analyzing and discussing the effects of climate change at the country level. We also endeavor to
identify the climatic refuges of native landcover that could be essential for protecting biodiver-
sity into the future and discuss the relative importance of them in each of the South American
countries. To do this, we asked the following questions: what are the native landcover catego-
ries that will potentially contract or expand their distributions as a consequence of climate
change, resulting in habitat loss or habitat expansion?; what is the direction and intensity of
these potential changes (latitudinal/longitudinal), leading to potential raising of barriers to spe-
cies dispersal?; and which regions and countries are the most stable, indicating that they should
be prioritized for conservation?

Materials andMethods

Database
South America’s landcover was categorized according to GlobCover (available at http://due.
esrin.esa.int/page_globcover.php), one of the most widely used in ecological studies [30] due to
its ability to correctly describe current landcover and for its applicability to large-scale studies.
The GlobCovermap is a categorization of MERIS FRmosaics for the year 2009 through an
automatic and regionally-tuned classification, which resulted in 22 landcover classes, 19 of
which occur in South America (S1 Fig). This landcover map follows the classes defined by the
United Nations Land Cover Classification System.

In our study, anthropogenic landcover categories (urban areas, agricultural lands, etc.) were
not included in any of the analyses because their distribution, current and into the future, are
strongly influenced by political incentives for urban/agriculturaldevelopment, roads, etc. As a
result, anthropogenic landcover categories must be analyzed using variables that are beyond
the scope of the climatic variables used in this paper. For this reason, we removed all categories
under anthropogenic influence (urban areas, agricultural lands, etc.) from the landcover map
before modeling.

The landcover map was overlaid with grid cells of 0.5° latitude and longitude. Then, the
landcover map was upscaled according to the most abundant native landcover category in each
grid cell. There is an error associated with this extrapolation because the current most abun-
dant native landcover does not always represent the original vegetation, mainly in grid cells
located in agricultural lands. However, this error did not affect our results, as is described
below in the results section.

We investigated nineteen climatic variables to evaluate potential landcover distributions (S1
Table; data available from http://ecoclimate.org). We chose three different Global Climate
Models (GCMs: Community Climate SystemModel—CCSM,Model for Interdisciplinary
Research on Climate–MIROC, and Institut Pierre Simon Laplace—IPSL) to decrease uncer-
tainty based on inconsistencies between climate models [31]. These GCMs were selected
because they have widely available digital databases, predict climate change differently (which
helps reveal to what extent results depend on the CGM chosen), and exhibit a reasonable
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adjustment over the study region. All three were derived from the CoupledModel Intercom-
parison Project–Phase 5 (CMPI5) [32].

We adopted the pre-industrial climatic scenario as being responsible for current native
landcover distributions. Changes to native landcover distributions since the industrial revolu-
tion are mainly due to urban and agricultural expansion and not to climate change because
there is a time lag in the response of landcover to climate change [33,34]. Therefore, we assert
that current native landcover is better characterized by the pre-industrial climatic scenario, jus-
tifying our choice. Climate data up to the year 2080 was generated according to the emission
scenarios of the Representative Concentration Pathway (RCP) 4.5 and 8.5.

Landcover and climatic distribution similarity
Since our approach includes only climatic variation, not considering the full range of variables
influencing the distribution of landcovers, it is expected that some landcover classes show the
same environmental/climatic space. This means that two or more landcover classes can be
describedby the same climatic conditions because other variables, such as topography and
soils, can be limiting of their distribution. Therefore, we first evaluated climatic similarities
among grid cells, creating groups that represent landcover categories that have a unique cli-
matic identity (Fig 1). It allowed us to characterize new landcover classes according to climatic
variables, thereby enabling our modeling approach.

The classical way to group data according to ecological similarity is by using cluster analysis
[35]. Cluster analysis is not a specific algorithm, but a conceptual method that generates groups
based on the similarity of sampling units. The most common clustering algorithms are k-
means and Unweighted Pair Group Method with ArithmeticMean (UPGMA), which are
examples of non-hierarchical and hierarchical methods, respectively [35]. However, these
methods can create arbitrary groups because they depend on a priori definitions of group num-
bers in the case of k-means or the cut-off point of a dendrogram for UPGMA [35].

Here, we used a decision tree algorithm to generate grid cell groupings based on climate
similarity between native landcover categories. The decision tree is an approach only recently
employed in ecological studies, frequently with other objectives such as sensitivity analysis
[36,37] and classification of species according to extinction risk [38,39]. Decision trees have the
conceptual logic of cluster analyses, which is the allocation of sampling units to a group pos-
sessing greater similarities, thereby increasing intra-group homogeneity and between-group
heterogeneity [40].

The decision tree is a logical model, so named due to its graphical representation in binary
tree form, which shows how the response variable (in this case, the native landcover category)
can be predicted by explanatory variables (here, the climatic variables) [40]. The decision tree
algorithm divides the initial dataset (grid cells) into homogeneous subsets, with one variable in
each subdivision step (called in decision tree terminology a node), until homogeneous and indi-
visible subsets remain (leaves), which are our clusters [40]. Due to its progressive approach, the
decision tree can be considered a hierarchical method, but starting with only one group (all
sampling units) that is progressively subdivided to maximize the similarity within groups [40].
This is the opposite approach to UPGMAwhereby each sampling unit is progressively aggre-
gated until only one group remains.

The result of the decision tree process is a highly subdivided data set, which can partition
grid cells with the same landcover type into more than one leaf. Each leaf has a prediction that
best characterizes its landcover category, i.e. it may or may not be the original category of the
grid cell. This prediction reveals which landcover categories have a distribution corresponding
to the climate and for which categories the climatic space overlap, resulting in a shared
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Fig 1. Steps of themethodological approach used in this study (GDM–geographical distribution
model).Methods.

doi:10.1371/journal.pone.0162500.g001
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classification. This is the basic evaluation about the ability of landcover distribution to be pre-
dicted by climate that is essential for our approach.

The decision tree was carried out singly for each climate model. To avoid over-fitting in the
decision tree results, we evaluated the optimal number of subdivisions through 10,000 cross-
validations, which measured the relative error with the addition of a new subdivision (node); in
other words, a balance between accuracy of prediction and model complexity [40]. Due to
cross-validation removing unnecessary subdivisions and the use of one variable for each step (a
characteristic of the decision tree), there is no risk of overparameterization because the method
selects only the most efficient variables for creating groups [40]. To evaluate the efficiencyof
the decision tree to correctly classify landcover categories, we conducted a random forest with
10,000 random trees generated by bootstrap sampling. The analyses were conducted in R soft-
ware, using the rpart [41] and randomForest packages [42].

Finally, we evaluated if the efficiencyof the classification was affected by expansion of
anthropogenic lands. We performed the decision trees after removing grid cells with more
than 50% of area occupied by anthropogenic landcover and compared the proportion of grid
cells correctly classified with the result using all grid cells. We also related the probability of a
grid cell to be correctly classifiedwith the proportion of anthropogenic landcover in the cell.

Modeling approach
To predict the native landscape cover distribution, we selected nine different species distribu-
tion methods and three ensemble forecastings. Each ensemble was composed by a different
group of methods: (i) bioclimatic envelope and distance-basedmodels–BIOCLIM[43], Gower
distance [44], Mahalanobis distance [45]; (ii) statistical models—GeneralizedLinearModels
(GLM) [46], GeneralizedAdditive Models (GAM) [47], Multivariate Adaptive Regression
Splines (MARS) [48]; and (iii) machine-learningmodels—MaximumEntropy (MaxEnt) [49],
Genetic Algorithm for Rule Set Production (GARP) [50], random forest [51]. Details on these
methods can be found in [52,53].

These geographical distribution techniques are commonly used to estimate the potential
distributions of species through a combination of environmental variables and species occur-
rence [52,53]. Here, we fueled the system with leaves occurrence (groups generated by the deci-
sion tree) instead of species occurrence (Fig 1), so the cells of grid have information on the
presence or absence of the different classes represented by leaves. We opted to use leaves in
place of landcover categories because the latter show a larger climatic space due to extensive
geographic range distribution. The use of leaves could avoid over-extrapolation of the spatial
extent of landcover because it would minimize the climate range. The climatic variables used
were those indicated by the decision tree analysis as being efficient for differentiating and pre-
dicting landcover categories. In all likelihood,we increased the robustness of our prediction
with this approach by avoiding model overparameterization. The distributionmodels were
analyzed in R software, using the BIOMOD package [54].

Our modeling approach started by estimating the best method of prediction under current
climatic conditions.We assumed the best method as that for which the predicted distribution
(generated through the pre-industrial climatic scenarios)most closely matched the original dis-
tribution (i.e. the result of the decision tree classification) (Fig 1). This approach was possible
because we knew the original distribution of the focal object of our study (i.e. leaves represent-
ing the landcover categories), which is not possible for most species distribution studies.

The quality of any spatial modeling approach can be affected by spatial autocorrelation
present in both the environmental database, due to gradients of climate variation, and in the
biological database, due to a direct response to climate gradients and biases in species sampling
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[55,56]. To avoid this problem, we modeled the distribution through pre-industrial climatic
scenarios using 25% randomly-selected grid cells; the random selection theoretically permitted
a sampling free of bias, covering the environmental variability of the study area and improving
the model-adjusted predictions [26]. The distributions of leaves were generated through 10
replicates of each method, whereby the selected grid cells (the 25% cited above) were divided
into 75% of the data for calibration and 25% for validation [26,57,58]. The threshold applied to
convert the occurrence probabilities into binary classification was the prevalence of leaves in
each data calibration, which expresses the prevalence of training data [59]. The ensemble fore-
casting of distributionmodelingmethods was generated through averaging of the models’ pre-
dictions, weighted by True Skill Statistics (TSS) [60] calculated for internal validation.

Then we compared the predicted distributions and the original distribution of each class
using the 75% of grid cells not used for generating the geographic distributionmodels (Fig 1).
This comparison was done through four evaluationmetrics: sensitivity, specificity, TSS and Area
Under ROCCurve (AUC). The modelingmethods with values higher than 0.7 for all evaluation
metrics where considered able to estimate the distributions of leaves. The distributions for future
scenarios were modeled through thosemethods indicated as adequate according to our criterion
and were performed through the same parameters as described above (Fig 1).

After modeling, the leaves classified under the same landcover category were aggregated to
express the totality of their spatial distribution. Our objective was to infer the effects of climate
change on native landcover categories and the comparison would not be possible using the
leaves because they are not comparable among climatic models.

Finally, a second ensemble forecasting regarding the prediction of the three different GCMs
was undertaken to represent the final distribution of each landcover category. We did an
ensemble forecasting among GCMs to find the locations where all predictions converged to
reduce prediction uncertainties. Then we compared the future landcover distribution with the
current distribution to find places where it remained unchanged; these areas can be considered
as locations of climatic and landcover stability, which are potential refuges for biodiversity. To
do this, the current and future landcover distributions were compared through two descriptors
of range, i.e. the area and the location of the latitudinal/longitudinal centroid, to evaluate the
changes mediated by climate. We then calculated the potential area of refuges in each South
American country. All measures of geographical distributions were calculated using ArcMap1

software version 10.

Results

Landcover classes and variable selection
According to the random forest results, the decision tree efficiently grouped grid cells (73% of
variation was explained in all cases). However, approximately 56% of grid cells were classified
differently from their original landcover classes. For these grid cells, predicted landcover was
frequently consistent—grid cells from the same original landcover ended in the same class (for
example, the open broadleaved deciduous forest was frequently predicted as closed to open
shrubs; S2, S3 and S4 Figs), indicating that these landcover categories overlapped climate
boundaries, but still had a climatic identity (S2, S3 and S4 Figs).

The final aggregation of similar climate-linked landcover types resulted in four categories
for MIROC and five for CCSM and IPSL (Fig 2 and S1 Fig). However, most of these categories
covered a wide range of climatic conditions and can be divided into subgroups (leaves) accord-
ing to their climatic properties (Fig 2). The grid cells comprising a leaf are spatially aggregated,
which is expected due to the spatial structure of climatic variation. Thus, the final leaves of the
decisions tree are subdivisions of spatially aggregated landcover categories (Fig 2).
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The leaves of the decision tree are different among GCMs because they were structured by
different variables and node numbers (Fig 2 and S4 Fig). However, despite variation in decision
tree structure, we observedgeneral subdivision trends derived from different climate models
(for example CCSM—Leaf 4, IPSL–Leaf 4 and MIROC–Leaf 3; CCSM—Leaf 14, IPSL–Leaf 20
and MIROC–Leaf 25; this kind of matching can be observed for many other leaves).

The efficiencyof our classification was not affected by anthropogenic landcover. The pro-
portion of grid cells correctly classifiedwas approximately the same when we excluded from
the decision tree those cells with more than 50% of area occupied by anthropogenic landcover
(0.40–0.45 of grid cells correctly classified). Therefore, the probability of a grid cell to be cor-
rectly classified was not related to the proportion of anthropogenic landcover in the cell.

Landcover distribution and changesmediated by climate
We performed 4,560 models of native landcover distribution against pre-industrial climate sce-
narios (12 modelingmethods�10 replicates�38 leaves, divided into three climatic models),
which generated 456 estimated distributions. However, many of them were inconsistent with
original distributions, showing that geographical distributionmodeling can fail to estimate geo-
graphical distribution (Fig 3). The statistical methods for modeling distributions showed the
best performance because they presented values higher than 0.7 for all evaluationmetrics, with
the exception of GLM (Fig 3). GAM and MARS had similar performance and range distribu-
tion predictions. Thus, GAM andMARS strongly influenced the ensemble forecasting of the
statistical methods, making the predictions of these three methods largely similar (Fig 3). To
simplify comparisons and conclusions, we selected the statistical method of ensemble forecast-
ing to predict landcover distributions under future climate scenarios; in this, it was quite effi-
cient and, being an ensemble, it should generate the best results in terms of predicting
distributions.

Unlike species distributions, the predicted landcover distributions should not overlap
because only one landcover category can occur in a given location.We considered an uncer-
tainty of the predicted distribution those locations where the occurrence of more than one leaf
was predicted. The areas of distribution uncertainty were not the same among climatic models
(S6 Fig). For predictions generated through the CCSM and MIROC climatic variables, the dis-
tribution uncertainty was higher in future climatic scenarios,mainly for RCP 8.5 (S6 Fig).
However, the IPSL generated predictions with higher uncertainty for pre-industrial climatic
scenarios (S6 Fig). The proportion of uncertainty did not differ widely among leaves (S6 Fig),
showing that the effectiveness of prediction was not linked to landcover category, which
increases the robustness of our approach.

All landcover categories showed changes in area and displacement of distribution centroids;
the changes predicted by RCP 4.5 and RCP 8.5 scenarios were usually in the same direction,
but the latter were more intense (Figs 4 and 5). Closed vegetation was the only native landcover
predicted to expand. This expansion was mostly in the western part of its distribution, which
generated a centroidal displacement in this direction. The other native landcover types tended
to severely reduce their range distribution (Fig 4). Open vegetation was predicted to lose range
mainly in the Northeast, but with limited expansion in the South, which displaced the centroid
south-westwards by more than 300 km. The closed deciduous forest could be reduced by more

Fig 2. Decision tree and the reclassified landcover. The final leaves (subgroups) correspond to the reclassified
landcover generated by climatic similarity of native landcover for each climatemodel used in this study. The final
leaves can have the same name among different climaticmodels, but they are not necessarily equivalent. Climatic
variable codes are given in S1 Table.

doi:10.1371/journal.pone.0162500.g002
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Fig 3. Predicteddistributions accuracy and robustness. Evaluation metrics (y-axis) to select the best geographical distributionmodel approach
(x-axis) for predicting current native landcover distributions under three different climaticmodels (CCSM, IPSL, andMIROC).

doi:10.1371/journal.pone.0162500.g003

Landcover Change under FutureClimate

PLOSONE | DOI:10.1371/journal.pone.0162500 September 12, 2016 10 / 20



Fig 4. Distribution and losses of native landcover. Spatial distribution and area (km2) of native landcover according
to the categoryand climatic scenarios.

doi:10.1371/journal.pone.0162500.g004
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than 50% in the more optimistic future climatic scenarios (Fig 4), with this range contraction
displacing the centroid. Sparse vegetation seemed to be the most affected in terms of range dis-
tribution contraction and displacement, shifting almost 2,000 kilometers northwards (Fig 5) or
even being totally extirpated under the most pessimistic climate change scenario (Fig 4).
Mosaic presented the lowest centroidal displacement (Fig 5), but this is not indicative of
reduced concern because the proportion of predicted range contraction was intense, which
could reduce the mosaic vegetation to three small and isolated vegetated nuclei (Fig 4).

The ensemble of different climate scenarios showed that 47.3% of South America can be
considered areas of climatic stability under the RCP 4.5 scenario. These areas can be considered
refuges for biodiversity facing the potential impacts of climate change. However, only 29.1% of
the territory was indicated as refuges under the RCP 8.5 scenario. The main landcover types
represented in these refuges under both climatic scenarios were closed vegetation (RCP
4.5 = 39.5%; RCP 8.5 = 25.2%), followed by open vegetation (RCP 4.5 = 4.6%; RCP 8.5 = 1.6%;
Fig 6). The other landcover categories had limited areas of stability under RCP 4.5
(CDF = 0.001%; SV = 0.4%; MO = 0.3%), which could potentially decrease or even disappear
under the RCP 8.5 scenario (MO = 0.1%).

The potential biodiversity refuges are concentrated in the Northwest of the South American
territory, occupying a large proportion of Ecuador, Colombia, French Guyana and Peru (Fig

Fig 5. Centroid displacement of landcovermediatedby future climate change. In themap of South America
we show the location of the centroids for native landcover categories (A—mosaic; B—sparse vegetation, C—
closed vegetation, D—open vegetation, E—closed deciduous forest). Insets relate to each native landcover; the
points represent the centroids of their respective current distributions, while the arrowheads represent the
respective centroids under the 2080 climatic scenarios, showing the direction of changewith arrow length
representing the intensity of change. The gray arrows refer to RCP 4.5 and black arrows to RCP 8.5.

doi:10.1371/journal.pone.0162500.g005
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Fig 6. Area, proportionand spatial distribution of climate refuges in 2080 according to two
greenhouse gas emissionsscenarios (RCP 4.5 and RCP 8.5).Of the five landcover categoriesanalyzed
in this study, only three had sufficient area to be graphically represented: closed vegetation (light gray), open
vegetation (dark gray), andmosaic (black). South American countries are represented as follows: 1 –French
Guyana, 2 –Suriname, 3 –Guyana, 4 –Venezuela, 5 –Colombia, 6 –Ecuador, 7 –Peru, 8 –Bolivia, 9 –Chile,
10 –Argentina, 11 –Uruguay, 12 –Paraguay, and 13 –Brazil.

doi:10.1371/journal.pone.0162500.g006
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6). However, when we considered the total area, the countries with the largest extent of closed
vegetation refuges were Brazil, Colombia, Peru and Bolivia (Fig 6). Argentina accounted for a
significant area of open vegetation refuges (Fig 6). Chile and Uruguay presented the most
threatened conservation scenarios due to their small area coverage of potential refuges for bio-
diversity (Fig 6).

Discussion
Aggregation of native landcover categories by the decision tree resulted in four very broad
groups and, consequently, the predictions correspondedmore to changes at the biome level
than to vegetation classes. This might be a consequence of the Globcover database we used in
the model, which does not take topography, an important predictor of vegetation into account
[61]. Despite the generality of our results, they reveal some interesting trends.

The distributions of the majority of the native landcover categories grouped by climate are
predicted to be reduced in total area, except closed forest. Therefore, there will be losses of total
area for four of the five landcover categories climatically defined, which correspond to those
that already occupy the smallest areas. Losses of these landcover categories range from approxi-
mately 20% under optimistic scenarios (RCP = 4.5) to their complete extirpation under pessi-
mistic scenarios (RCP = 8.5), which could result in the extinction of many species and
particularly habitat-specialists. In contrast, area coverage was predicted to increase for closed
vegetation. At first, our results seem to contrast with most other studies, which predict that cli-
mate change will cause a reduction in forested areas. This outcome is particularly expected in
Amazonia, where a savannization process [62–66], through a replacement of forested land by
open and/or sparse vegetation is the most supported scenario [62,64,67]. However, this con-
traction is expected to occurmainly in the central area of South America, where dryer environ-
ments are located [68–70]. The expansion of closed forest in our results is predictedmainly in
the direction of theWest and North coasts of the continent, with some contraction in the mid-
dle of the continent where Amazonian savannization is also predicted [71]. However, the
savannization hypothesis is still little tested, with supporting evidence only at a local scale [71],
demonstrating that more attention should be given to investigating this possibility. By predict-
ing westward expansion of the Amazonian forest, our results bring more uncertainty to this
discussion.

There has been a lack of predictions under future climate scenarios for the Brazilian Caa-
tinga biome, located in the Northeast region of South America. This biome is typically com-
posed of open and dry vegetation, sometimes considered as desert [72]. The projection
scenarios predict a contraction of open vegetation in that region, bringing uncertainty about
the future of open areas in the northeast of the continent. However, here, we have predicted a
partial expansion of closed vegetation into Caatinga, which could explain previous evidence of
mammal range expansion into the areas presently occupied by the Caatinga, suggesting that
mammals could be favored by climate change with concomitant expansion of their present dis-
tributions [73]. Therefore, our models seem to indicate that a relaxation of dry environmental
conditions in areas of Caatinga could occur, resulting in a landcover that would exhibit an
intermediate structure between closed and open vegetation.

Displacement of vegetation types threatens all categories, but is more intense for sparse veg-
etation, which is also the most affected by range contraction. Predictions for mosaic landcover
also estimate a large contraction and displacement in range distribution, considering its total
area. Mosaic and sparse vegetation presently are found at the Atacama Desert and other areas
of the Andes. Climate change is expected to intensely affect these landcover categories because
it will disrupt the extreme weather conditions that regulate the ecological processes and species
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distributions occurring there. Contraction of the sparse vegetation and mosaics characteristic
of the Atacama Desert and Andes could exacerbate the isolation of the specialist species of
those habitats, such as the Andean cat (Leopardus jacobita), the most threatened felid of the
Americas [74,75]. This process of habitat contraction can engender a habitat island effect, with
progressive reductions ultimately leading to extirpation, giving no options to species for dis-
persal, which could drive species extinction and/or alter evolutionary processes and patterns.
Thus, sparse vegetation and mosaics, as well as the species restricted to these landcovers, would
seem to be the most affected by climate change and, consequently, they are the categories of
most concern regarding climatic threats.

Regardless of their direction and intensity, the predicted changes to native landcover distri-
butions are a threat to biodiversity because 2080 (the year for which extrapolations were esti-
mated) is in the near future considering the temporal scales of some ecological and the
majority of evolutionary processes. The intensity and velocity of these changes will probably
nullify the evolutionary adaptive time of species and their ability to disperse to adequate areas
[20]. Despite the evidence of environmental plasticity in some species [20], it is probable that
the effect of climatic change on species will be more intense than what we have describedhere
for landcover categories, because they include just very broad categories and we know that
there are more variations in vegetation types, mainly at local scales.

Recognizing areas of distributional stability among the different climate models is essential
because they are potential refuges for biodiversity. Closed vegetation seems to be the least vul-
nerable because it is predicted to retain the largest proportion of potential forested refuges
[30,76]. However, our results indicate that the spatial distribution of these refuges is concen-
trated in the Southwest of the Brazilian Amazon and the upper Pacific coast of South America,
which includes many distinct vegetation types and biogeographic provinces, found on both
sides of the Andean chain. Therefore, with appropriate protection, these forested landcovers
will likely maintain climate refuges for biodiversity, while the biodiversity distributed in other
areas presently covered by closed forests are threatened, such as the species and ecological pro-
cesses in the closed vegetation of the Atlantic coast.

While the threats to closed vegetation differ among South America regions, the other land-
cover categories present a critical conservation situation from the viewpoint of climatic refuges.
Open vegetation is the second largest landcover category among those evaluated here, extend-
ing from the Northeast through the Mid-South of South America. However, our identified ref-
uges are only a small proportion of its original distribution and these are located
predominantly in Argentina. Other landcover types showed even more critical states due to
their small distribution so that refuges are almost nonexistent.

The lack of refuges predicted for some landcover categories or regions does not necessarily
mean their complete absence. Divergences among climate models may result in failure to iden-
tify refuges, particularly for landcover categories with limited distributions. Thus, research at a
smaller scale (local, regional or targeted to particular species with restricted ranges) probably
will be more sensitive to methodological approaches using climatic variables. Improved climate
modeling also would permit better predictions of landcover, ecosystems and species distribu-
tions [77], especially those focused at regional scales, such as those of countries. However,
improvements to regional model predictions may require better climate data and more careful
planning of the distribution of registering stations. For vegetation, a better understanding of
climate variability, which at present is little understood, will likely be crucial, because seasonal-
ity is critical to define some characteristics of the vegetation types, such as deciduousness [78].

Another possible source of uncertainty, for which we had less control, was the initial data-
base of our modeling. A comparison of different digital databases has shown that Globcover
data overestimate the closed forest class [61]. This class occupied the largest part of the original
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landcover map and the largest predicted area after modeling.We cannot be sure if the initial
size of categories could have influenced the estimation of refuges. Unfortunately, despite the
uncertainties involved in models and databases, actions for effective conservation cannot await
a decreased knowledge gap because the disruption of weather patterns now threatens many
species and ecological process [79–81]. Therefore, decisions need to be taken based on the best
available information, and, in this sense, areas of refuges predicted here, at least for closed for-
ests, are similar to those predicted in previous work [67,82].

Supporting Information
S1 Fig. Study area and vegetation upscale. (A) Study area and landcover categories according
to GlobCover (Bontemps et al., 2011) upscaled according to the most abundant landcover cate-
gory in grid cells of 0.50 latitude and longitude resolution. (B) The final aggregation of land-
covers according to climatic similarity.
(TIF)

S2 Fig. Effectivity of reclassificationthrough CCSM. Prediction probability of grid cells from
each landcover category based on the CCSM climate model.
(TIF)

S3 Fig. Effectivity of reclassificationthrough IPSL. Prediction probability of grid cells from
each landcover category based on the IPSL climate model.
(TIF)

S4 Fig. Effectivity of reclassificationthroughMIROC. Prediction probability of grid cells
from each landcover category based on the MIROC climate model.
(TIF)

S5 Fig. Decision tree size.Decision tree sizes were defined by the increase in relative error
with inclusion of a new node.
(TIF)

S6 Fig. Uncertainty surrounding the potential distribution of leaves as an estimate of pre-
diction error. The bars represent the total area (km2) of potential distribution predicted for
each leaf (a subdivision of the climatic data generated by the decision tree). In black is the area
and location of uncertainty, which relates to a leaf that overlaps the distribution of other leaves.
(TIF)

S1 Table. Bioclimatic variables. List of variables used to evaluate climate descriptors and pre-
dictors of landcover categories occurring in South America.
(DOCX)
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